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VARIABLE METRIC METHOD FOR MINIMIZATION*

WILLIAM C. DAVIDONY

Abstract. This is a method for determining numerically local minima of differentiable functions of
several variables. In the process of locating each minimum, a matrix which characterizes the behavior of
the function about the minimum is determined. For a region in which the function depends quadratically
on the variables, no more than N iterations are required, where N is the number of variables. By suitable
choice of starting values, and without modification of the procedure, linear constraints can be imposed
upon the variables.
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A belated preface for ANL 5990. Enrico Fermi and Nicholas Metropolis used one
of the first digital computers, the Los Alamos Maniac, to determine which values of
certain theoretical parameters (phase shifts) best fit experimental data (scattering cross
sections) [8]. They varied one theoretical parameter at a time by steps of the same
magnitude, and when no such increase or decrease in any one parameter further
improved the fit to the experimental data, they halved the step size and repeated the
process until the steps were deemed sufficiently small. Their simple procedure was
slow but sure, and several of us used it on the Avidac computer at the Argonne National
Laboratory for adjusting six theoretical parameters to fit the pion-proton scattering
data we had gathered using the University of Chicago synchrocyclotron [9]. To see
how accurately the six parameters were determined, I varied them from their optimum
values, and used the resulting degradations in the fit to estimate a six-by-six error
matrix. This matrix approximates the inverse of a Hessian matrix of second derivatives
of the objective function f, and specifies a metric in the space of gradients V£ Conjugate
displacements in the domain of a quadratic objective function change gradients by
amounts which are orthogonal with respect to this metric. The key ideas that led me
to the development of variable-metric algorithms were 1) to update a metric in the
space of gradients during the search for an optimum, rather than waiting until the
search was over, and 2) to accelerate convergence by using each updated metric to
choose the next search direction. In those days, we needed faster convergence to get
results in the few hours between expected failures of the Avidac’s large roomful of a
few thousand bytes of temperamental electrostatic memory.

Shortly after joining the theoretical physics group at Argonne National Laboratory
in 1956, I programmed the first variable-metric algorithms for the Avidac and used
them to analyze the scattering of pi mesons by protons [10]. In 1957, 1 submitted a
brief article about these algorithms to the Journal of Mathematics and Physics. This
article was rejected, partly because it lacked proofs of convergence. The referee also
found my notation “a bit bizarre,” since I used “+” rather than “k+1” to denote
updated quantities, as in “x, = x+ as” rather than “x;., = x;, + a;s,.”” While I then
turned to other research, another member of our theoretical physics group, Murray
Peshkin, modified and adapted one of these programs for Argonne’s IBM 650. An
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of Chicago contract W-31-109-eng-38.
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Argonne physicist who used the program, Gilbert Perlow, urged me to publish a
description of the algorithm so that he and Andrew Stehney could refer to it in a paper
they were writing about their analysis of the radioactive decay of certain fission products
[7]. Their reference thirteen was the first one to the report I was preparing [ANL-5990].

While this report focused mainly on the particular variable-metric algorithm which
seemed to work best, it divided all algorithms of this type into five parts:

1. Choose a step direction s by acting on the current gradient g with the current
metric in gradient space. If in this metric, g has a sufficiently small magnitude, then
g0 to step 5.

2. Estimate the location of an optimum in the direction s; e.g., by making a cubic
interpolation. Go to this location if a sufficient change in the objective function is
expected, else choose a new direction.

3. Evaluate the objective function f and and its gradient Vf at the location x chosen
in step 2 and estimate the directional derivative dVf(x + as)/da|,—o of Vf at x.

4. Update the metric in gradient space, so that it yields s when acting on the
directional derivative estimated in step 3. Return to step 1.

5. Test the current metric and minimizer. If these seem adequate, then quit, else
return to step 1.

The hunting metaphor used in the report to name these five parts was chosen with
tongue in cheek, since I expected the report would be read mostly by friends who
knew I opposed killing for sport. The report would have been clearer had it first
presented just the basic algorithm, with only those features needed to optimize quadratic
objective functions, without the various “bells and whistles,” which were added to
accelerate convergence for certain nonquadratic objective functions; e.g., Formula 6.1
for the components g, .(x) =Adg,(x+ as)/da|,—, of the directional derivative of the
gradient would simplify to g;, — g, = g,... It would also have been clearer if the rank-two
update to the metric presented in the body of the report (later known as the Davidon-
Fletcher-Powell (DFP) update) had been compared with the symmetric rank-one
update (which was relegated to the appendix because it had not worked as well on
certain problems).

Optimization algorithms were not among my research interests for several years
after writing ANL-5990, and I returned to them only after others had called my attention
to Fletcher and Powell’s pioneering work on the subject [11].

1. Introduction. The solution to many different types of physical and mathematical
problems can be obtained by minimizing a function of a finite number of variables.
Among these problems are least-squares fitting of experimental data, determination of
scattering amplitudes and energy eigenvalues by variational methods, the solution of
differential equations, etc. With the use of high-speed digital computers, numerical
methods for finding the minima of functions have received increased attention. Some
of the procedures which have been used are those of optimum gradient [1], conjugate
gradients [2], the Newton-Raphson iteration (see, e.g., [3], [4]) and one by Garwin
and Reich [5]. In many instances, however, all of these methods require a large number
of iterations to achieve a given accuracy in locating the minimum. Also, for some
behaviors of the function being minimized, the procedures do not converge.

The method presented in this paper has been developed to improve the speed and
accuracy with which the minima of functions can be evaluated numerically. In addition,
a matrix characterizing the behavior of the function in the neighborhood of the
minimum is determined in the process. Linear constraints can be imposed upon the
variables by suitable choice of initial conditions, without alteration of the procedure.
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2. Notation. We will employ the summation convention:

N
a*b,= Y a"b,.
w=1
In describing the iterative procedure, we will use symbols for memory locations rather
than successive values of a number; e.g., we would write x +3 - x instead of x; +3 = x; .
In this notation, the sequence of operations is generally relevant. The following symbols
will be used.
x*: w=1,---, N: the set of N independent variables.
f(x): the value of the function to be minimized evaluated at the point x.
g.(x): the derivatives of f(x) with respect to x* evaluated at x:

_af0),

ax*

g.(x)

h*”: a nonnegative symmetric matrix which will be used as a metric in the
space of the variables.
A: The determinant of h*”.

2 times fractional accuracy to which the function f(x) is to be minimized.

d: alimiting value for what is to be considered as a ‘“‘reasonable” minimum
value of the function. For least-squares problems, d can be set equal to zero.

K: an integer which specifies the number of times the variables are to be
changed in a random manner to test the reliability of the determination
of the minimum.

™

3. Geometrical interpretation. It is convenient to use geometrical concepts to
describe the minimization procedure. We do so by considering the variables x* to be
the coordinates of a point in an N-dimensional linear space. As shown in Fig. 1(a),
the set of x for which f(x) is constant forms an N —1 dimensional surface in this
space. One of this family of surfaces passes through each x, and the surface about a
point is characterized by the gradient of the function at that point:

_of(x)
g,u.(x) - axu .
c
x2 S 92
B C A
| A\
X @) g'
B
(a) (b)

FI1G. 1. Geometrical interpretation of x* and g, (x).
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These N components of the gradient can in turn be considered as the coordinates of
a point in a different space, as shown in Fig. 1(b). As long as f(x) is differentiable at
all points, there is a unique point g in the gradient space associated with each point
x in the position space, though there may be more than one x with the same g.

In the neighborhood of any one point A the second derivatives of f(x) specify a
linear mapping of changes in position, dx, onto changes in gradient dg, in accordance
with the equation

82
_—f_ dx V.

. de =
(3.1) e = ax* ax”

The vectors dx and dg will be in the same direction only if dx is an eigenvector
of the Hessian matrix:

*f

ax* ax”

If the ratios among the corresponding eigenvalues are large, then for most dx there
will be considerable difference in the directions of these two vectors.

All iterative gradient methods, of which this is one, for locating the minima of
functions consist of calculating g for various x in an effort to locate those values of x
for which g=0, and for which the Hessian matrix is positive definite. If this matrix
were constant and explicitly known, then the value of the gradient at one point would
suffice to determine the minimum. In that case the change desired in g would be —g,
so we would have

of
3.2 —g, ==t Ax"
(3.2) Bu Ix* 9x”

)

from which we could obtain Ax” by multiplying (3.2) by the inverse of the matrix
f

ax* ax”

However, in most situations of interest,
& f

ax* ax”

is not constant, nor would explicit evaluation at points that might be far from a
minimum represent the best expenditure of time.
Instead, an initial trial value is assumed for the matrix,

o*f

ax"* ax”

-1

This matrix, denoted by h*”, specifies a linear mapping of all changes in the gradient
onto changes in position. It is to be symmetric and nonnegative (positive definite if
there are no constraints on the variables). After making a change in the variable x,

this trial value is improved on the basis of the actual relation between the changes in
g and x. If

&
ax* 9x”




VARIABLE METRIC METHOD FOR MINIMIZATION 5

is constant, then, after N iterations, not only will the minimum of the function be
determined, but also the final value of h*” will equal

_¥f
ax" ax”

-1

We shall subsequently discuss the significance of this matrix in specifying the accuracy
to which the variables have been determined.

The matrix h*” can be used to associate a squared length to any gradient, defined
by h*"g,g,. If the Hessian matrix were constant and h*” were its inverse, then 3h*"g, g,
would be the amount by which f(x) would exceed its minimum value. We therefore
consider h*” as specifying a metric, and when we refer to the lengths of vectors, we
will imply their lengths using h*” as the metric. We have called the method a “‘variable
metric” method to reflect the fact that h*” is changed after each iteration.

We have divided the procedure into five parts which, to a large extent, are logically
distinct. This not only facilitates the presentation and analysis of the method, but it
is convenient in programming the method for machine computation.

4. Ready: Chart 1. The function of this section is to establish a direction along
which to search for a relative minimum, and to box off an interval in this direction
within which a relative minimum is located. In addition, the criterion for terminating
the iterative procedure is evaluated.

Those operations which are only performed at the beginning of the calculation
and not repeated on successive iterations have been included in Chart 1. These include
the loading of input data, initial printouts, and the initial calculation of the function
and its gradient. This latter calculation is treated as an independent subroutine, which
may on its initial and final calculations include some operations not part of the usual
iteration, such as loading operations, calculation of quantities for repeated use, special
printouts, etc. A counter recording the number of iterations has been found to be a
convenience, and is labeled 1.

The iterative part of the computation begins with “READY 1.” The direction of
the first step is chosen by using the metric A*” in the relation

4.1) —h*"g, > s*.

The “component” of the gradient in this direction is evaluated through the relation
(4.2) stg, ~> g,.

From (4.1) and (4.2) we see that —g, is the squared length of g, and hence the
improvement to be expected in the function is —3g,. The positive definiteness of h*”
insures that g, is negative, so that the step is in a direction which (at least initially)
decreases the function. If its decrease is within the accuracy desired, i.e., if g, +&>0,
then the minimum has been determined. If not, we continue with the procedure.

In a first effort to box in the minimum, we take a step which is twice the size that
would locate the minimum if the trial h*" were

_¥f
ax* ax”

-1

However, in order to prevent this step from being unreasonably large when the trial
h*" is a poor estimate, we restrict the step to a length such that (As*)g,, the decrease
in the function if it continued to decrease linearly, is not greater than some preassigned
maximum, 2(f—d). We then change x“ by

(4.3) x4+ st > xtH
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and calculate the new value of the function and its gradient at x**. If the projection
s*g, =g, of the new gradient in the direction of the step is positive, or if the new
value of the function f™ is greater than the original £, then there is a relative minimum
along the direction s between x and x*, and we proceed to “Aim” where we will
interpolate its position. However, if neither of these conditions is fulfilled, the function
has decreased and is decreasing at the point x, and we infer that the step taken was
too small. If the step had been limited by the preassigned change in the function d,
we double d. If the step had been taken on the basis of h*”, we modify h*” so as to
double the squared length of s*, leaving the length of all perpendicular vectors
unchanged. This is accomplished by

1
(4.4) W+ sts” > B2,

where ¢ is the squared length of s*. This doubles the determinant of h*". The process
is then repeated, starting from the new position.

5. Aim: Chart 2. The function of this section is to estimate the location of the
relative minimum within the interval selected by “Ready.” Also, a comparison is made
of the improvement expected by going to this minimum with that from a step perpen-
dicular to this direction.

Inasmuch as the interpolation is along a one-dimensional interval, it is convenient
to plot the function along this direction as a simple graph (see Fig. 2).

The values of f and f* of the function at points x and x" are known, and so are
its slopes, g, and g7, at these two points. We interpolate for the location of the
minimum by choosing the “smoothest” curve satisfying the obundary conditions at x
and x*, namely, the curve defined as the one which minimizes

A d2f 2
d —_
J 0 “ (daz )
over the curve. This is the curve formed by a flat spring fitted to the known ordinates

and slopes at the end points, provided the slope is small. The resulting curve is a cubic,
and its slope at any a (0= a =) is given by

2a a?
(5.1) gs(a)=gs—7(gs+2)+p(gs+g;*+22),

where

S e

The root of (5.1) that corresponds to a minimum lies between 0 and 1 by virtue
of the fact that g, <0 and either g7 >0 or z<<g,+g7. It can be expressed as

amin=A(l_a)a

where
NE O
(52) P g
gs —8+22
and

2=("-gg)"%
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/£

a=o a=\

F1G. 2. Plot of f(x) along a one-dimensional interval.

The particular form of (5.2) is chosen to obtain maximum accuracy, which might
otherwise be lost in taking the difference of nearly equal quantities. The amount by
which the minimum in f is expected to fall below £ is given by

A
1
(5.3) J dag(a)==(gr+z+22)a’\.
(A—ad) 3
The anticipated change is now compared with what would be expected from a
perpendicular step. On the basis of the metric h**, the step to the optimum point in
the (N —1)-dimensional surface perpendicular to s* through x™ is given by

.
(5.4) —h’“’g:+g7f s* -t

The change in f to be expected from this step is 3t*g ;. Hence, the decision whether
to interpolate for the minimum along s or to change x by use of (5.4) is made by
comparing g; = t*g, with expression (5.3).

The purpose of allowing for this option is to improve the speed of convergence
when the function is not quadratic. Consider the situation of Fig. 3. The optimum
point between x and x" is point A. However, by going to point B, a greater improvement
can be made in the function. When the behavior of the function is described by a
curving valley, this option is of particular value, for it enables successive iterations to
proceed around the curve without backtracking to the local minimum along each step.
However, if evaluation of the function at this new position does not give a better value
than that expected from the interpolation, then the interpolated position is used. Should
the new position be better as expected, it is then desired to modify h*” to incorporate
the new information obtained about the function. The full step taken is stored at s*,
and its squared length is the sum of the squares of the step along s and the perpendicular
step, i.e., s* = —g7 +A°¢. The change in the gradient resulting from this step is stored
at g, and these quantities are used in § 7 in a manner to be described.

For the interpolated step, we set

(5.5) ax* +(1—a)x*" > t*

By direct use of the x* instead of the s*, greater accuracy is obtained in the event that
a is small. After making this interpolation, we proceed to “Fire.”
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F1G. 3. Illustration of procedure for nonquadratic functions. Point A is the optimum point along (x, x*);
point B is the location for the new trial.

6. Fire: Chart 3. The purposes of this section are to evaluate the function and its
gradient at the interpolated point and to determine if the local minimum has been
sufficiently well located. If so, then the rate of change of gradient is evaluated (or,
more accurately, A times the rate of change) by interpolating from its values at x, x,
and at the interpolated point.

If the function were cubic, then f at the interpolated point would be a minimum,
the component of the gradient at this point along s would be zero, and the second
derivative of the function at the minimum along the line would be 22/A. However, as
the function will generally be more complicated, none of these properties of f and its
derivatives at the interpolated point will be exactly satisfied. We designate the actual
value of f and its gradient at the interpolated point by f and g,. The component of
8, along s is s*g, = g,. Should f be greater than f or f* by a significant amount (>¢),
the interpolation is not considered satisfactory and a new one is made within that part
of the original interval for which f at the end point is smaller.

From the values of the gradient g,, g,, and g, at three points along a line, we

can interpolate to obtain its rate of change at the interpolated point. With a quadratic
interpolation for the gradient, we obtain

_ a _1—a
(6.1) (8~ 8u) T T (8= &)~~~ 8uss

where g,,/A is the rate of change of the gradient at the interpolated point. The
component of g, in the direction of s, namely, s*g,, = g, can be expressed as

a 1l-a
(6.2) gs<1~a p, )+2£’2—>gss.
If the interpolated point were a minimum, then g, =0 and g, =29.

An additional criterion imposed upon the interpolation is that the first term on
the left of (6.2) be smaller in magnitude than 2. Among other things, this insures that
the interpolated value for the second derivative is positive. If this criterion is not
fulfilled, no interpolation is made, and the matrix h*" is changed in a less sophisticated
manner.
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7. Dress: Chart 4. The purpose of this section is to modify the metric h*” on the
basis of information obtained about the function along the direction s. The new h*”
is to have the property that (h*")'g,, = As", and must retain the information which the
preceding iterations had given about the function.

If the vector h*”g,, = t* were in the direction of s*, then it would be sufficient to
add to h*” a matrix proportional to s*s”. If t* is not in the direction of s*, the smallest
squared length for the difference between s* and (h*"+as"s”)g,, is obtained when
a=(A/gs)—(1/€). For this value of a, the squared length of the difference is t,— (g,/ €)
where t, is the square length of d, namely, h*”d, d,. When this quantity is sufficiently
small (<g¢), the matrix h*” undergoes the change:

Al
(7.1) h’“’+(———)s"s”—>h’“’.
8&s ¢
The corresponding change in the determinant of h*” is
Al
(7.2) g— A-A.

When the vectors t* and s* are not sufficiently colinear, it is necessary to modify h**
by a matrix of rank two instead of one, i.e.,

tt" A
- +— sts” > h"".
tO &ss
Then the change in the determinant of h*” is

(7.3) h*”

A’ SS
(7.4) 28 p A,

to
After the matrix is changed, the iteration is complete; after printing out whatever
information is desired about this part of the calculation, a new iteration is begun. This
is repeated until the function is minimized to within the accuracy required.

8. Stuff: Chart 5. The purposes of this section are to test how well the function
has been minimized and to test how well the matrix h*” approximates

*f

ax* ax”

at the minimum. This is done by displacing point x from the location of the minimum
in a random direction.

The displacement of point x is chosen to be a unit length in terms of h*” as the
metric. When

-1

¥
ax" 9x”

v =

b

such a step will increase f by half the square of the length of the step.

If the direction were to be randomly distributed, then it would not be satisfactory
to choose the range of each component of ¢, independently; rather, the range for the
t, should be such that h*"t,t, is bounded by preassigned values. However, this
refinement has not been incorporated into the charts nor the computer program. The
length of the step has been chosen equal to one so that the function should increase
by 5 when each random step is taken.
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STUFF 62 66
61 63 64 65
RANDOM NOS A CALL f, 9,
K-1—=K N hiVy sk (skt)) " —\ xH + AsH e x M
'ty o AT xM
67
READY 2
FINAL
PRINTOUT

Significance of h"”. We examine a least-squares analysis to illustrate how the
initial trial value for h*” is chosen, and what its final value signifies. In this case, the
function to be minimized will be chosen to be x°/2, where x is the statistical measure
of goodness of fit. The function /2 is the natural logarithm of the relative probability
for having obtained the observed set of data as a function of the variables y* being
determined.

The matrix

CHART 5: Stuff.

aZf -1

ax" ax”

nr

then specifies the spreads and correlations among the variables by

o S AN = () (x” = (x") e
(8.1) (Axeaxy=LEXE I:Nxf‘_xz/zx»e

The diagonal elements of h*" give the mean-square uncertainty for each of the variables,
while the off-diagonal elements determine the correlations among them. The full
significance of this matrix (the error matrix) is to be found in various works on statistics
(see, for example, [6]). It enables us to determine the uncertainty in any linear function
of the variables, for, if u = q,x", then

(u) = a,(x*)
(8.2a) ((Au)*) = a,a,((x"x") —(x"}x"))

_ nv
=a,a,h*".

~h"".

If u is a more general function of x, then if, in a Taylor expansion about the value of
x, derivatives higher than first can be ignored, we have

(u(x)) = u((x))

_ ou 9

u v
=" (x)) ax” () h*".

(8.2b)

(Au(x))*

If it is possible to estimate the accuracy with which the variables are determined,
the use of such estimates in the initial trial value of h*” will speed the convergence
of the minimization procedure. Suppose, for example, that to fit some set of experi-
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mental data, it is estimated that the variables x* have the values:

'=3.0+0.1
(8.3) x2=28.0+2
x> =10*+10%

Then, the initial values for x* and h*” would be

x*=(3.0 28.0 10%

(8.4) 001 0 O
h*" =0 4 0
0 0 10

If this estimate is even correct to within a couple of orders of magnitude, the number
of iterations required to locate the minimum may be substantially fewer than that for
some more arbitrary choice, such as the unit matrix.

If it is desired to impose linear constraints on the variables, this can be readily
done by starting with a matrix hA**, which is no longer positive definite, but which has
zero eigenvalues. For the constraints

ax"=a
(8.5)

b x* =B,
etc., the matrix h*” must be chosen so that

h*"a,=0
(8.6)

h*'b, =0,

and the starting value for x* must satisfy (8.5). For example, if x* is to be held constant,
all elements of h*” in the third row and third column are set equal to zero and x° is
set equal to the constant value.

When constraints are imposed instead of setting A equal to the determinant of
h*” (=0), it is set equal to the product of the nonzero eigenvalue of h*”. Then, except
for roundoff errors, not only will the conditions (8.6) be preserved in subsequent
iterations, but also A will continue to equal the product of nonzero eigenvalues.

Though A is not used in the calculations, its value may be of interest in estimating
how well the variables have been determined, since Y, h** gives the sum of the
eigenvalues of h*”, while A gives their product. The square root of each of these
eigenvalues is equal to one of the principal semiaxes of the ellipse formed by all x for
which f(x) exceeds its minimum value by 3.

9. Conclusion. The minimization method described has been coded for the IBM-
704 using Fortran. Experience is now being gathered on the operation of the method
with diverse types of functions. Parts of the procedure, not incorporating all of the
provisions described here, have been in use for some time in least-squares calculations
for such computations as the analysis of 77— P scattering experiments [10], for the
analysis of delayed neutron experiments [7], and similar computations. Though full
mathematical analysis of its stability and convergence has not been made, general
considerations and numerical experience with it indicate that minima of functions can
be generally more quickly located than in alternate procedures. The ability of the
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metric, h**, to accumulate information about the function and to compensate for
ill-conditioned g,, is the primary reason for this advantage.

10. Acknowledgment. The author wishes to thank Dr. G. Perlow and Dr. M.
Peshkin for valued discussions and suggestions, and Mr. K. Hillstrom for carrying out
the computer programming and operation.

Appendix." If we have the gradient of the function at a point in the neighborhood
of a minimum together with G™', where

*f

ax* ax”

b

then, neglecting terms of higher order, the location of the minimum would be given
in matrix notation by

(1) E=x—-G'V.

In the method to be described, a trial matrix is used for G™' and a step determined
by (1) is taken. From the change in the gradient resulting from this step, the trial value
is improved and this procedure is repeated. The changes made in the trial value for
G are restricted to keep the hunting procedure “reasonable” regardless of the nature
of the function. Let H be the trial value for G™'. Then the step taken will be to the point

(2) x*=x—HV.

The gradient at x*, V', is then evaluated. Let D =V*—V be the change in the gradient
as a result of the step S=x"—x=—HV. We form the new trial matrix by

(3) H',=H, +a(HV"), (HV"),.

The constant a is determined by the following two conditions:
1. The ratio of the determinant of H' to that of H should be between R™' and
R, where R is a preassigned constant greater than 1. This is to prevent undue
changes in the trial matrix and, in particular, if H is positive definite, H" will
be positive definite also.
2. The nonnegative quantity

(4) A=DH'D+SH")"'S-2S- D
is to be minimized. This quantity vanishes when S =H" D. The a which satisfies these

requirements, together with the corresponding A, as functions of N=V*HV™" and
M =V*HV, are as follows:?

(5) Range of M a A
M<-N/(R-1) 1/(M—N) 0
~N/(R-1)<M < N/(R+1) (1/RN)—(1/N) (N =M+ MR)*/RN
N/(R+1)<M < NR/(R+1) (N-2M)/N(M-N)  4M(N-M)/N
NR/(R+1)<M<NR/(R-1)  (R/N)—(1/N) (M+ NR — MR)?/ RN
NR/(R-1)<M 1/(M - N) 0

The dependence of A on M is bell-shaped, symmetric about a maximum at M = N/2,
for which a=0 and A= N.

! The following method is a description of a simplified method embodying some of the ideas of the
procedure presented in this report.

2 When the function is known to be quadratic, the first condition can be dispersed with, in which case
a=(M~-N)"', A=0.
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After forming the new trial matrix H", the next step is taken in accordance with
(2) and the process repeated, provided that N=V*'HV™ is greater than some pre-
assigned e. When the G is constant, A can be written as

(6) V=G(x~-§).

If u is an eigenvector of HG with eigenvalue one, then it will be an eigenvector of
H'G with eigenvalue one as well, since

H'Gu=HGu+aHV"(V'HGu)
(7) =u+aHV'[VHG(1-HG)u]

=u.
Furthermore, when A=0,

(8) H'GS=H'D=S§,

so that S becomes another such eigenvector. After no more than N steps (for which
A=0), H will equal G™' and the following step will be to the exact minimum.

The entire procedure is covariant under an arbitrary linear coordinate transforma-
tion. Under these transformations of x, V transforms as a covariant vector, G transforms
as a covariant tensor of second rank, and H transforms as a contravariant tensor of
second rank. The intrinsic characteristics of a particular hunting calculation are deter-
mined by the eigenvalues of the mixed tensor HG, and the components of the initial
value of (x — ¢) along the direction of the corresponding eigenvectors. Since successive
steps will bring HG closer to unity, convergence will be rapidly accelerating even when
G itself is ill-conditioned. Constraints of the form b- x = ¢ can be improved by using
an initial H which annuls b, i.e.,

H-b=0,

and choosing the initial vector x such that it satisfies b - x = c. Then all steps taken will
be perpendicular to b and this inner product will be conserved. For example, if it is
desired to hold one component of x constant, all the elements of H corresponding to
that component are initially set equal to zero.
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A NEW VARIATIONAL RESULT FOR QUASI-NEWTON FORMULAE*
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Abstract. The recent measure function of Byrd and Nocedal [SIAM J. Numer. Anal., 26 (1989),
pp. 727-739] is considered and simple proofs of some of its properties are given. It is then shown that the
BFGS and DFP formulae satisfy a least change property with respect to this new measure.
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1. Introduction. Recently Byrd and Nocedal [2] introduced the measure function
¢ :R™" >R defined by

(1.1) Y(A)=trace (A) —f(A)
where f(A) denotes the function
(1.2) f(A)=1n(det A).

Byrd and Nocedal use this function to unify and extend certain convergence results
for quasi-Newton methods. In this paper, simple proofs of some of the properties of
these functions are given. These properties are then used in § 2 to give a new variational
result for the BFGS and DFP updating formulae.

LemMA 1.1. f(A) is a strictly concave function on the set of positive definite diagonal
n X n matrices.

Proof. Let A=diag (a;). Then V>f=diag (—1/a?) and is negative definite since
a;> 0 for all i. Hence f is strictly concave. 0

LeMMA 1.2. f(A) is a strictly concave function on the set of positive definite symmetric
n X n matrices.

Proof. Let A# B be any two such matrices. Then there exist n X n matrices X and
A, (X is nonsingular, A=diag(A;)) such that X"AX =A and X"BX =I. Denote
C=(1—0)A+6B, 6<(0,1). Then

(1.3) XTCX=(1-0)X"AX+6X"BX =(1—-6)A+6L

Also,

(1.4 f(XTAX) =Indet (XTAX) =In(det> X det A)
=f(A)+In det’ X,

and likewise

(1.5) f(X"BX)=f(B)+Indet> X

(1.6) f(XTCX)=f(C)+In det* X.

Now A# B& A# I, so by Lemma 1.1 and Eq. (1.3) it follows for 6 € (0, 1) that
fIXTCX)=f((1-0)A+06I)>(1-0)f(A)+0f(I)=(1-0)f(XTAX)+ 0f( X "BX).

* Received by the editors January 12, 1990; accepted for publication (in revised form) May 7, 1990.
T Department of Mathematical Sciences, University of Dundee, Dundee DD14HN, Scotland, United
Kingdom.
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Hence from (1.4)-(1.6),
f(C)>(1-0)f(A)+6f(B),

and so the lemma is established. g

Remark. Concavity of f(A) is proved elsewhere, for example as a consequence
of (1) [1, Chap 8.5]. The above method of proof is different and also shows strict
concavity.

LemMMA 1.3. ¢ (A) is a strictly convex function on the set of positive definite symmetric
n X n matrices.

Proof. This follows from Lemma 1.2 and the linearity of trace (A). a

LEMMA 1.4. For nonsingular A the derivative of det (A) is given by d(det A)/ da; =
[A7T]; det A.

Proof. From the well-known identity det (I +uv”) =1+ v"u it follows that

det (A+eee)=det (I+eee] A" )det A=(1+e(A7");) det A.
Hence

ddetA . det(A+eee])—det A
da =lim

-0 E
THEOREM 1.1. (A) is globally and uniquely minimized by A= I over the set of
positive definite symmetric n X n matrices.
Proof. Because A is nonsingular, ¢ is continuously differentiable and so
dy 1 d
_‘_=I,_——'_d tA= I_A_T ijs
da, " det A da, 3 A= )i
using Lemma 1.4. Hence ¢ is stationary when A = I and the theorem follows by virtue
of Lemma 1.3. g
Remark. 1t is also shown in [2] that A=1 is a global minimizer of ¥(A).

=(A™); det A, 0

i

(1.7)

2. A variational result. The BFGS updating formula

(k) 58 TR(K) T

(2.1) puen-poo B 908 vy
' 8"BMs &7y

and the DFP updating formula
H(k),y,yTH(k) 88T

y'H Yy ~y's
occupy a central role in unconstrained optimization. (Here 6 and y denote certain
difference vectors occurring on iteration k of a quasi-Newton method, with 6"y > 0.
B™ denotes the current Hessian approximation, and H® its inverse: see, for example,
[3] for details.) A significant result due to Goldfarb [4] is that the correction in the
BFGS or DFP formula satisfies a minimum property with respect to a function of the
form || E |3y =trace (EWEW) (e.g., Theorem 3.3.2 and its corollary in [3]). The main
result of this paper is to show that these formulae also satisfy a minimum property
with respect to the measure function ¢ of Byrd and Nocedal defined in (1.1).

TueoreM 2.1. If H™® is positive definite and 8™y >0, the variational problem

(22) H*“V=H" -

(2.3) minimize ¢ (H®"V>BH""/?)
B>0

(2.4) subject to B =B

(2.5) Bs=vy

is solved uniquely by the matrix B**" given by the BFGS formula (2.1).
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Proof. The matrix product that forms the argument of ¢ can be cyclically permuted
so that
26) Y(H®V2BH®Y2) = trace (H'® B) —In(det H'® det B)
2.6
=y(H"“B)=y(BH").

A constrained stationary point of the variational problem can be obtained by the
method of Lagrange multipliers. A suitable Lagrangian function is

L(B,A,A) =3 y(H®V2ZBH™Y2) t trace (AT (BT — B))+AT(BS — )
=1(trace (H® B) —Indet H**’ —Indet B) +trace (A" (B” — B))
+AT(Bs —y)

where A and A are Lagrange multipliers for (2.4) and (2.5), respectively. To solve the
first order conditions, it is necessary to find B, A, and A to satisfy (2.4), (2.5), and the
equations dL/9B;; = 0. Using the identity 9B/dB; = e;e; and Lemma 1.4, it follows that

oL
B 0=4(trace (Hee])—(B™");) +trace (A" (eje] —ee] )+ A" ee] &
ij
=%((H(k))ji_(B_l)ji)+Aji_AU+(A6T)ﬁ*
Transposing and adding, using the symmetry of H*) and B, gives
H®—B'+28"+81" =0
or

(2.7) B '=H®+A6T+8\7,

which shows that the optimum matrix inverse involves a rank-2 correction of H*). To
determine A, (2.7) is post-multiplied by v. It then follows, using the equation B™'y = 8
derived from (2.5), that

§=H“y+r8Ty+81Ty,
and hence
yo=y"TH®y+y"A6Ty+y"60 7.
Rearranging this gives y'A =3(1—y "H®y/8"y), and so
A=(8-H"y—38(1-y"HYy/8"y))/8y.
Substituting this expression into (2.7) gives the equation
HY% 98T +8yTH® 55T(1+ yTH(k),y)

+_
8Ty

B'=H®"-
8"y 8"y

It is a well-known consequence of the Sherman-Morrison formula (e.g., [3]) that
there exists a corresponding rank-2 update for B, which is given by the right-hand side
of (2.1). Moreover, the conditions of the theorem ensure that the resulting updated
matrix B is positive definite (as in [3, Thm. 3.2.2]). This establishes that the BFGS
formula satisfies first order conditions (including feasibility) for the variational problem.
Finally, ¢(H®"?BH®*"/?) is seen to be a strictly convex function on B> 0 by virtue
of (2.6) and Lemma 1.2, so it follows that the BFGS formula gives the unique solution
of the variational problem. 0
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CoroLLARY. If B is positive definite and 8"y >0, the variational problem

milllqimize Y(BRV2RUI/2)
>0

subject to H' =H
Hy=6

is solved uniquely by the matrix H**V given by the DFP formula (2.2).
y

Proof. The result follows by replacing (B, H, 8, y) by (H, B, vy, ) throughout
Theorem 2.1. O
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ON THE PERFORMANCE OF KARMARKAR’S ALGORITHM OVER A
SEQUENCE OF ITERATIONS*

KURT M. ANSTREICHERT

Abstract. Karmarkar’s projective algorithm for linear programming is considered with real arithmetic
and exact linesearch of the potential function. It is shown that for every n=3 there is a linear program,
with n variables, such that the algorithm obtains a potential reduction of about 1.3 on each iteration. For
the same problems the algorithm requires ®@(In (n/¢)) iterations to reduce the objective gap to a factor
of its initial value. It is thus proved that in the worst case the convergence of Karmarkar’s algorithm, with
exact linesearch, cannot be independent of n, and moreover, potential reduction may be a poor indicator
of algorithm performance.

Key words. linear programming, Karmarkar’s algorithm, potential function
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1. Introduction. The true worst-case complexity of Karmarkar’s projective
algorithm for linear programming is a problem of considerable theoretical interest. In
his original paper [4] introducing the algorithm, Karmarkar showed that the potential
function, a surrogate for the linear objective, can be reduced by a constant on each
iteration. As a consequence, the gap reduction time for the algorithm, applied to a
linear program with n variables, is no worse than O(n). (We use the phrase ‘“‘gap
reduction time” to refer to the number of iterations required to reduce the objective
gap (value minus optimal value) by a given, constant factor.) In practice, however,
the gap reduction time seems to be virtually independent of n, or perhaps grows very
slowly, like In (n).

The worst-case performance on a single step of the algorithm has been completely
characterized (see Anstreicher [1] and McDiarmid [5]). In fact, it is possible that on
a single step, using exact linesearch of the potential function, the potential value is
reduced by only about 0.72. It is also known (see [5]) that using an “‘optimal” fixed
steplength could result in the algorithm reducing the potential function by only about
0.69 on every iteration. (However, if a linesearch were performed in McDiarmid’s
example of the latter, the algorithm would terminate with optimality in a single
iteration.) The asymptotic behavior of a ‘“‘short step” implementation of the algorithm
was obtained by Asic, Kovacevic-Vujcic, and Radosavljevic-Nikolic [2]. Finally, it
has been shown that the algorithm, using exact linesearch of the potential function,
does not produce superlinear convergence of the objective gap (see Bayer and
Lagarias [3]).

In this paper we consider Karmarkar’s algorithm, applied using exact linesearch
of the potential function. We show, by construction, that for every n=3 there is a
linear program such that the algorithm reduces the potential value by only about 1.3
on each iteration. This shows that the worst-case gap reduction time for the algorithm,
with exact linesearch, cannot be improved by showing that potential reduction somehow
increases as the algorithm iterates. We also show that the actual gap reduction time,
for the same linear programs, is @(In (n)). In particular, we show that the number of

*Received by the editors December 26, 1989; accepted for publication (in revised form) June 20, 1990.
This work was written while the author was a research fellow at the Center for Operations Research and
Econometrics, Université Catholique de Louvain, Louvain-La-Neuve, Belgium. It was first presented at the
Second Asilomar Workshop on Progress in Mathematical Programming, Monterey, CA, February 5-7, 1990.

+ Department of Operations Research, Yale University, New Haven, Connecticut 06520.
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iterations required to reduce the gap to a factor ¢ of its initial value is @(In (n/¢)),
compared to the bound of O(n ln (1/¢)) implied by the constant potential reduction.
The two results taken together demonstrate that potential reduction may be a very
poor indicator of the actual convergence of the algorithm. Similar results hold for the
algorithm implemented with a “fixed fraction to the boundary” step rule, for any
fraction in (3, 1).
2. Karmarkar’s algorithm. Consider a linear program
LP z*=minc"x
Ax=0
xe s,
where A is an m X n matrix, and S < R®" is the simplex S = {x Z0|e" x = n}. (Throughout,
we will use e to denote the vector in ®" with each component equal to 1.) We assume
that Ae =0, and that z* =0. In [4] it is shown that any standard form linear program
may be converted into the form above by combining the original linear program with
its dual.
We now describe Karmarkar’s algorithm for LP. Let k=0, and let x*>0 be an

iterate of the algorithm, feasible for LP (x°=e). Let X, be the diagonal matrix
X, = diag (x*). Using the projective transformation T(:):S- S,

0 o) x5
y= e Xix) K
(2.1)
x=T'1(y)=<——n )Xy
e X,y) "

we obtain the transformed problem

LP minc'y
Ay=0
YES,

where A= AX,, ¢= X,c. Note that T(x*) = e, so a step starting at e in LP corresponds
to a step starting at x* in LP. Under the assumption that z* =0, the optimal objective
value in LP is also 0.

Let ge R" be some direction satisfying Ag =0, ¢'g > 0. The algorithm makes a
step of the form

g

max

(2.2) y(A)=e—A

where 0=A =1, and g,,., is equal to the maximum component of g. (Similarly, g,
will be used to denote the minimum component of g.) Note that z*=0 and ¢'g>0
imply that g...>0, so A is simply the fraction of a step to the boundary of the
nonnegative orthant. In practice A is often determined by an approximate linesearch
of the potential function

(2.3) fEy)=nln(c"y)- ¥ In(y),
Jj=1
along y = y(A). It can be shown that if y = T(x), then f(c, y) differs from f(c, x) by a

constant which is independent of x. Following the choice of A, we set x**'=T"'(y(1)),
and go to the next iteration.
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Karmarkar’s algorithm is usually described with g = ¢,, the projection of ¢ onto
{xe R"|Ax =0, e"x =0}. For this choice of g it can be shown (see [1] or [5]) that
c'y(d) Allgl® 21

=1+ =1-=,
ce ngmingmax n

and furthermore there is a A such that f(¢, y(A)) —f(c, e) <—.72. It follows that the
potential function f(c, -) can be reduced by at least 0.72 on each iteration, and such
uniform reduction is sufficient to obtain a polynomial-time bound for the algorithm.
It turns out, however, that when basing steplength on a linesearch of f(c, ), it is
equivalent to use g =¢,, the projection of ¢ onto the nullspace of A. This was first
noted by Jean-Philippe Vial (Todd [7]), and follows from the homogeneity of f(c, -)
and the fact that Ae =0. Note that the inverse transformation in (2.1) may be applied
to a point 0 y =0, to obtain an x € S, even when e'y # n. In the sequel, we will find
it convenient to describe the algorithm using g =¢,.

Let ¢* = X,c denote the value of ¢ on iteration k. Note that since x**' = T7'(y(1A)),
we have

(2.4)

—k+1 __ _ n _ =k
(2.5) =X ac= (—eTXky()t)> X Y(A)ec~Y(A)CT,

where Y(A) is the diagonal matrix diag (y(A)), and u ~ v indicates that two vectors
u and v in R" differ by a positive scaling.

3. A specific example. We now consider a simple, specific case:
LP minc'x
xesS,

where n=3, ¢c=(0, 1,---,1, 9, B)', 0<y<1, B>1. So m=0, and we may take
g = ¢, = C on each iteration. (Directions of a similar form have previously arisen in the
analysis of Karmarkar’s algorithm. In particular, the case y=1, B =2 leads to g =g,
giving the worst case in (2.4), see [1], [5].) Consider the first iteration (k =0), with
¢=c. The step y(A), as in (2.2), is then

A A Ay T
(3.1) y(A)=(1,1——,---,1——,1——,1—A> )
B B B
Following the choice of A, by (2.5) the rescaled objective ¢ will be
—A A A T
e~ ve= (0822, B YA g y)
B B
Thus ¢~(0,1,---,1, B, ¥)7, where
5-YB=Ay) ?zﬂz(l—)\)
R B—Ar
Our goal is to choose B, v, and A so that B =8, ¥ = v. If this is the case, the above
derivation repeats for the next _itfration, with y, ; and y, interchanged. It follows that
in the transformed problem LP, every step will be equivalent to the first, and in
particular the decrease in the potential function, always using the same value for A,
will be the same on each iteration. Via straightforward manipulations we have

(3.2) B=fer= B(B—v) 7)
B-v
(3.3) y=yeor=LEZY)
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Note that A given by (3.3) immediately satisfies 0= A = 1. Since the values of A in (3.2)
and (3.3) must coincide, and the numerators in the two expressions are identical, we
are led to the condition

(3.4) B-v'=B’-v, y(—-y)=B(B-1).
Regarding B> 1 as a function of y, 0<y <1, we obtain a unique value

B=1+\/1+4y(1-'y)

(3.5) >

Thus for any 0<y <1, if B is chosen via (3.5), and A by (3.3) (giving the same value
as (3.2)), we obtain B =B, ¥ =y following the step y(A), as desired.
We next examine the behavior of the potential function for the same step. We have

ce=(n-3)+y+B
¢'y(AN)=(n=3)A-r/B)+y(1-ry/B)+B(1-1)
=(n=3)+y+B-Al(n=3)+y*+B*)/B
=[(n=3)+y+pJ(1-A/B),
where the last equality uses the fact that y and B are related by (3.4). Thus
Sy _ A
c'e B’
Using (3.6), for y(A) as in (3.1), we obtain
(3.7)  FM)=f(ey(A)—f(c,e)=3In(1-A/B)=In(1=Ay/B)—In(1-1).

One steplength strategy when implementing Karmarkar’s algorithm is to select a fixed
value of A, typically greater than .9, and take a step using A so long as the potential
function decreases. If descent is not obtained for this initial value, A is reduced by a
“backtracking” procedure until descent is obtained. (As mentioned in § 2, implementa-
tions of Karmarkar’s algorithm usually base the step on g = ¢, rather than g =¢,, but
it still makes sense to think of a fixed A for the step using ¢,.) We now show that for
any 0 <y <1, if B is chosen by (3.5), and A by (3.3), then the potential function indeed
decreases.

LEMMA 3.1. Let 0< vy <1, and let B be given by (3.5). Suppose that Karmarkar’s
algorithm is applied to LP, using A from (3.3) on each iteration. Then for every k=0,
the algorithm obtains f(c, x*) — f(c, x°) = —k8, where 6 =1In [(B*—v)/(B*—B)]>0.

Proof. Substituting (3.3) into (3.7), F(A) is given by

(=42) 1) )

=—In(B*—y)+3mm[(B*~y)—(B=y)]-In[(B*~v)—v(B—7)]
-In[(B*-y)-B(B—-v)]
=—In(B*—y)+3In[B(B-1)]-In[B(1—y)]-In[y(B-1)]

=1n( B (B-1) )
(B*=y)B(B—1)y(1-7)

- (B(B—l))
= n —2 .
B —vy

(3.6)
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where the second and final equalities both use y(1—1vy)=8(8—1), from (3.4). The
lemma follows from the fact that in the transformed problem the potential reduction
is 8=—F(X) on every step. 0

For example, if y =.4, then (3.5) gives B =1.2; (3.3) gives A =12/13~=.9231; and
Lemma 3.1 gives 8 = 1.466. Thus for y = .4 and B = 1.2, using the fixed value A =12/13
(why not?) results in an identical transformed problem on each step, and gives a
reduction in the potential function of roughly 1.5 on each step.

Of considerably more interest theoretically is the strategy of choosing A according
to a linesearch of F(A), 0=A =1. For F(-) as in (3.7), straightforward differentiation
shows that the exact minimizer A satisfies

3 vy b _yA=M+(B=Ay)
B—A B—Ay 1-a2 (B—Ay)(1-21)
Cross-multiplying, and collecting terms, results in a quadratic equation for A:

(3.8) YAZ=2(y+B—yB)A+ (3B —yB—B*)=0.
The solution of (3.8) can be presented in a more appealing form by first simplifying
the discriminant term:

4(y+B—yB)—4y(3B—yB—-B)=4(B*y’ - B’y —BY —By+ ¥ + )
=4(yB(yB—vy—B-1)+y+p)
=4(yB(yB—1)+(y+B)(1—yB))
=4(1—-yB)(y+B—vB),

where the second equality used the fact that y and B are related by (3.4). The unique
solution to (3.8) satisfying 0=A =1 is then given by
_(y+B-yB) -V -yB)(y+B~¥B)

" .

To summarize, at this point we have shown the following. For any choice of v,
0<y<1, if B is chosen using (3.5), and A by (3.3), then B=8, y=1, so in the
transformed problem all steps are identical to the first (with y,_; and y, interchanged
on every other iteration). On the other hand, for the same y and B, the value A’ in
(3.9) corresponds to exact minimization of the potential function. The natural question
is whether y may be chosen so that A from (3.3) coincides with A’ from (3.9). In Fig.
1 we plot A from (3.3), and A’ from (3.9), as functions of 7y, where for each vy, B is
chosen according to (3.5). The curves intersect at a unique y* in (0, 1), with y* =~ .525.
Choosing y=vy*, and 8 =8*=1.207 from (3.5), then causes exact minimization of
the potential function to result in =1, B8 =g, so that each step of the algorithm
obtains the same reduction in the potential function (approximately 1.3) as the first
step. As a consequence of this construction, we have proved the following theorem.

THeOREM 3.2. For each n=3 there is a problem LP such that Karmarkar’s
algorithm, applied to LP using real arithmetic and exact linesearch of the potential function,
obtains f(c, x*)—f(c, x°) = —k&* for each k=0, where * ~ 1.3 is independent of n.

Proof. Take y=y*=.525 in Lemma 3.1. a

Richard Stone [6] has succeeded in obtaining analytic expressions for y* and B*,
as well as the resulting A* and 8*. Letting u = ((2v3) —3)"?, they are:

(3.9) A

’)/* = (\/g_u)/z’
B*=(V3+u)/2,
(3.10) A*=(3-1)(V3+u)/2,

8*=1In ((vV3+1)/(/3-1)).
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0.6 :

F1G. 1

Validity of these values can be established by direct substitution into (3.3), (3.4), (3.8),
and the formula for 6 in Lemma 3.1. We omit the details, but mention, for the interested
reader, that verification is simplified by leaving ““u’’ as a variable for as long as possible
before substituting in the value given above.

Theorem 3.2 shows that any attempt to improve the worst-case complexity bound
for Karmarkar’s algorithm, with exact linesearch, cannot be based solely on showing
that the reduction in the potential function somehow improves as the algorithm iterates.
Ultimately, of course, what is important is not the potential function, but rather the
objective value. We next turn to examine the objective values ¢ x* for the class of
problems analyzed in this section. For 0<y <1, let 8 be given by (3.5), and A by
(3.3), so that in the transformed problem the algorithm repeats itself on each iteration.
By Lemma 3.1, there is then a constant & >0 so that the potential function is reduced
by exactly 8 on each iteration. To analyze the behavior of ¢'x*, we are led to obtain
more information regarding the iterates x*. The following lemma provides a complete
characterization. For the remainder of the paper, we will find it convenient to define
a=(1-A/B). We will use (a)* to denote powers of «, to avoid any possible confusion
with superscripts, as in x*.

LeEmMA 3.3. For 0<vy <1, let B be given by (3.5), and suppose that the algorithm
uses A from (3.3) on each iteration. Let a =(1—A/B). Then for each k=1, x*=
(n/e"5*)5* where 3* € R" is given by

,k_{l j=1
YiTl(a)k 2=j=n
for k even, and
1 j=1
= (a)® 2=j=n-2
Tl a=ay/BY@)* T j=n—1
A=M@<' =
for k odd.
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Proof. The proof is by induction on k. For k =1 the result is immediate, by (3.1).
So assume that for some k = 1 the result holds. On iteration k the step in the transformed
problem is again of the form (3.1), except that y,_; and y, are interchanged if k is
odd. Consequently let y be the vector y(A ), with the last two components interchanged
if k is odd. Then by the definition of T7'(+) in (2.1) we have

X =n(e" X, 7) " Xy

- (eT Yfkj;) Ye
where Y, is the diagonal matrix diag ($*). To complete the proof we need to show
that j;*' =)7,’f)'?j, j=1,--+,n This is immediate for j=1,---,n—2, and also for
n—1=j=n when k is even. However, for v, B8, and A satisfying (3.3) and (3.4), it is
straightforward to verify that (1—A)(1—Ay/B)=(1—A/B)*=(a)? which completes
the argument for n—1=j=n when k is odd. g

LEMMA 3.4. For 0<y <1, let B be given by (3.5), and suppose that the algorithm
uses A from (3.3) on each iteration. Let o« =(1—A/B). Then for each k=1,

c'x*  n(a)"
¢x° 1+n(a) —r*
where r* - 0 geometrically fast in k, independent of n.
Proof. We have ¢'x°=(n—3)+y+p, and, from Lemma 3.4,
Tk M =3+ y+B)(a)*
1+(n—1)(a)

for k=2, even, and
oy M1 =3)(@)* +[y(1 =19/ B) +B(1=D)](@)* ™)
1+ (n=3)(a)* +[(1=Ay/B) + (1= 1)](a)*""
for k=1, odd. However, for y and B satisfying (3.4) it is straightforward to verify that
[y(A-ay/B)+B(A-1)]=1—-1/B)(y+B)=a(y+p).
Therefore, the lemma holds with
k_{(a)k k even
3(@) —[2-2(1+v/B) ()" kodd. 0

THEOREM 3.5. For n=3, and € <1, there are linear programming problems such
that Karmarkar’s algorithm, applied using exact linesearch of the potential function,
requires k =0(In (n/¢)) iterations to obtain c"x*/c"x’=e.

Proof. Take y=y*=.525, and let B =B*=1.207 be given by (3.5). Then the
algorithm, using exact linesearch, repeats itself on each iteration, and Lemma 3.4
applies. Then ¢ x*/c¢"x°= ¢ is equivalent to

n(a)*=e(1+n(a) —r*)
n(l/e—1)(a)=1-r*

kzp[ln(1/e=1)+In(n)—In (1-r")],

where u =—1/In (a)> 0. a
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Theorem 3.5 proves that in the worst case, Karmarkar’s algorithm, using exact
linesearch, requires at least (In (n/¢)) iterations to reduce the gap to a factor ¢ of
its initial value. Note that the role of In (n) in this bound is similar to set-up charge,
or fixed cost; in particular, we have not demonstrated a lower bound of
Q(n(n)In(1/¢)) iterations. For the problems considered here, the bound of
O(In(n/e)) iterations, in Theorem 3.5, should be compared to the bound
of O(nln (1/¢)) iterations implied by the constant potential reduction shown for the
same problems in Theorem 3.2. These bounds, taken together, demonstrate that poten-
tial reduction may provide a poor indication of the algorithm’s actual convergence.
Analogous results hold for an implementation of the algorithm using a “‘fixed fraction
to the boundary” step rule, fixing A € (3, 1). The only change required is the choice of
y—note that by Fig. 1 it is clear that for any A € (3, 1) there is a unique 0<y <1, and
B from (3.5), so that the given A agrees with A from (3.3). Lemma 3.1 then applies,
as does a straightforward analog of Theorem 3.5.

The difference between the constant potential reduction of Lemma 3.1, and the
actual objective performance of Lemma 3.4, can be even more striking when the step
in the transformed problem is viewed in terms of ¢, rather than ¢, (see § 2 for the
distinction). For example, consider the case of y =8 =1, as used in [5]. By the analysis
at the beginning of this section, it is clear that the algorithm repeats itself for any
0< A <1; in fact, A =1 leads to the optimal solution in one step. Take A =3, so on
each step y(A)=(1,.5,---,.5)7, and e'y(A)=1+(n—1)/2. Rescaling to remain on
the simplex S, in the transformed problem, then obtains the point j=
[n/(n+1)](2,1,---,1)". Note that ||y —e|| = R/(n+1) <r, where r=+vn/(n—1) and
R =+/n(n—1) denote the radii of spheres, centered at e, which inscribe and circumscribe
S. The move from e to y corresponds to a step in the direction —c, of norm less than
r, compared to the step of length R, which would lead immediately to the solution.
Thus a “fraction to the boundary” of A =3, using ,, corresponds to a ““fraction to the
boundary” of only 1/(n+1), using ¢,. Viewed in terms of ¢,, this is an extremely short
step. However, Lemmas 3.3 and 3.4 continue to apply, with A =3, so the algorithm
still requires only O(In (n/€)) steps to reduce the gap to a fraction ¢ of its initial value.

Acknowledgment. The author would like to thank Richard Stone, for obtaining
the closed-form solutions in (3.10); Jeff Lagarias and an anonymous referee, for
suggestions which considerably improved the presentation of Lemmas 3.3 and 3.4, and
Theorem 3.5; and Mike Todd, for a conversation which led to the observation regarding
the step viewed in terms of ¢,, at the end of § 3.
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COMPOSITE NONSMOOTH PROGRAMMING WITH GATEAUX
DIFFERENTIABILITY*
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Abstract. This paper examines constrained nonsmooth optimization problems where the objective
function and the constraints are compositions of locally Lipschitz functions and Géteaux differentiable
functions, but are not necessarily Fréchet differentiable or strict differentiable. Lagrangian necessary and
sufficient optimality conditions are presented for various classes of composite programs. These are obtained
by constructing appropriate convex approximations for composite functions. The Lagrange multipliers are
also characterized in terms of subgradients of the value function under appropriate conditions.
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tials, convex composite problems
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1. Introduction. In this paper we study composite nondifferentiable programming
problems of the form

) minimize  fy(Fy(x))
subject to xe€ X, fi(Fi(x))=0, i=1,2,--:,m,

where X is a real Banach space, fy, - - -, f,, are real-valued locally Lipschitz functions
on R", and for each i=0,1,---,m, F;: X > R" is locally Lipschitz and Gateaux
differentiable with Gateaux derivative F'( ), but not necessarily continuously Fréchet
differentiable or strict differentiable [5]. Many applications of optimization concern
objective functions and constraints that are not necessarily smooth, but are of “com-
posite” type. The model problem (P) covers a very wide range of practical optimization
problems, which often arise in penalty methods or restricted step methods for con-
strained optimization, and in minimax problems (see [7],[11], [4], [3]). Convex com-
posite problems (P) were examined in regard to Lagrangian conditions in [7] and [11]
for the case in which the functions F;, i=0, 1, - - - , m, are assumed to be continuously
Fréchet differentiable.

Studies of optimization problems have led in recent years to the development of
a nonsmooth calculus (e.g., [5],[16], [20]-[21], [23]-[24]). In particular, the Clarke
subdifferential calculus has proved to be a potent and flexible tool in mathematical
programming. However, the lack of generalized calculus such as chain rules (cf. [5,
Thm. 2.3.10]) for Gateaux differentiable functions is one of the chief reasons why the
study of composite programming problems has so far been limited mainly to problems
(P) in which the functions F;, i=0, 1, - - -, m are assumed to be continuously Fréchet
differentiable or strict differentiable. In this paper, it is shown how Clarke subdifferen-
tials can be used to study the composite model problems (P) with locally Lipschitz
and Giteaux differentiable functions.

This paper examines various classes of composite nondifferentiable programming
problems. First, the composite model problem (P) is analysed in regard to Lagrangian
necessary optimality conditions and Géiteaux differentiability assumptions. The

* Received by the editors November 20, 1989; accepted for publication (in revised form) August 1,
1990. This research was partially supported by Australian Research Council grant A68930162.

1 Department of Applied Mathematics, University of New South Wales, Kensington, New South Wales,
Australia.
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necessary conditions are obtained in an easily verifiable form by first establishing
appropriate upper convex approximations ([11], [13]; see also the definition below)
for the composite functions. This approach allows us to relax the usual continuously
Fréchet differentiability or strict differentiability assumptions used in the literature [7],
and leads to a generalized chain rule for locally Lipschitz and Gateaux differentiable
functions. Second, it is shown that the necessary conditions become sufficient for global
optimality under appropriate hypotheses in the case where for each i=1,-- -, m, f; is
convex, and F;=F. A duality theorem is also given for this class of (nonconvex)
composite programs. Finally, a complete characterization of the Lagrange multipliers
is given in terms of subgradients of the value function for (P) in which, for each
i=0,1,2,---,m,f; is convex and F; = F, and the range of F is assumed to be convex.
These problems provide a class of programs which are not convex but possess many
of the nice properties that convex programs have.

2. Gateaux derivatives, composite functions, and convex approximations. In this
section we present various properties of generalized derivatives of locally Lipschitz
functions and new versions of upper convex approximations for the composite function
g of the form g = f o F, where f is a real-valued locally Lipschitz function on R", and
F:X - R" is a locally Lipschitz and Giteaux differentiable function on a real Banach
space X. These properties deal with generalized subdifferentials for locally Lipschitz
functions due to Clarke [5], and Michel and Penot [16].

For a real locally Lipschitz function h: X - R, the Clarke directional derivative
[5], the Michel-Penot directional derivative [16], and the upper Dini-directional deriva-
tive are, respectively, defined by

h%a, x):=limsup A '[h(a+d+Ax)—h(a+d)],
d->0 A0

h®(a, x)=sup limsup A '[h(a+Az+Ax)—h(a+Az)],
zeX Alo

h*(a, x):=limsup A "'[h(a+Ax)—h(a)].
AL0

The Clarke subdifferential and Michel-Penot subdifferential are, respectively,
defined by

3°h(a)={ve X'|h’(a, x)Z v(x), Vxe X},
and
3°h(a)={ve X'|h°(a; x)= v(x), Vxe X}.

Then, h%a,-), and h®(a,-) are continuous sublinear functions with h*(a, x)=
h®(a,x)=h%a, x),xe X, and h°%a, x)=1lim SUp,., h°(y,x). The subdifferentials
8°h(a) and 9° h(a) are nonempty convex weak* compact subsets of X', the topological
dual space of X. These subdifferentials satisfy the relation that 6°h(a) < 9°h(a). When
h is convex, 9°h(a) = a°h(a) = oh(a), the subdifferential in the sense of convex analysis.
The Clarke subdifferential mapping x - 8°h(x) is weak™ upper semicontinuous; whereas
the Michel-Penot subdifferential has the property that h is Giteaux differentiable at
a if and only if 9°h(a)={h'(a)}. The locally Lipschitz function h:X - R is said to
be regular [5] at ae X if the usual directional derivative h'(a,-) at a exists and
h'(a, x) = h°(a, x), for all x € X. Following Ioffe [11] (see also Jeyakumar [13]), we
say that a function ¢, : X - R, a € X, is an upper convex approximation for h at a if ¢,
is a continuous sublinear function and h*(a, x) = ¢,(x), for each x € X. It is clear that
h®(a,-), and h%a, -) are upper convex approximations for h at a. We also note that
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the Clarke directional derivative has the useful property that for each x € X, the mapping
y-h°(y, x) is upper semicontinuous at a and serves as a (semi-)continuous upper
convex approximation for h. As we shall see later, this property turns out to be helpful
in applications. The Michel-Penot directional derivative mapping y - h“(y, x) is not,
in general, upper semicontinuous. The next proposition presents a characterization
result for upper semicontinuity of h°(-, x) at a point.

ProrosiTiON 2.1. Let a€ X, and let h: X - R be locally Lipschitz at a. Then, for
each x€ X, h®(-, x) is upper semicontinuous at a € X if and only if h°(a,-)=h"(a, ).

Proof. Let xeX. If h®(-,x) is upper semicontinuous at a then
lim supy_,aho(y, x)=h®(a, x), and so, lim SUp,q4 h®(y, x)=h(a, x)=h’%a, x). The
equality h®(a, x)=h"a, x), will now follow from the property that h°(a, x)=
lim sup,_,, h®(y, x). Conversely, if the equality holds for each x € X, then

lim sup h°(y, x) = h%a, x) = h°(a, x),
y—>a
which establishes the upper semicontinuity of h°(-, x) at a. 0

It should be noted that if the function h is regular at a then it satisfies the equality
that h°(a, x) = h°(a, x), for each x € X. Moreover, if ¢, is allowed to be an extended
real-valued function then the radial generalized directional derivative [10], [20] of h
at a can also be chosen as an upper convex approximation for h at a for continuous
functions h. For the properties of this directional derivative and its associated general-
ized subdifferential, see [10], [20], and [22].

We now see that for the locally Lipschitz function h, the sublinear function defined
by ¥.(x)=p°(a,x)—q'(a)x is a better upper convex approximation of h at a than
the above-mentioned approximations, where q : X - R is locally Lipschitz and Gateaux
differentiable at a, and p = h+ q. This follows from the fact that p®(a, -) is an upper
convex approximation of p and a, and the property that p©(a, x) = h®(a, x)+ q°(a, x) =
h®(a, x)+ q'(a)x. This observation leads us to construct the following more general
class of upper convex approximations for locally Lipschitz functions. We first note
that the function h is said to be quasi-differentiable at a point a in the sense of
Pshenichnyi [17] if h is directionally differentiable and h'(a, X) = max,cs#nc) v(x), for
some convex weak® compact set 9*h(a).

ProrosiTiON 2.2. Let q: X - R be locally Lipschitz and quasi-differentiable at a
with the convex weak™ compact set 9*q(a). Let p=h+ q. Then for each ve3*q(a), the
sublinear function defined by

Ya(x)=p°(a,x)—v(x)

is an upper convex approximation of h at a.
Proof. Since q is directionally differentiable,

h*(a,x)=p*(a,x)—q'(a,x)=p"(a, x) —v(x),

for each veo*q(a). The conclusion now follows by observing that p*(a x)=
pC(a,x). O

It is worth noting that the latter classes of approximations may be used to establish
tighter optimality conditions for optimization problems. Recall that if a function h
attains its minimum at a and admits an upper convex approximation ¢,(-) at a, then
0€9d¢,(0). We now present a general chain rule for differentiation with Gateaux
differentiability. Let us first note that if f: R" > R and F: X > R" are locally Lipschitz,
then the composite function g:=f F is locally Lipschitz. The open unit ball in R" is
denoted by B.
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THEOREM 2.1 (generalized chain rule). Let F: X - R" be locally Lipschitz near
x € X and Gadteaux differentiable at x; let f: R" - R be locally Lipschitz near F(x).
Assume that for each y, , is an upper convex approximation for f at y. If, for each d € X,
y = ,(d) is upper semicontinuous at F(x) then

(2.1) 0°(f o F)(x) = {wF'(x)|w € 0y (0)}.
Morveover, if f is regular at F(x) and if  is chosen as the Clarke directional derivative
then equality holds in (2.1) with the subdifferential of Y, at zero replaced by the Clarke
subdifferential of f at F(x).

Proof. Let A={w"F'(x)|w € 3 (0)}. Then, the support function of A, evaluated
at a point h in X, is given by

(2.2) m.(h) = max { S w,F(x)h

1

we 81/1F(x)(0)} .

The conclusion will follow if we show that for any he X,
(fo F)°(x, h) = m(h).

From the mean-value theorem of Studniarski [22, Thm. 4.3], for any h, k in X
and ¢ small positive,

t'[fo F(x+th+tk)—(f° F)(x+tk)]=t"[f(F(x+th+tk))—f(F(x+tk))]
=t "ol (F(x+th+tk)— F(x+tk)),
for some v, €9y,(0), ze[F(x+tk), F(x+tk+th)]. Now, fix h, ke X; let £ >0. Then,
|t '[F.(x + th+tk) — F;(x+ tk)]— Fi(x)h|
=|t'[Fi(x+ th+ tk) = F,(x)] - Fi(x)(h+ k)
+17'[Fi(x) = Fi(x+ tk)]+ Fi(x)k|
=< |t [ F(x+th+ tk) — Fi(x)]~ Fi(x)(h+ k)|
+[t[Fi(x) = Fi(x + tk)] + Fi(x)k|
=[t7'[F(x+th+tk) = Fi(x)] = Fi(x)(h + k)|
+|T'[Fi(x + tk) = Fi(x)] = Fi(x)k|.
Thus,

(2.3) |t [ F,(x+ th+ tk) — Fi(x + tk)] - F}(x)h| <§+§= €

for sufficiently small > 0. Since f:R"-> R and for each de Y, y-,(d) is upper
semicontinuous at F(x), it follows from the same arguments as in Proposition 2.1.5
of [5] that, for sufficiently small ¢ >0,

ad/z(o) < al//F(x)(o) + EB’
and so,

v, € alllp(x)(o) +¢B.

Therefore, for any ¢ sufficiently small positive,

t7'[foF(x+th+tk)—fo F(x+tk)]= i vit [ Fi(x+th+ tk) — F(x + tk)]

= ‘7Tx(h)+<nK0+ ) Ki"h"+5) g,
i=1
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where K, is the Lipschitz constant of (., near zero, and K;, i=1,2,- -+, n are the
Lipschitz constants of F;’s near x. Hence,
(fo F)°(x, h)=m(h),

and so the inclusion (2.1) holds.

If f is further assumed to be regular at F(x) then the equality in (2.1) is obtained
by adapting the same lines of arguments as in Theorem 2.3.9 of Clarke [5]. The details
are left to the reader. o

An inclusion of the form (2.1) is obtained in [1] under the assumption that
d°f(F(x)) =8°f(F(x)). The functions f which satisfy this equality are called “normal”
at F(x) in [1]. A related chain rule is proved in [16] under a stronger differentiability
assumption. The methods of proof used in our Theorem 2.1 and Theorem 2.3.9 of
Clarke [5] suggest a more general chain rule for locally Lipschitz functions without
any differentiability assumptions. This will be presented in [14].

We now see that the generalized chain rule leads us to a general upper convex
approximation for the composite function g:= f o F using the Clarke subdifferential.
A simple chain rule for convex composite functions (see [1]) also easily follows from
Theorem 2.1.

CoroLLARY 2.1 (upper convex approximation with Giteaux differentiabil-
ity). Let F: X —» R" be locally Lipschitz near x € X and Gdteaux differentiable at x; let
f:R" > R be locally Lipschitz near F(x). Then, the function 1, defined by

(2.4) . (h) = max{ ) w,Fi(x)h I weaof(F(x))}

1

is an upper convex approximation of f o F at x.

Proof. Define ,(h) = f°(y, h). Then, for each y, ¢, is an upper convex approxima-
tion for f at y, and for each d € X, y—> ¢, (d) is upper semicontinuous at F(x). Then,
the conclusion follows from Theorem 2.1 by noting that d¢r(,(0) =3°’%(F(x)). 0

COROLLARY 2.2. Let F:X - R" be locally Lipschitz and Gdteaux differentiable at
x€ X, let f: R" > R be a convex function. Then,

3°(f o F)(x)={v"F'(x)|veaf(F(x))}

and the directional derivative of f o F exists at x.
Proof. The conclusion follows from Theorem 2.1 by noting that the convex function
on R" is regular at F(x). 0

3. Necessary Lagrangian conditions. Consider now the constrained composite
minimization problem with a convex set constraint

minimize  fo(Fo(x))

(PC) ,
subjectto xeC, fi(Fi(x))=0, i=1,2,---,m,

where C is a convex subset of X, f;, and F;, i=0,1,- - -, m are as in problem (P). The
functions F;, i=0,1, - - -, m are not assumed to be continuously Fréchet differentiable
(or strictly differentiable). For (PC) with C = X = R", but functions F;, i=0,1, -, m,
continuously differentiable, necessary Lagrangian conditions are known (see [7]).
In this section we show how necessary Lagrangian conditions for the general problem
(PC) can directly be obtained with Clarke subdifferentials using upper convex approxi-
mations.

In passing, we note that the composite function h of the form h(x):=
g(x)+fo F(x), where g:X~>R", and F:X - R" are Giteaux differentiable and
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f:R" - R is convex, can be expressed simply in the form of f o F(x) for some suitable
locally Lipschitz function f and Gateaux differentiable function F.

The following alternative theorem will be required. It is an immediate special case
of an alternative theorem in [6] and [12].

LEMMA 3.1. Let A< X be convex, and let g,, - - -, g, be real-valued continuous
convex functions on X. Then exactly one of the following systems is consistent:

(i) axeA, gl(x)<0,' . "gp(x)<0,

(3.1) (ii) (@reR,,Az=0,1#0) (Vxel)) ‘Z Agi(x)=0.

For a convex set C and a € C, we denote by cone (C —a):={a(c—a)|ce C, =0},
the cone generated by C at a, and C*={ve X'|v(x)=0, Vx e C}, the dual cone of
C. The following Fritz John type theorem holds for (PC).

THEOREM 3.1. Let a be feasible for (PC), and let (. be an upper convex
approximation for f; at F,(a). Suppose that the function y - ), is upper semicontinuous
at F;(a). If the problem (PC) attains a local minimum at a € C, then there exist Lagrange
multiplierst=0,1,=0,i=1,2,- - -, m, notallzero, and v, € 3 r,(»(0),i=0,1,2, - - -, m,
satisfying

(w(,TF:,(a)+ 3 A,.v,TF;(a)> (x—a)=0 VxeC

i=1

(3.2)
Aifi(Fi(a))=0, i=1,2,---,m

Proof. Let I(a)={i|f,(Fi(a))=0,i=1,2,---, m}and let g, =f; o F,. Suppose that
the following system has a solution:

(3.3) deX, decone(C—a), wi(d)<0, iecl(a)U{0},
where 7}, is defined by (see (2.2))

i (d) = max {i w;Fi(a)d

we al/l;:i(a)(o)} .
Then, the system
(3.4) deX, decone(C—a), gi(a,d)<0, iel(a)U{0}
has a solution d € X. Hence, there exists a,> 0 such that

atadeC, gyat+ad)<gya), g(atad)<g/(a)=0,

whenever 0 < a = a,, and i€ I(a). Since g;(a) <0, for ig I(a) and g; is continuous in
a neighbourhood of a, there exists a; > 0 such that g;(a + ad) <0, whenever 0 < a = a,,
and ig I(a). Now, let @ =min {ay, a,}. Then, a+ ad is a feasible solution for (PC)
and go(a+ad) <gq(a), for sufficiently small @ such that 0<a = @. This contradicts
the local minimum of (PC) at x = a. Hence, the system (3.3) has no solution. Since,
for each i, 7,(-) is a sublinear function and cone (C —a) is convex, it follows from

Lemma 3.1 that there exist 7=0 and A;,=0, i=1,2, -+, m, not all zero, such that
mro(x)+ Y Amh(x)=0 Vxecone (C—a).
iel(a)

Then, by a separation theorem and by choosing A; =0, for ig I(a), we get

0eram%(0)+ ¥ Aam(0)—(C —a)".
i=1
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Hence, there exist v; € 9¢k (4)(0), i=0,1,- - -, m such that

g Fo(a)+ ¥ Ap] Fi(a)e(C—a)".
i=1
The conclusion now follows from the definition of the dual cone and A;, for
iz I(a). 0
Necessary conditions of Kuhn-Tucker type follow from Theorem 3.1, under any
constraint qualification that ensures 7#0. In particular, the following Slater type
constraint qualification does this:

Ax,econe (C—a), v Fi(a)xo<0 Vveadk(0), icl(a),

where I(a)={i|f,(F:(a))=0}; thus, if the problem (PC) attains a local minimum at
ac C and a suitable constraint qualification holds at a, then there exist Lagrange
multipliers A; =0, i=1,2,---,m, and v, € 3¢, ,)(0), i=0,1,2, - - -, m, satisfying

(v(,TF(’,(a)+ § )\iv,-TFE(a)> (x—a)z0 VxeC

and A;fi(F(a))=0,i=1,2,---,m.

We now show how Clarke subdifferentials can be used to describe necessary
conditions for the composite model problem (P) with locally Lipschitz and Gateaux
differentiable functions. The following Kuhn-Tucker type optimality conditions with
Clarke subdifferentials for (P) easily follow from Theorem 3.1 by taking C = X and
choosing the Clarke directional derivatives as upper convex approximations.

CoOROLLARY 3.1. Assume that the problem (P) attains its local minimum at x=a €
X. If there exists xo€ X such that v"Fi(a)x,<O0, for all ved’f,(F(a)), icI(a), then
there exist Lagrange multipliers A; =0, i=1,2,---,m, and v,€d’f,(Fi(a)), i=
1,2, - -, m, satisfying
m.

2

(3.5  wvoFy(a)+ X AviFi(a)=0,  Afi(F(a))=0, i=1,2--"
i=1

It is worth noting that the Clarke calculus [5] cannot directly be applied to our
composite model problem (P). We have seen that our upper convex approximation
scheme and our analysis in § 2 pave the way for use of Clarke subdifferentials for
general composite nonlinear programming problems. Moreover, we shall show in the
next section that the condition (3.5) becomes sufficient for global optimum for certain
class of nonconvex problems.

4. Convex composite programs. In this section, we examine sufficient conditions

for global (and local) optimum of convex composite programs. We first consider
minimize  f(F(x))

(UP) .
subjectto xeC

where f: R" > R is a convex function, F: X - R" is a locally Lipschitz and Giteaux
differentiable function on X, and C is a convex subset of X. Using a mean value
theorem [2] and Theorem 2.1, we shall present a sufficient condition for a local minimum
of (UP).

ProrosiTION 4.1. For the problem (UP), let a € C. If there exists a neighbourhood
N (a) of a such that

(4.1) (Vxe CNN(a)\{a}) (Vvedf(F(x))) v'F(x)(x—a)>0,

then a is a strict local minimum for (UP).
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Proof. Suppose that a is not a strict local minimum for (UP). Then, there exists
y€ N(a)N C such that y # a, and f(F(y))=f(F(a)). From the mean value theorem
[2], there exists 0<a <1 such that z=y+a(a—y)e CNN(a), z#a, and 0=
feF(a)—f°F(y)=w"(a—-y), for some wea®(f° F)(z). Now, by Theorem 2.1 (see
also Corollary 2.2), there exists v € 9f(F(z)) such that w' (a—y)=v"F'(z)(a—y)=0.
Since a—z=(1—-a)(a—y), v'F'(z)(a—z)=0. This contradicts our assumption
(4.1). 0

Remark 4.1. In proving Proposition 4.1, we only used the property that f is locally
Lipschitz on R". The result therefore holds for locally Lipschitz function f by replacing
af(F(x)) by 8°f(F(x)) or dYE(x)(0) in (4.1). For related sufficient conditions for locally
Lipschitz functions, see Chaney [4].

Let us now examine conditions for global minimum for (UP).

ProposITION 4.2 (conditions for global minimum). Consider the problem (UP).
Let ac C. If F'(a)(clcone (C —a))=R", then the following statements are equivalent:

(4.2) (i) f(F(a))=min f(F(x)),

(4.3) (i) (Qvedf(F(a)) (YxeC) v'F'(a)(x—a)=0.

Proof. ((4.2)=>(4.3)). This follows from the results of the previous section.
((43)=(4.2)). Let xe C; let F(x)=y and F(a)=j. From the convexity of f,
we get

S(F(x))—f(F(a))=f(y)—f(9)
zv (y-7).
By our assumption, F'(a)z=y—j is solvable for zeclcone (C —a). Hence,
v F'(a)(clcone (C —a))< R, and so,

f(F(x))-f(F(a))Z v"F'(a)z20.

Thus, (4.2) holds. 0

Remark 42. When C =X, our hypothesis in Proposition 4.2 requires that the
Gateaux derivative of F at a is onto. However, it provides new and easily verifiable
conditions for global minima of a class of nonconvex problems. We now give an
extremely simple example, merely to provide some intuitive grasp for the kind of
problem that falls within the scope of Proposition 4.2. Consider f(x, y) = 3x* —2xy + 4y?,
and F(x, y)=(x—x>,y+»?). Then the hypothesis of Proposition 4.2 is satisfied with
C=R? eg, at a=(1,—1). Proposition 4.2 extends a well-known characterization of
optimality result for convex programs to composite (nonconvex) problems.

Now, consider the following special class of convex composite programs:

minimize  fo(F(x))

PF

(PF) subject to xeX, fi(F(x))=0, i=1,2,---,m,

where F:X > R" is a locally Lipschitz and Gateaux differentiable function, and
fitR">R,i=0,1,2,- -+, m are convex functions. We shall see that for this class of

programs the necessary condition (3.5) becomes sufficient for global minimum under
an additional assumption on the derivative of F at the optimum.

The null space of a function f is denoted by N[ f]. Note that, by the Farkas
theorem (see [6, Thm. 2.2.6]), for each fixed x, ae X, F(x)— F(a)e€ F'(a)(X) if and
only if F'(a)"u=0=>u"(F(x)— F(a))=0. This implication is equivalent to the
inclusion that N[F’(a)"]< N[F(x)— F(a)]. Note that this null space condition is
trivially satisfied, in particular, when F’(a) is onto.
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THEOREM 4.1. Consider the problem (PF). Let a be a feasible point of (PF). Suppose
that the constraint qualification in Corollary 3.1 holds. Assume that for each feasible x
of (PF), N[F'(a)"]< N[F(x)— F(a)]. Then, a is a global minimum for (PF) if and
only if there exist \;=0, i=1,2, -, m and v;€93f;(F(a)), i=0,1,2,- -+, m such that

WIF(@)+ 3 A0l F(a)=0,  Afi(F(a)=0.

Proof. The necessary conditions follow from Corollary 3.1. We shall prove the
sufficient part. Let x € X be a feasible point of (PF). Then, from the convexity property
of f, we get,

So(F(x)) = fo(F(a)) Z vg (F(x) — F(a)).
From the null space condition, there exists u(x,a)e X such that F(x)— F(a)=
F'(a)u(x, a). Now,

Jo(F(x)) = fo(F(a)) = vg F'(a)p(x, a),

- 3 Al Fl@)u(x a),

= ¥ MAF()+ X AS(F@),

=0,
since x is feasible, f; is convex, and A;f;(F(a))=0. Hence, f,(F(x))=fy(F(a)), for
each feasible x € X and so a is a global minimum of (PF). 0

Theorem 4.1 extends the well-known necessary and sufficient optimality theorem
for convex programming problems (e.g., [6]) to a class of convex composite non-
differentiable problems. A nonsmooth version of the Wolfe duality theorem [6] is now
presented for the problem (PF). Using the optimality conditions in the previous
theorem, the following dual problem for (PF) can now be formulated:

maximize  f(F(£)+ ¥ AS(F()
(DF) j n
subject to 0Oe€ F'(g)Taﬁ)(F(g))f; M (OTafi(F(L)), A=z0.

Note that the generalized subdifferential of the convex composite function f; o F
is the set 9°(f; o F)(¢)=F'({)Taf.(F()). Note also that ze F'(¢)"af;(F({)) if and
only if z=v! F'({), for some v; €df;(F({)).

THeOREM 4.2 (duality). For the problem (PF), let f;,i=0,1,2,- - -, m, be convex,
let F be locally Lipschitz and Gateaux differentiable on X, let (PF) attain a minimum at
x = a, and let the Kuhn- Tucker type conditions (3.5) hold at a. If for each feasible (¢, A)
of (DF), and x of (PF), N[F'(¢{)"]< N[F(x)— F({)], then the dual problem (DF)
attains its maximum and the optimal values of (PF) and (DF) are equal.

Proof. Let x be feasible for (PF) and let ({,A)e X X R™ be feasible for (DF).
Then, there exist v; € 3f;( F({)), i=0,1,2,+ - -, m,such that vy F'({)+Y", Av! F'({) =
0. So,

fFen= | wF@)+ § asE@ |

m

= o (F(x) = F({)— Zl Aifi(F({))  (by convexity of f;)
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W FEW(x 8= £ ML) for some y(x O)e X

(by the null space condition)

- AT F (O 0)- § MA(F()  (by feasibility)

=~ 3 AT F@OUx, D)= £ AP+ § a0l (F0) = F(Q)
(by convexity of f; and nonnegativity of A;)
= ¥ Al FOU(x D+ 5 Mol (F(x)—F(0)  (by feasibility)
=~ X AT QW5 0+ £ Aol FOW(x0)
=0.

Hence, fo(F(x)) sz(F(g))+Z:"=1 Aifi(F({)); thus the weak duality holds.
Now, from the optimality condition (3.5), there exists A € R™, A =0 such that
(a, A) is feasible for (DF) and ¥.|_, A;fi(F(a))=0. So,

max (DF) 2 f,(F(a))+ ¥, A/i(F(a))=min (PE).

This with the weak duality shows that (a, A) is optimal for (DF) and the optimal values
are equal. 0

5. Convex transformable composite programs. In this section, we consider the
following convex composite problem:

minimize  fo(F(x))

(PFT) )
subject to xeX, fi(F(x))=0, i=1,2,---,m,

where f;, i=0,- -+, m, are convex functions and F: X - R" is a locally Lipschitz and
Giteaux differentiable function with range of F, F(X), convex. We shall see that these
model problems (PFT) provide a class of programs which are not convex but possess
some of the nice properties that convex programs have.

Following Heal [9], these programs are termed convex transformable programs.
However, our assumptions are much weaker than the ones used in [9, p. 402], where
F is assumed to be a bijective mapping. For various properties of differentiable convex
transformable programs, see [8] and [9]. The value function from R™ to [—o0, o] for
(PFT) is defined by

V(z)=inf {fo(F(x))|x€ X, i(F(x))=z,i=1,2," -, m}.
Note that infimum over the empty set is +00. The domain of V is denoted by
dom (V) ={ze R™|V(z) < +o0}.

We first observe the useful property that the value function of the convex composite
problem (PFT) is convex. This follows easily from a known result of convex program-
ming [18], and [19] by writing the value function V(z) as

V(z)=inf {f(»)|ye F(X), fi(y)=z,i=1,2,- -, m}.
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Note here that F(X) is convex and, for each i=1,2,- - -, m, f; is convex. We further
note that, although (PFT) is not a convex program, it falls into the category of convexlike
program in the following sense:

(Vae(0,1)) (Vx;,x,eX) (IxeeX)
[i(F(x0)) = afi(F(x)) + (1 - a)fi(F(x,)),
foreachi=0,1,2,- - -, m. Fordetailed study of this class of programs, see [12] and [15].
It is well known that, for a convex program, the Lagrange multipliers in the
Kuhn-Tucker relations can be completely characterized in terms of subgradients of
the value function. Here we show that this characterization is not limited to convex
problems, but continues to hold for the class of nonsmooth (nonconvex) composite
problems (PFT). The convexity property of the value function and the composite
structure in the program (PFT) allow us to obtain such a characterization theorem for
Lagrange multipliers in terms of subgradients of the value function. The interior of a
convex set C is denoted by int C. The Lagrangian function for (PFT) is denoted by
L(x, A) = fo( F(x))+ 1, Afi(F(x)).
THEOREM 5.1. For the problem (PFT), let f;, i=0,1, -, m be convex; let F: X >
R" be locally Lipschitz and Gateaux differentiable on X with F(X) convex. Suppose that
Ocint (dom (V)). If (PFT) attains its minimum at x = a and if F'(a) is onto then the
value function V is continuous at 0, 9 V(0) is nonempty and

aV(O)={—A AeR",A=0,0] F'(a)+ Y Av] F'(a)=0,

i=1
UiEaf;(F(a)), /\lf;(F(a)):’O’ i=1,23. ., m
Proof. Since the value function V is convex, the first two conclusions of the

theorem follow from the known results of convex programming [19, Thms. 16-18].
Now, from the Lagrangian duality theorem in [12], there exists A € R™, A =0 such that

min L(x, A) =fo(F(a)) and Afi(F(a))=0,

since (PFT) is a convexlike program. Furthermore,

av(0)= {—/\

AeR™, A=0, fo(F(a)) =rrli)1<1 L(x, )\)}.

The last conclusion will follow from this if we show that min,.x L(x, A) =fo(F(a)) if
and only if vg F'(a)+¥ -, Aw] F'(a) =0, for some v, € 3f;(F(a)). Since A,f;(F(a))=0,
the function fo+Y -, Af; is convex and F'(a) is onto, the equivalence follows from
Proposition 4.2, and hence the proof is completed. O

Remark 5.1. Tt should be noted that if 0 € int (dom (V)) then the generalized Slater
condition [12], that f;(F(x,)) <0, i=1,2, - -, m, for some x,€ X, holds. Moreover, it
is worth noting that Theorem 5.1 may also be derived from certain results in convex
analysis by converting the problem (PFT) into an equivalent convex problem.

Acknowledgments. The author is extremely grateful to the referees for their valuable
suggestions and helpful comments, which have contributed to the final preparation of
this paper.

REFERENCES

[1] J. R. BIRGE AND L. Q1, The Michel-Penot Subdifferential and Stochastic Programming, Applied
Mathematics Preprint, No. 12, University of New South Wales, Kensington, New South Wales,
Australia, 1989.



COMPOSITE NONSMOOTH PROGRAMMING 41

[2] J. M. BORWEIN, S. P. FITZPATRICK, AND J. R. GILES, The differentiability of real functions on normed
linear space using generalized subgradients, J. Math. Anal. Appl., 128 (1987), pp. 512-534.
[3] J. V. BURKE, Descent methods for composite nondifferentiable optimization problems, Math. Programming,
33 (1985), pp. 260-179.
[4] R. W. CHANEY, On sufficient conditions in nonsmooth optimization, Math. Oper. Res., 7 (1982),
pp. 463-475.
[5] F. H. CLARKE, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983.
[6] B. D. CRAVEN, Mathematical Programming and Control Theory, Chapman and Hall, London, 1978.
[7] R. FLETCHER, Practical Methods of Optimization, John Wiley, New York, 1987.
[8] M. A. HANSON AND B. MOND, Convex transformable programming problems and invexity, J. Inform.
Optim. Sci., 8 (1987), pp. 201-207.
[9]1 G. HEAL, Equivalence of saddle-points and optima for non-concave programs, Adv. in Appl. Math., 5
(1984), pp. 398-415.
[10] J. B. HIRIART-URRUTY, Mean value theorems in nonsmooth analysis, Numer. Funct. Anal. Optim., 2
(1980), pp. 1-30.
[11] A. D. IOFFE, Necessary and sufficient conditions for a local minimum 2: Conditions of Levitin- Miljutin-
Osmolouvskii type, SIAM J. Control Optim., 17 (1979), pp. 251-265.
[12] V. JEYAKUMAR, Convexlike alternative theorems and mathematical programming, Optimization, 16
(1985), pp. 643-652.

[13] , On optimality conditions in nonsmooth inequality constrained minimization, Numer. Funct. Anal.
Optim., 9 (1987), pp. 535-546.
[14] , Generalized differentiability properties of locally Lipschitz functions, in preparation.

[15] V.JEYAKUMAR AND H. WoLKOWICZ, Zero duality gaps in infinite dimensional programming, Research
Report 24, University of New South Wales, New South Wales, Australia, October 1988; J. Optim.
Theory Appl., 67 (1990), pp. 87-108.

[16] P. MICHEL AND J. P. PENOT, Calcul sous-differentiel pour des fonctions lipschitziennes et non lipschitzi-
ennes, Comptes Rendus de 1‘Academie des Sciences Paris, 298 (1984), pp. 269-272.

[17] B. N. PSHENICHNYI, Necessary Conditions for an Extremum, Marcel Dekker, New York, 1971.

[18] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1969.

[19] , Conjugate Duality and Optimization, CBMS-NSF Regional Conference Series in Applied
Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1974.

[20] , Generalized directional derivatives and subgradients of nonconvex functions, Canad. J. Math.,
32 (1980), pp. 257-280.

[21] , First and second order epi-differentiability in nonlinear programming, Trans. Amer. Math. Soc.,

307 (1988), pp. 75-108.

[22] M. STUDNIARSKI, Mean value theorems and sufficient optimality conditions for nonsmooth functions, J.
Math. Anal. Appl., 111 (1985), pp. 313-326.

[23] D. E. WARD, Convex subcones of the contingent cone in nonsmooth calculus and optimization, Trans.
Amer. Math. Soc., 302 (1987), pp. 661-682.

[24] D. E. WARD AND J. M. BORWEIN, Nonsmooth calculus in finite dimensions, SIAM J. Control Optim.,
25 (1987), pp. 1304-1312.



SIAM J. OPTIMIZATION © 1991 Society for Industrial and Applied Mathematics
Vol. 1, No. 1, pp. 42-56, February 1991 005

LOCAL AND SUPERLINEAR CONVERGENCE FOR
PARTIALLY KNOWN QUASI-NEWTON METHODS*

JOHN R. ENGELSt aND HECTOR J. MARTINEZ

Abstract. This paper develops a unified theory for establishing the local and g-superlinear convergence
of quasi-Newton methods from the convex class when part of the Hessian matrix is known. One first proves
the bounded deterioration principle due to Dennis (and popularized by Broyden, Dennis, and Moré) for
the appropriate modifications of all update formulas in the convex Broyden class. Using standard conditions
on the quasi-Newton updates, one then deduces local and g-superlinear convergence. Particular cases of
these methods are the SQP augmented scale BFGS and DFP secant methods for constrained optimization
problems introduced by Tapia and a generalization of the Al-Baali and Fletcher modification of the structured
secant method considered by Dennis, Gay, and Welsch for the nonlinear least-squares problem. In all cases,
bounded deterioration is proved for the approximate Hessian, not for its inverse.

Key words. convergence theory, bounded deterioration, superlinear convergence, unconstrained optimi-
zation, constrained optimization, least squares, secant methods, quasi-Newton methods
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1. Introduction. In this paper we extend the results for the partially known BFGS
secant method of Dennis, Martinez, and Tapia [11] and prove convergence theorems
for those secant methods which use a secant update from the convex class studied by
Broyden [4] and Fletcher [17] and have been modified to take advantage of a known
part of the Hessian in constructing approximate Hessians.

The theory we will present can also be viewed as a generalization of the result
for the partially known DFP secant method given by Dennis and Walker [14] to any
partially known secant method with updates in the convex class. It is an extension of
the results for secant methods which use updates from Broyden’s convex class obtained
by Griewank and Toint [19] to handle those partially known secant methods which
use a secant update in the same class. Indeed, our approach is similar to the ones used
in all three of these papers. We follow Griewank and Toint in showing bounded
deterioration for the Hessian approximations in every case rather than for their inverses.

The methods of interest in this paper are iterative methods for solving

minimize f(x), f:R"->R
xeR”
in the case when the complete computation of the Hessian matrix Vf(x) is infeasible.
In several applications, the Hessian matrix is partially available; this suggests that we
work with an approximation B, of V2f(x,) of the form

V2f (%) = By = C(x) + A,

where C(x;) is a computed part of V>f(x,) and A, is an approximated part of V2f(x,).
For example, such approximations are used in the nonlinear least-squares case [1],
[10] and proved to be very competitive, at least in the large residual case. For more
details on partially known updates and an historical survey see Dennis, Martinez, and
Tapia [11] or Martinez [20].
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But nonlinear least squares is not the only case where algorithms are of interest.
Engels [15] used an algorithm of reduced gradient type to solve optimization problems
for large scale econometric models. He used the same framework to solve the reduced
problem, where C(x) is the known part of the reduced Hessian. His tests outperformed
a simple BFGS algorithm by a factor of 2 to 30, which increased with the size of the
problem. Another important application of partially known secant methods was given
by Tapia [22]. He used the well-known bounded deterioration of the DFP and the
inverse form of the BFGS secant updates as a basis for establishing bounded deterior-
ation of the partially known DFP and the inverse of the partially known BFGS secant
updates. Then he proved local and g-superlinear convergence for the partially known
DFP and BFGS secant versions of his algorithms for equality-constrained optimization
problems. We will give more details about these algorithms in § 4.

We will call the class of symmetric rank-2 secant updates suggested by Broyden
[4] the Broyden class of secant updates. Fletcher [17] shows that this class of secant
updates can be written as

(la) B+=Br0y (S,y, B7 ¢)
where the parameter ¢ € R, and Broy (s, y, B, ¢) is given by

t t
yy' Bss'B
(1b) Broy(s,y,B,¢)=B+E—W+¢S'Bsuu'
y Bs
1 =L _ =
(1c) “ y's s'Bs

The following are well-known choices of the parameter ¢:

(2a) Convex Class ¢ €[0, 1],

(2b) DFP d=1,

(2¢) BFGS »=0,
Vs

(2d) SR1 = o Bs

Assuming that
(3) V2f(x)= C(x)+S(x)

where C:R”->R"*" is the available part of V>f, we consider the following class of
algorithms: For given x, and A, symmetric, define

B =C(xi)+ Ax,
(4) Xic+1 =xk—Bl:1Vf(xk)a
A€ U(xi, Ar),
where the update function U will be defined later (see (7) and (8) in § 2).
Throughout this paper we make the following standard assumptions.
Let f:R" >R be two times differentiable in an open convex neighborhood Q) of
a strong local minimizer x, with V>f(x,) positive definite, and let C:R">R"" be

such that C(x) is symmetric. Assume further that V2f and C are locally Holder
continuous at x,. and let »=0, ».=0 and p € ]0, 1] be such that for all xeQ

V2£(x) = V(x| S vlx—x,” and |C(x)— Clx,)| S welx—x,l”

where |+| denotes a vector norm and its subordinate operator norm.
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In addition, we will use the following standard notation:
Sk = Xie+1 ™~ Xk,
Yie= V2 (%) 8k
o (xy, x3) = max (|x; —x,|", |2 —x,|7),
Ok = 0 (Xpr1, Xi),
2(x1, x2) = {x||x = xy| = max (|x; = x,l, [x, = x,)},
2 =2 X1 Xi)-

We will omit the subscript k, replace the subscript k+1 by the subscript +, and use
Ji or C, instead of f(x;) or C(x,) when no ambiguity is possible. One way of defining
¥, and the most often used, is

y=Vf(x,)=Vf(x),

but it can also be defined as
y=y"+C(x)s

where X €2, and y* is a given approximation of S(x,)s.

One of the main issues in the development of the theory given in this paper is the
bounded deterioration principle given by Dennis [7] and popularized by Broyden,
Dennis, and Moré [5]. It was Griewank and Toint [19] who first established a unified
bounded deterioration principle for all the members of the convex class ((1) with (2a)).
In the same paper, they gave sufficient conditions for a member of this subclass of
secant methods to have a g-superlinear rate of convergence. However, mainly due to
the fact that they assume that the problem had been transformed into a particular form
and their big O notation, it was not obvious how to extend this result to the partially
known secant methods described above. It also was not clear how to obtain the direct
form rather than the inverse form of the bounded deterioration principle for the
partially known secant methods, except DFP, from other approaches in the literature.
The theory given in §§ 2 and 3 answers the open question of the local and g-superlinear
convergence of any partially known secant method which uses a secant update from
the convex class.

In § 2 we prove that the partially known secant approximations to the Hessian
defined in § 1 satisfy the bounded deterioration principle for ¢ € [0, 1]. Moreover, by
just setting ¢ =0 we will have the surprising and stronger form of this bounded
deterioration for the partially known BFGS secant method given by Dennis, Martinez,
and Tapia [11].

In § 3 we establish the local and g-superlinear convergence for all of the partially
known secant methods which use updates from the convex class using the theories of
Broyden, Dennis, and Moré [5], Griewank and Toint [19], and Dennis and Moré [12]

Finally, in § 4 we use this theory to prove the local and g-superlinear convergence
of any partially known secant method which uses a secant update from the convex
class for the equality-constrained optimization problem and the nonlinear least-squares
problem. Particular cases of these methods are the SQP augmented scale BFGS and
DFP secant methods for constrained optimization problems introduced by Tapia [22].
Another particular case, for which local and g-superlinear convergence was proved
for the first time in Dennis, Martinez, and Tapia [11], is the Al-Baali and Fletcher [1]
modification of the partially known BFGS secant method considered by Dennis, Gay,
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and Welsch [10] for the nonlinear least-squares problem and implemented in the
current version of the NL2SOL code.

2. Bounded deterioration. Our objective in this section is to show that the partially
known quasi-Newton approximations to the Hessian derived from the convex Broyden
class ((1) with (2a)) satisfy the direct form of the bounded deterioration principle, i.e.,
for x sufficiently close to x,, these updates satisfy

(5) IB+ = V2f(x) | =[1+ @10 (x, x)]| B = V3 (x,) | + @r0(x, x,)
where «, and a, are positive constants, and |- || is the Frobenius norm weighted by
V3 f(xy).

The bounds needed to prove inequality (5) follow from the standard assumptions
and the fact that y and y* are “good” approximations to Vf(x,)s and S(x,)s,
respectively. We formalize this in the following two propositions.

PROPOSITION 1. Let f satisfy the standard assumptions, let D be a neighborhood of
X4, and let y be an approximation to sz(x*)s. Assume that there exists a constant k,
such that for each x,, x,€ D and s = x,— x, it holds that

ly "V2f(x*)sl = Kk,0(x4, X,5)|s].

Then there are positive constants €, k,, K3, K4, Ks, and kg such that for all x,, x,€ D,,
defined by D, ={x||x —x,|= e} = D, the following inequalities hold:

(6a) |y|2§(K2+K30-(x19x2))|s|2,

(6b) J’IS§(K2+K30'(X1,X2))|S|§,

(6¢) y'sZ kalsl3,

(6d) l—x)l%sbé Ks+Keo(x;, X,), s#0.

Proof. We will make strong use of the equivalence of all norms on R"; in particular,
for |-| and ||, (the Euclidean norm) we assume for some ¢, and &, and any x € R” that

1
&

Let x,, x,€ D and let B, and B, be constants such that

IV eS8, V() =Bas

then (6a) and (6b) follow directly from the fact that y = (y — V*f(x,)s) + V*f(x,)s with
Ky =& 6ok and k3= §,6,B8,. Now choose & so that ¢1£5k,6”8,=1 and D, < D; then
(6¢) follows immediately with k, = (1 — £33k, £78,)/ £,£,8,. Finally, notice that for s # 0

x| = x| = &x[,.

ylalsls _lyla]sl3

y's  Isly's’

so that (6d) follows from inequalities (6a) and (6¢) with ks = k,/ k, and k¢ = K3/ K4. 0

ProposITION 2. Let f and C satisfy the standard assumptions, let D< Q) be a
neighborhood of x,., and let y* be an approximation to S(x,)s. Assume that there exists
a constant k such that for each x,, x,€ D and s = x,— x, it holds that

[y* = S(x,)s| = k70(x, x5)]s].
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Then there exists a positive constant k, such that for all x,, x,€ D, y = y* + C(x)s satisfies

ly _sz(x*)sl =K,0(x1, X))|s]

whenever X € 2(x,, X,).
Proof. Let x,, x,€ D. Taking advantage of the structure in y and in the Hessian
(3), we can write

Iy _sz(x*)sl = |y# - S(x*)sl + |[C(i) - C(x*)]sl
= k70(X1, X)|8|+ ve| X — x4 |"| 5]
= (k7 v)o(x,, xo)|s]. O

Before establishing the bounded deterioration inequality for the partially known
quasi-Newton updates derived from the convex class, we reformulate the corresponding
result obtained by Griewank and Toint [19] for the convex class. Our hypotheses are
slightly weaker than those used by Griewank and Toint. This will permit us later to
generalize their result to the partially known quasi-Newton updates.

PROPOSITION 3. Assume that f satisfies the standard assumptions and let B, be a
secant update from the convex class ((1) with (2a)) where s=x,—x and y is an
approximation to V>f(x,)s. If there exist D < Q a neighborhood of x,, and a constant k,
such that for each x, x, € D it holds that

ly = V2f(x,)s| = k10 (x, x)|s].

Then there exists a neighborhood D, < D such that the bounded deterioration inequality
(5) holds whenever x, x, € D, and B is positive definite.

Proof. In their paper Griewank and Toint assume that y = V*f(x,)— V?f(x), but
to prove the bounded deterioration for the convex class they only need inequalities
like (6). Therefore their proof remains correct in this case and the result follows from
Proposition 1. Moreover, using the same set of inequalities and a slightly different
approach, it is possible to prove that inequality (5) holds with a, = ¢p, and a, = p; + ¢po
for some positive constants p, and p, (see [20, Thm. 2.4] for more details). 0

Note that the stronger form of the bounded deterioration, i.e., &; =0 when ¢ =0,
obtained by Dennis, Martinez, and Tapia [11] for the BFGS secant update follows
from the last observation.

We will now prove an analogous result for the partially known quasi-Newton
updates derived from the convex class. In the theorems hereafter we use an update
function which is slightly more general than this class. We use this update function to
clarify the fact that at each iteration we can change the update formula of the
approximation of the Hessian matrix without losing any of the convergence properties
stated hereafter. Let us define the following update functions

(7a) Ullx, A)= U {A+C(x)-Cy},
xeZ(x, x4)

(7b) Uz(x’ A) = U U {Broy (S, B C('f) + A> d)) - C+},
xe3(x, xy) ¢e[0,1]

(7¢) U(x, A)=U'(x, A)U U?(x, A)

with

74) S=Xx.—X, y=y¥+C(x)s,
y* is an approximation to S(x,)s.

First note that these update functions of A correspond to the following update functions
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of B:

(8a) Us(x, B)= U {B+C(x)-C},
xeX(x, x4)

(8b) Us(x,B)= U U {Broy (s, y, C(x)+A, ¢)},
xe3(x,x4) pe[0,1]

(80) UB(xa B) = U;}(xs B) U UzB(x7 B)a

and note that taking U'(x, A) with X = x, corresponds to an update formula in which
only the computed part C is updated and the matrix A remains constant; taking
U'(x, A) with ¥=x corresponds to the classical chord method, i.., the matrix B
remains constant; taking U?(x, A) with X =x, corresponds to the most common
partially known quasi-Newton updates derived from the convex class, and taking
U?*(x, A) with X = x corresponds to the standard convex class.

Let us now state our first result.

THEOREM 4. Let f and C satisfy the standard assumptions and let B, be an update
of B defined by

B,=A.+C,
where A, e U(x, A), given by (7), and x,=x— B 'Vf(x). If there exist D<Q, a
neighborhood of x,., and a constant k, such that for each x, x, € D it holds that
y* = S(x)s| = ky0(x, x,)sl-

Then there exists a neighborhood N = N, x N, of (x,, sz(x*)) such that the bounded
deterioration inequality (5) holds whenever (x, B) € N.

Proof. From Propositions 2 and 3 we can easily deduce that there exist positive
constants &, and &, such that B, = Broy (s, y, B, ¢) with ¢ €[0, 1] satisfies

9) ||B+—V2f(x*)||é(l+§10')||B—V2f(x*)||+§20'

whenever x, x, € D, and B is positive definite.
We will now prove a similar result for Ug(x, B). We will make strong use of the

equivalence of all norms on R"*"; in particular, for || and | | we assume for some
1n>0 and any M € R"™", that
(10) IM||=n|M|.

If we define the neighborhoods N, of x, and N, of V?f (x4) as
N1={x||x—x*|<81}
and
N,={B|B=A+C(x),xe N, and |A—S(x,)| < &,}

then, following the same arguments used by Broyden, Dennis, and Moré [5], it is
possible to prove that there exist constants &, and &, such that N, < D,, N, contains
only positive-definite matrices and x, € N, for any x € N, and B € N, (see Engels [16,
Thm. 1] for more details).

It follows that M = A+ C = B+ C — C, is positive definite and M ' well defined.
Therefore Broy (s, y, B, ) and Broy (s, y, M, ¢) with ¢ €[0,1] and e 3(x, x,) are
well defined and satisfy (9).

Now, since

”M_sz*" = IIC—’+A—V2f*+C*—C*+C—CII
(11) =||B=V2f,+(C = C,)+(C,— O)|
= ||B—V2f*|| +2nv.0,
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inequality (5) holds with a; =0 and a,=2nv, for B, € Uj(x, B) and, if B, € U%(x, B),
we have from (9)-(11)

1B, = VSl =(1+ &) |M =V || + &0
=(1+£0)|B-V | + &0,

with &= (&,+2£,e5nv.+2nv,). We conclude that for each (x, B)e N = N; X N,, and
x;=x—B7'Vf(x), the bounded deterioration inequality (5) holds for each B, e
Ug(x, B). 0

3. Local convergence theory. In this section we will establish the local and g-
superlinear convergence of the partially known quasi-Newton updates derived from
the convex class. The local and linear convergence follows directly from the results of
§ 2 and the Broyden-Dennis-Moré theory. For completeness we restate the linear
convergence theorem as follows.

THEOREM 5. Let f and C satisfy the standard assumptions. Then for each r€ 0, 1[,
there are positive constants €, and 8, such that for |x,—x,|<e, and |A,—S(x,)|<3$,,
the sequence {x,}, defined by (4) with U(x, A,) defined by (7), is well defined and
converges to x,. Furthermore, it holds that

X1 = X = 1l — x|

for each k=0, and {|B,|}, {|Bi'|} are uniformly bounded.

Of course to prove the superlinear convergence we must restrict the update
functions to their second part, i.e., U*(x, A) and U%(x, B), respectively. Due to the
invariance properties of the updates in the Broyden family and the fact that C can
be changed according to the changes in V’f, we assume without loss of generality that

Vf(x,) =1L
The norm | - || then reduces simply to the Frobenius norm.
THEOREM 6. Let f and C satisfy the standard assumptions mentioned in § 1. Then
Sor (x,, Ay) sufficiently close to (x,., S(x,)) the sequence {x,} defined by (4) with the

update function defined by (7b) and (7d), converges g-superlinearly to x, .
Proof. We will prove that

B —1I
(12) fim IBe =Dl _ o
K ll sl

The superlinear convergence then follows from the well-known Theorem 2.2 of Dennis
and Moré [12].
First consider the matrix

Bg— = Bfoy (S, S, Ma ¢)

where M=A+C=B+C-C
Using arguments similar to those of Griewank and Toint [19], we get

0=h(¢, M,s) < |M~I|>~| B\ ~TI|

s'MMs\? s'MMMs (s"MMs\?
== (1-77= ) +2 e

s'Ms

s'Ms s'Ms
s'Ms\* s'MMs ([ s'Ms\>
col (=) e[ R0 )
s's s's s's

s'MMs\*> [s'Ms\>
+¢(1—¢){( s ) _( s ) }

(13)
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We can find a constant £, independent of ¢, such that
(14) IB, = B.|| = &(|M ~I| +2)o.
From Theorem 5, | B—I|| is bounded, and it holds that for some &
IM-I|=|M-B|+||B-1I]
=2nvo+|B-I|
=¢s.
It then follows from (14) that
|B.—B\| = &0
and consequently,
|B.— 1| =]|B.— B+ | B4~ I
=|B\—I| + &0,
(15) IB. = I|*= (|| B} = ||+ &)
=B~ I’ +0Q&l| B, — I|| + &o)
= ||B’+_I”2+0'§7,
—|BL—-I’=—|B.~I|’+0&
for some & and &;. Using (13) we obtain that
0=h(g, M, s)= | M —I|>~|[B,~ I
16) =(IM-B|+|B-1I|)*—| B\ 1|
=Qmro+||B-1()* - | BL—1|*
=&o+|B-1|*~ | B\ - I|?

for some &. We deduce from (15) and the linear convergence of {x;} (Theorem 5)
that the sum

kZ (&0t | Be—I|> = | Bicsr —I||2)§k20(||3k—1||2— I Bisr = I1I>+ (& + &) o)
=0 =
=||Bo—I|*+(&+ &) kZO O

is finite; and this implies that

lim [£go+ || B~ I° = || Bicwn ~ TI1=0;

and by (16) it holds that
lim h(¢k’ Mk’ sk) =0.
k

Using arguments similar to those of Griewank and Toint [19], we prove, for an arbitrary
sequence {¢} in [0, 1] and an arbitrary sequence {X,}, X, € 2, that
. ”(Mk _I)sk” _

lim

0.
K sl
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The conclusion (12) follows then from

OglimM=lim”[(Bk+ck_Ck)"‘1+(c*-—c—'k)+(ck—C*)]sk”
o sl el
VI, — I
=lim —”(Mk )i +1lim 2nv.o
Kk [l K
=0. 0

4. Applications. In this section we use the results of §§ 2 and 3 to establish the
local and g-superlinear convergence of any partially known secant method which uses
an update from the convex class for the constrained optimization problem and the
nonlinear least-squares problem. Particular cases of these methods are the SQP aug-
mented scale BFGS and DFP secant methods for constrained optimization problems
suggested by Tapia [22]. Another particular case (for which local and g-superlinear
convergence was proved for the first time by Dennis, Martinez, and Tapia [11]) is the
Al-Baali and Fletcher [1] modification of the partially known BFGS secant method
considered by Dennis, Gay, and Welsch [10] for the nonlinear least-squares problem
and implemented in the current version of the NL2SOL code.

4.1. Nonlinear least squares. Our presentation of the nonlinear least-squares prob-
lem follows Chapter 10 of Dennis and Schnabel [13]. The nonlinear least-squares
problem is

(17) minimize f(x) =} R(x)R(x) =} 3, r,(x)’

where m = n, the residual function R:R" - R"™ is nonlinear, and r;(x) denotes the ith
component function of R(x). Straightforward calculations show that the gradient of
f is given by
Vf(x)=J(x)'R(x)

where J(x) denotes the Jacobian of R at x, and the Hessian of f is given by

V3f(x) = C(x)+ S(x)
where

Cx)=J(x)T(x), S(x)=Y r(x)V’r(x),
i=1

and V?r,(x) is the Hessian of r; at x.

By a partially known secant method for the nonlinear least-squares problem (17),
we mean the iterative procedure defined by (4) and (7) where s is the quasi-Newton
step defined by

Bs =-Vf(x)

and y and y* are approximations to V’f(x,)s and S(x,)s, respectively.
The choice for y*

(18) y* =[J(x) = J(x)]I'R(x.)

was suggested independently by Dennis [8] and Bartholomew-Biggs [3] and is currently
used in the algorithms given by Dennis, Gay, and Welsch [10] and Al-Baali and
Fletcher [1]. Initially, Dennis, Gay, and Welsch [10] used, in the NL2SOL code,

(19) y=Vf(x)=Vf(x),
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and, in the update function, U?(x, A). It was Al-Baali and Fletcher [1] who first
suggested using

y=y +J(x) T (xs)s

instead of (19), introducing, in this way, the known part of the problem into the update
function. This modification improved the numerical performance of the NL2SOL code
[91.

Consider the following standard assumptions for problem (17).
(SA1) Problem (17) has a strong local minimizer x, with V2f(x,) positive definite.

(SA2)  The function fe C? and J and V’f are locally Holder continuous at x,,
i.e., there exist L;=0, L,=0, e=0 and p<]0, 1] such that

|[J(x) =T (x4)| = Ly|x — x,|"
and
[V2f(x) = V2f (x,)| = Lol x — x,|”
for xe D ={x||x—x,|<e}.

The following lemma will serve as the foundation of our convergence result for
the nonlinear least-squares algorithm (17) as it was in Dennis, Martinez, and Tapia [11].

LeEMMA 7. Assume that the standard assumptions for problem (17) hold. Then, there
exists a positive constant K such that

Iy* = S(xy)s| = Ko (x, x,)]s]|

where y* is given by (18), x, x,€ D, and s=x, — x.

The following result is a generalization of Theorem 4.1 of [11].

THEOREM 8. Assume that the standard assumptions for problem (17) hold. Then,
there exist positive constants &, 8 such that, for x,€ R" and symmetric A,€ R"™" satisfying
|xo— x| <& and |Ay— S(x,)| <8, the iteration sequence {x,} generated by the partially
known secant method which uses the update function U*(x, A) given by (7) for problem
(17) is g-superlinearly convergent to x,.

Proof. The proof of this theorem is a straightforward application of Theorem 6
and Lemma 7. 0

4.2. Constrained optimization. We will consider the special case of the nonlinear
programming problem where we only have equality constraints, namely,

minimize  f(x)
(20)
subjectto  g(x)=0

where f:R" >R, and g:R" > R"™ are smooth functions (m = n).
Associated with problem (20) is the Lagrangian function

I(x, A) = f(x) + g(x)'A.

Straightforward calculations show that the gradient of I with respect to x is
given by

Vil(x, A) =Vf(x)+Vg(x)A,



52 J. R. ENGELS AND H. J. MARTINEZ

and the Hessian of I with respect to x is given by

Vi, ) =Vf(x)+ ¥ AV gi(x),
i=1
where g;:R" - R denotes the ith component function of g.
Following Tapia [22], by the SQP augmented scale secant method for the con-
strained optimization problem (20), we mean the iterative process

(21) X, =xts, Ar=A+AA, A,eU(x, A)

where A is a symmetric approximation to V2I(x, A), and s and AX are, respectively,
the solution and the multiplier associated with the solution of the quadratic program-
ming problem
@) minimize V., I(x, A)'s+3s'As
22
subject to  Vg(x)'s+g(x)=0.

In (22), A is a symmetric approximation to V2I(x, A), and U(x, A) is the partially
known update function given by (7) where

y* =V, ) = V(X AL,
(23) y=y*+pVeg(x:)Vg(x,)'s,
B=A+pVg(x,)Vg(x,)'
and p is the penalty constant in the augmented Lagrangian function
L(x,A; p)=1(x,\)+3pg's,  p=0.

Observe that B is a partially known approximation to the Hessian of the augmented
Lagrangian at the solution, i.e.,

B~VIL(xy, Ay p) = Vil(xy, M) + Vg (x,) Vg (x,)

since the last term of
VIL(x, A5 p)=V3l(x,A)+pVg(x)Vg(x)' +p ¥ gi(x)Vgi(x)
i=1

vanishes at the solution x,. Moreover, Tapia [22] gave strong arguments for ignoring
this second-order term in any type of SQP augmented Lagrangian quasi-Newton
method.

Three issues are important in the derivation of the SQP augmented scale secant
method: first, the use of the augmented Lagrangian instead of the standard Lagrangian
to compensate the lack of positive definiteness of V3I(x,, A,); second, the use of the
structure of V3L(x,, A4; p) as much as possible; and third, the fact that the penalty
constant cancels out in all parts of the algorithm except in the scale of the secant
update (see [22] or [20] for the definition of scale).

In fact, the SQP augmented scale secant method is an SQP (standard) Lagrangian
secant method with a modified (or augmented) scale (see [20] and [22] for more
details). It is this change of scale which takes care of the lack of positive definiteness
in the Hessian of the Lagrangian and allows us to use positive-definite secant updates,
like the ones from the convex class, for constrained optimization problem (20) without
assuming that V3I(x,, A,) is positive definite.
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Clearly, since y*'s is not necessarily positive, the augmented scale secant updates
in (22) do not have the hereditary positive-definiteness property. However, they do
possess this property on N(x,) where

(24) N(x)={zeR": Vg(x)'z=0}

(Tapia [22, Prop. 4.4]).
The following are standard assumptions in the theory of quasi-Newton methods
for problem (20).

(SA1) Problem (20) has a local solution x, with associated multiplier A,,.

(SA2) The functions f and g;, i=1,---, m have second derivatives which are
locally Holder continuous at x,, i.e., there exist L=0, L;=0,i=1,---,m,
£=0, and p €]0, 1] such that

(25a) [V2£(x) = V*f(x4)| = L|x — x,/"
and

(25b) |V?g:(x) —V’gi(x )| S Lilx—x,> i=1,---,m
for xe D ={x||x —x,|<e}.

(SA3) The matrix

Vil(x* s /\*) Vg(x*)>

V2I(x,, A*)=< Ve(x,)' 0

is nonsingular.

To develop the local convergence theory for problem (20), we will use the following
well-known results of Avriel ([2, Cor. 12.9. Thm. 12.10]).

Result 9. Assume (SA1) holds. Then (SA3) is equivalent to the following two
statements:

(SA3a) The matrix Vg(x,) has full rank.

(SA3b) The matrix Vil(x*, A,) is positive definite on the subspace N(x,), where
N(x) is given by (24).

Result 10. Assume that the standard assumptions for problem (20) hold. Then
there exists p,, such that VZL(x,, Ay; p) is positive definite for any p > p,.

Tapia [22] used the Fontecilla-Steihaug-Tapia [18] and Broyden-Dennis-Moré
[5] theories to prove that, under the standard assumptions, the SQP augmented scale
BFGS and DFP secant methods were locally and g-superlinearly convergent to x, . In
this section, we will use a similar approach to generalize this result to the SQP augmented
scale secant method which uses the update function U(x, A) given by (7). The main
difference in our approach is the unified way in which we obtain the bounded
deterioration inequality for all the augmented scale secant updates from the convex
class. Indeed, this inequality follows from Theorem 4 and the following lemma.

LEMMA 11. Assume that the standard assumptions for problem (20) hold. Then,
there exists a positive constant K such that

(26) y*=Vil(x,, ) s|= Ko(x, x;)|s
x0 Ax

where y* is given by (23), x, x,€ D, and s =x, —x.
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Proof. Observe that by adding and subtracting the appropriate term we have
y#= _Vil(x*, s =V l(x,, A0) =V, I(x, Ay) “Vil(x*, Ay)s
=Vf(x)+Vg(x A, —Vf(x)—=Vg(x)A,

—V2f(x,)s — "Z; A V2gi(x,)s
27) = Vf(x.) ~VF(x) = VS (x,)s
+ 3 (Vi) - Va(x) - Pg(x)sIA
+ ¥ [V8(x.) - Vai(x) - Vg (x,)sTAL ~ 4]
+ ¥ DAV (s

where A} and A are the ith component of A, and A, respectively.
From (25) and Lemma 4.1.15 of Dennis and Schnabel [13] we have

{28a) [Vf(x2) = Vf(x) = Vf(x,)s] = Lo (x, x|
and
(28b) |Vgi(x+)_vgi(x)_Vzgi(x*)slgLio-(xy x+)|s|, l=1’ T, m

Therefore, using (27), (28), and the Cauchy-Schwarz inequality

ly* = V2iI(xy, Ay)s| = Lo(x, x4)|s|+ '21 LA i|o(x, x,)|s]

+ Y LAY —ALlo(x, x)ls|+ Y LAy —Ak]ls|
i=1 i=1
(29)
=[ 1+ § Lo <o
i=1

m 1/2 m 1/2
(£ ) e (5 2) Js-nas
i=1 i=1
where L; =|V?g,(x,)|.

From Proposition 4.2 of Fontecilla, Steihaug, and Tapia [18] we have that there
exists a positive constant y such that

(30) l)‘+_)‘>|<|§ '}'lx_x*l

for all x close enough to x,.
Therefore, using (29) and (30), we establish (26) with

m m 1/2 m 1/2
(31) k-1+§ L,»|/\ik|+y[<'§1 L,%) g+<§1 I:?) ] 0

THEOREM 12. Assume that the standard assumptions for problem (20) hold and
p=0 has been chosen so that V2I(x,, A,) is positive definite (see Result (10)). Then,
there exist positive constants ¢, 8 such that, for x,€ R" and symmetric A, R" satisfying
|xo—x4| < & and |Ag—V3I(x,, A,)| <8, the iteration sequence {x,} generated by the SQP
augmented scale secant method which uses the update function U*(x, A) given (7) is
g-superlinearly convergent to x,,.
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Proof. First, let us remember that the quadratic problem (22) would have the same
solution if we used B and V,L(x, A; p) instead of A and V,I(x, A), respectively (Tapia
[22, Prop. 3.1]). Now, the bounded deterioration inequality for B, the partially known
secant approximation to ViL(x*, Ay p), follows from Lemma 11 and Theorem 4 for
the augmented scale secant update function U?(x, A) given by (7). In turn, this bounded
deterioration inequality allows us to use Theorem 3.1 of Fontecilla, Steihaug, and
Tapia [18] to establish the existence of the constants ¢, § and the g-linear convergence
of the sequence {x,}. Then, using an argument identical to the one we used in Theorem
6, we can prove
. |[Bk _ViL(x*, Ay, P)]skl _

(32) lim
k Il

0.

Finally, the g-superlinear convergence follows from Corollary 5.4 of Fontecilla,
Steihaug, and Tapia [18]. 0

5. Conclusions. In this paper we have proved local and superlinear convergence
for partially known quasi-Newton updates generated from the convex Broyden class.
This theory allowed us to generalize both the results given by Dennis, Martinez, and
Tapia [11] and those given by Tapia for equality-constrained optimization problems
[22]. We feel that these updates are of great potential value as it has been shown by
the popular NL2SOL code [10]. There is a very good chance that, by imposing some
restrictions on the computed part C(x) of the Hessian, the results of this paper could
be extended to obtain global convergence theorems of the sort given by Powell [21]
and Byrd, Nocedal, and Yuan [6].

Acknowledgments. Special thanks go to Richard A. Tapia and John E. Dennis, Jr.
Their wise advice, opportune suggestions, and encouragement made this work really
easy.
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MINIMIZATION OF LOCALLY LIPSCHITZIAN FUNCTIONS*

JONG-SHI PANGt}, SHIH-PING HANT, AND NARAYAN RANGARAIJT

Abstract. This paper presents a globally convergent model algorithm for the minimization of a locally
Lipschitzian function. The algorithm is built on an iteration function of two arguments, and the convergence
theory is developed parallel to analogous results for the problem of solving systems of locally Lipschitzian
equations. Application of the theory to a wide range of nonsmooth optimization problems is discussed.
These include the minimax problem, the composite optimization problem, the implicit programming problem,
and others. A recently developed nonmonotone linesearch technique is shown to be applicable in this
nonsmooth context, and an extension to constrained problems is also presented.

Key words. nonsmooth optimization, locally Lipschitzian functions, Dini stationary points, global
convergence, minimax problem, implicit programming

AMS(MOS) subject classifications. 90C30, 90C33

1. Introduction. Starting with the seminal work of Clarke [4], there has been a
growing amount of research in the area of nonsmooth optimization. Broadly speaking,
this topic is concerned with the optimization of an objective function which is not
differentiable in the traditional sense of Fréchet or Giteau; constraints defined by
nonsmooth functions may also be present.

Much of the algorithmic development in nonsmooth optimization has been based
on the notion of the subgradient as well as on Clarke’s generalized subdifferential or
their variants. There are several texts which provide a good summary of various solution
methods in this area [6], [10], [17], [35], as well as a large body of published articles
which include [2], [9], [14], [18], [19], [20], [22], [23], [36], to name just a few.

In the present paper, we propose a fairly general model algorithm for minimizing
a nonsmooth function which is assumed only to be locally Lipschitz continuous. We
develop a convergence theory for the algorithm and discuss the specialization of the
theory to some specific classes of nondifferentiable optimization problems. Extensions
of the algorithm to allow for nonmonotone linesearch and to treat problems with
constraints will also be discussed.

The main difference between our model algorithm and many existing methods for
nonsmooth optimization problems is that we make no explicit use of the concept of
subgradients; instead, it is built on an abstract function of two variables which is used
to define the direction-finding subproblem at each iteration. Under appropriate assump-
tions, our algorithm will compute what we call a Dini stationary point of a locally
Lipschitzian function. The development in the present paper is closely related to that
in the recent paper [15] in which a similar theory is established for the problem of
solving systems of nonsmooth equations by Newton-type descent methods.

The research of this paper is partly motivated by our interest in developing some
robust numerical methods for solving the class of mathematical programming problems
subject to equilibrium constraints [16]. Such problems have diverse applications and
include the so-called bilevel programming problem [1], the continuous network design
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problem in transportation systems [21], and the Stackelberg game problem in oligopolis-
tic models of competition [33]. In general, these problems are very difficult to solve
due to their intrinsic nonconvexity and nondifferentiability; they are not easily amenable
to solution by existing methods for nondifferentiable problems. There have been many
heuristics proposed under very restrictive smoothness/differentiability assumptions
[7], [11]. We shall consider an important subclass of these mathematical programs
with equilibrium constraints and discuss how the specialization of our model algorithm
results in an effective descent method for solving these problems. The convergence of
the resulting method requires only a single differentiability assumption at the candidate
solution; this is a significant improvement over the existing methods, which essentially
treat the nonsmooth problem as a smooth problem by assuming the continuous
differentiability condition throughout.

The organization of this paper is as follows. In the next section, we define the
concept of a Dini stationary point of a locally Lipschitzian function, describe the
model algorithm, and establish its convergence. Section 3 demonstrates how various
known algorithms for special classes of nonsmooth optimization problems can be fitted
into this framework. In § 4, we discuss the implicit programming problem; this is the
special case of the mathematical programming problem with equilibrium constraints
that we mentioned above. Finally, the last two sections extend the general theory to
allow for nonmonotone linesearches and to handle constrained problems.

2. A model descent method. Let #: R" > R be a locally Lipschitzian function.
Consider the optimization problem

(1) minimize 0(x): xe R".

In this section, we describe a globally convergent descent method for solving the
problem (1). Before doing this, we review some concepts involving directional deriva-
tives and define the notion of a Dini stationary point of the function 6. Most of the
derivative ideas reviewed have been widely used in the nonsmooth optimization
literature (see [4], [17]).

2.1. Directional derivatives and Dini stationary points. We first recall some familiar
definitions. For a function 6:R" - R, the (usual) directional derivative of 6 at xe R"
in the direction d € R" is defined to be

0'(x, d) = lim 0(x+Ad)—6(x)

A-0" A

if the limit exists. The function @ is said to be directionally differentiable at x if 0'(x, d)
exists for all d € R". A slightly more general concept is the upper Dini directional

derivative of 6 at x in the direction d; this is defined to be
0(x+Ad)—0
0P (x, d)=lim Squ'
A=0"

The Clarke generalized directional derivative of 6 at x in the direction d is defined to
be

+Ad) -
6°(x, d) = lim sup 6y +4d)=6(y) O(y).
/\—>O+,y—>x A

In general, both the upper Dini directional derivative 8°(x, d) and the Clarke
directional derivative 6°(x, d) are well defined and finite if 6 is locally Lipschitzian at
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x; whereas the usual directional derivative 6'(x, d) need not exist for such a 6. Note
that if 6 is locally Lipschitzian at x, then,

+ —
OD(x, d) = lim sup M

v>d, A 0" A ’
and a similar expression holds for the Clarke derivative 6°(x, d). Clearly, we have
(2) 0°(x, d)z 6°(x, d),

and 0°(x, d)=0'(x, d) for all d € R" if 0 is directionally differentiable at x. Moreover,
all three directional derivatives are positively homogeneous in d for each fixed x; i.e.,
for all scalars A =0,

0°(x, \d) = A0°(x, d), 0°(x, A\d)=10"(x,d) and 6'(x,Ad)=2A0'(x,d).

It is not difficult to show that if 6 is locally Lipschitzian at x, then both the upper
Dini directional derivative 8°(x, d) and the Clarke directional derivative 6°(x, d) are
Lipschitz continuous functions in d with the same modulus as 6 [4]. The same
conclusion holds for the directional derivative 0'(x, d) if 6 is directionally differentiable
at x.

The function 6 is said to be subdifferentiably regular at x if 6 is directionally
differentiable at x and 0°(x, d) = 6'(x, d) for all d [4]. The function 6 is said to be
strongly F(réchet)-differentiable or to have a strong F-derivative at x if the gradient
vector VO(x) exists and the following limit condition holds:

0(u)=0(v)—VO(x) (u—v)
(4, 0)>(x, %) lu—wo| h

0.

It is easy to see that if 6 has a strong F-derivative at x, then 6 is subdifferentiably
regular there; moreover, we have 6°(x,d)=0"(x,d)=6'(x,d)=V(x)"d for all de
R" Tt is well known that a convex function 6: R" > R is subdifferentiably regular at
every point x € R".

By applying essentially the same proof of [25, Thm. 2] and replacing the usual
directional derivative with the upper Dini directional derivative, we can establish the
following result, which relates the strong F-differentiability of 6 at a given point x to
the continuity of the upper Dini directional derivative 8°(-, d) at x.

ProposITION 1. Suppose that 6: R" > R is Lipschitz continuous in a neighborhood
of a vector x. Then, the following three statements are equivalent:

(a) The upper Dini directional derivative 0° (x, - ) satisfies the stronger limit property:

O(u)—0(v)—0°(x,u—v)
(4, 0)> (%, %) |lu—o]

0;

(b) 6 has a strong F-derivative at x,

(c) The upper Dini directional derivative 0°(-,d) is continuous at x, and the
continuity is “uniform” for each d € R", i.e., for each € >0, there exists a neighborhood
N of x such that for all vectors ye N and all d € R",

16°(x, d)—0°(y, d)|=e|d].

In the context of optimization, the directional derivative, if it exists, can be used
to describe optimality as follows. If x is a local minimum point of the problem (1),
then x is a stationary point of 6, i.e.,

3) 0'(x,d)=0 forall deR".
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Conversely, if 6 is convex, then a vector x satisfying (3) must be a globally optimal
solution of (1).

If 6 is locally Lipschitzian, we call a vector x € R" a Dini stationary point of 6 if
(4) 0°(x,d)=0 for all de R".

It is easy to see that if x is a local minimum point of a locally Lipschitzian function
0, then x must be a Dini stationary point of 6. If 6 is directionally differentiable at x,
then x is a Dini stationary point of 6 if and only if x is a stationary point of 6.
Nevertheless, if 6 fails to be directionally differentiable at x but is locally Lipschitzian
there, then the concept of x being a (usual) stationary point is meaningless, while that
of x being a Dini stationary point remains well defined.

In view of the inequality (2), it follows that if x is a Dini stationary point of 6,
then x must be a stationary point of 6 in the sense of Clarke [17], i.e., 0€ 36(x), where
96(x) is Clarke’s generalized gradient:

30(x)={acR": 0°(x,d)=a"d for all de R"}.

Nevertheless, if 6 is not subdifferentiably regular at x, then it is possible for x to be
a point such that 0€96(x), but x is not a Dini stationary point of 6. For example, if

G(X)=“|X|, XER,

then 6°(0,d)=|d| for all d € R; thus, x =0 satisfies the property 0€96(x). Since
6°(0,d)=6'(0,d)=—|d|, clearly x =0 is not a Dini stationary point of this function 6.

In its most general form, the model algorithm to be described later is designed
to compute a Dini stationary point of a locally Lipschitzian function 6.

2.2. Background of method. Like many descent methods for minimizing a smooth
objective function, our method for solving the problem (1) is iterative; each iteration
consists of two major steps: a direction-finding step and a linesearch step. In traditional
smooth optimization, the direction-finding step typically involves the minimization of
a quadratic approximation of 6 which depends on the gradient vector of 6 at the
current iterate. More specifically, if x* is given, we compute a search direction d* by
solving the problem

(5) minimize V0(x*)"d+3d "B.d

where B, is a symmetric positive-definite matrix which is, presumably, an approxima-
tion of the Hessian matrix V>0(x"). The linesearch step involves computing a stepsize
7.>0 so that the next iterate x“*'=x"+nd" satisfies a certain rule which yields
“sufficient decrease” in the objective function 6.

When the gradient vector VO(x*) does not exist, but  is locally Lipschitzian, we
could, in principle, replace the direction-finding problem (5) by the following one:

(6) minimize 6°(x* d)+3d "Bd.

Nevertheless, as stated in Proposition 1, if 6 is not Fréchet differentiable, the directional
derivative 8°(x, d) need not be continuous in x for each fixed d. As we shall see, such
continuity of the Dini directional derivative is essential for the convergence of a descent
method that makes use of problem (6) to generate the search direction at each iteration.

In summary, the nondifferentiability of 6 has created two technical issues when
either one of the subproblems, (5) or (6), is used as a direction-finding procedure. One
is the nonexistence of the gradient vector V@(x); the other is the discontinuity of the
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directional derivative 8°(x, d) in the variable x. The algorithm to be described next
is a proposal to circumvent these two difficulties.

2.3. Description of method. Consider the problem (1) where 6: R" > R is locally
Lipschitzian. Let x* be a given iterate. We consider the following subproblem to obtain
a search direction d*:

(7) minimize ¢(x*, d)+id"Bid: de R"

where ¢: R" x R" > R is a given function and B, € R"*" is a given symmetric matrix.
Examples of the function ¢ corresponding to specific functions 6 will be given in § 3.
For now, we make the following blanket assumptions on the function ¢ and the
sequence of matrices { B, }:

(A1) For each fixed vector x, the function ¢(x, d) is continuous in the variable d,
and ¥ (x, 0) =0. Moreover, for all (x,d)e R"xR",

(8) P(x,d)= 0" (x,d);

(B) There exist constants a = 8> 0 such that for all xe R",

Bx"x=x"Bix=ax"x for all k.

We do not assume the continuity of the function (x, d) in the x-variable. This
is consistent with the previous discussion about the discontinuity of the upper Dini
directional derivative in the same variable. The condition (8) says that the iteration
function ¢ majorizes the upper Dini directional derivative 8. Another noteworthy
point is that unlike the various directional derivatives, the function ¢(x, d) is not
assumed to be positively homogeneous or Lipschitz continuous in d.

Besides having the theoretical properties (Al) and others which will be stated
later, the iteration function (x, d) should render the subproblem (7) computationally
easier to solve than the original problem (1). For the special classes of application
problems discussed later, the function (x, d) is a kind of “linearization” of the
objective function 6(x).

Under the two assumptions (A1) and (B), the subproblem (7) always has a globally
optimal solution; moreover, any such solution that is nonzero yields a ‘“‘descent
direction” for the function 6 at the iterate x*. More specifically, we can establish the
following result.

LeMMA 1. Let 6:R" > R be locally Lipschitzian. Suppose that assumptions (A1)
and (B) hold.

(a) The problem (7) has a globally optimal solution, and the optimum objective value
is nonpositive.

(b) If d* is any nonzero optimal solution of (7), then for any o € (0, 1), there exists
a scalar 7> 0 such that for all T€[0, 7],

0(x*+7d") — o(x*) = ——g 7(d*) B d*.

Proof. Let L>0 be the Lipschitz modulus of 6 at the vector x*. Then, we have
0P (x", d)|=L|d|

for all vectors d € R". By the inequality (8) and the positive definiteness of the matrix
By, we obtain

1
WO d)+3 dTBd =~ L] d] +—2’§ d7d.
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Hence, it follows that

Jlim (W(x* d)+3d "B, d) = co.
Consequently, the objective function of (7) is coercive. Thus, an optimal solution of
(7) exists. Since y(x* 0)=0, it follows that the optimum objective value of (7) is
always nonpositive. This proves part (a).
To prove part (b), let d* be a nonzero optimal solution of (7). Then,

9) y(x* d*)=-4d*)"B.d".

Suppose that no 7> 0 as stated exists. Then there exists a sequence {7} of positive
scalars converging to zero, such that for each I,

0(x*+ rd*) — 0(x*)> —g 7(d*)TB.d*.

Dividing both sides by 7, passing to the limit /- 00, and using the definition of the
upper Dini directional derivative 8°(x* d*), we deduce that

0P (x* d*) = —g(d")TBkd".

Thus, condition (A1) implies
U(x* d*)=0°(x*, d*)>-1(d*)"B.d*

where the last inequality holds because o € (0, 1) and (d*)"Bd* is positive. But this

contradicts (9). O

Remark. Throughout the discussion, we do not require that the subproblem (7)
has a unique solution. Note also that the conclusion of part (b) in the above lemma
remains valid as long as d* is a nonzero direction satisfying the inequality (9).

The above lemma establishes that if the problem (7) has a nonzero optimal solution,
then that solution constitutes a “descent direction” of @ at the iterate x*. We want to
establish the converse of this conclusion. In other words, we wish to be able to show
that if the zero vector is the only globally optimal solution of (7), then x* is a Dini
stationary point of 6. The next result gives a sufficient condition for this converse
statement to hold.

ProposITION 2. In addition to the assumptions of Lemma 1, suppose the following
condition holds: (A2) for all vectors d € R",

k
(10) lim infM

A0t

=60°(x* d).

Then, the following statements are equivalent:

(a) d =0 is the only globally optimal solution of the problem (7);

(b) d =0 is a globally optimal solution of the problem (7);

(c) The optimum objective value of the problem (7) is zero;

(d) x* is a Dini stationary point of 6, i.e., 0°(x*,d)=0 for all d € R".

Proof. (a)=>(b)=>(c). These implications are obvious.

(c)=(d). Since the optimum objective value of (7) is zero, we have, for all vectors
d € R" and all scalars A >0,

AZ
0= y(x* )\d)+? d"B.d.
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Dividing by A, letting A |0, and invoking assumption (A2), we deduce the desired
conclusion.

(d)=>(a). Suppose that the problem (7) has a nonzero optimal solution d*. Then
the inequality (9) implies @(x*, d¥)<0. By assumption (A1), it follows that
0P(x* d*)<0; this contradicts the assumption that x* is a Dini stationary point
of #. 0

Remarks. (1) Since the upper Dini directional derivative 0°(x*, d) is positively
homogeneous in d, it follows that under the combined assumptions (A1) and (A2),
equality must hold in (10).

(2) The only place in the proof of Proposition 2 where assumption (A2) is used
is to prove the implication [(c)=>(d)].

With Lemma 1 and Proposition 2, we may state the following algorithm for
computing a Dini stationary point of the problem (1).

The Model Algorithm. Let p, o€ (0, 1) be given. Let x°€ R" be arbitrary. Set k =0.
In general, given x*, let d* be an (arbitrary) globally optimal solution of (7). Terminate
if the optimum objective value of (7) is zero; in this case, x* is a desired Dini stationary
point of 6 (assuming that the (A1) and (A2) are in force). Otherwise, let m; be the
smallest nonnegative integer m such that

(11) B(xk-i—p'"d")-—0(x")§—gp'”(d")TBkd".

Set x**'=x*+p™d*; test x**' for convergence. Repeat the general step with k+1
replacing k if x**' fails the convergence test.

The linesearch step in the algorithm follows the usual Armijo rule; according to
Lemma 1(b), the integer m, can be determined after a finite number of trials starting
with m=0,1,2,---.

2.4. Convergence of the method. Without loss of generality, we assume that the
algorithm generates an infinite sequence of iterates {x*} along with an infinite sequence
of nonzero directions {d*}. The sequence {x*} satisfies

8(x 1) = 6(x%) ~g 7(d*) "B d* < 0(x*)
where 7, = p™¢ is the steplength in the kth iteration. Consequently, the sequence of
objective values {0(x*)} is strictly decreasing. If the function 6(x) is bounded below,
then the sequence {6(x*)} converges and hence {0(x**") — 8(x*)} - 0. The stepsize rule
(11) therefore implies that

(12) lim 7 (d*)"Bd* = 0.

Our goal is to establish that every accumulation point of the sequence {x*}, if it
exists and satisfies certain properties to be stated, is a Dini stationary point of the
function 6. A sufficient condition for such an accumulation point to exist is that the
sequence {x*} is bounded, which in turn is true if the level set

(13) {xeR":0(x)=0(x")}

is bounded. Under this boundedness assumption, let X be an arbitrary accumulation
point of {x*}. In the sequel, we impose some assumptions on the function ¢ at the
limit point X in order to establish the Dini stationarity property of 6 at X. To motivate
these assumptions, we recall that the reason for using an iteration function ¢(x, d)
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instead of the upper Dini directional derivative 6”(x, d) in defining the direction-
finding subproblem was to circumvent the discontinuity problem of the directional
derivative in the first argument. In essence, two of the assumptions imposed below,
(A3) and (A4), have to do with some kind of continuity of the ¢ function in that
argument. At present, we do not know how to construct such an iteration function
Y¥(x, d) to satisfy all these assumptions when 0 is a general locally Lipschitzian function;
as a matter of fact, the function ¢(x, d) with all these properties may not even exist.
Nevertheless, in the next section, we shall discuss a variety of nonsmooth optimization
problems for which the desired function ¢(x, d) can be identified.

The following are the assumptions imposed on the function ¢ at the limit point X:

(A2) For every d e R",

lim inf

HEAD < o (s, a;
A0t A

(A3) For every sequence {z*} converging to X, every convergent sequence {v*} and
every sequence of positive scalars {A,} converging to zero,
0(z“+r0")—0(z")
Ak ’

(14) ,Eim y(z* o5 = lirE sup

whenever the limit in the left-hand side exists;

(A4) There exists a scalar £ > 0 such that for every vector d € R" satisfying ||d|| =&
and every sequence {z*} converging to X,

li{(rlioglf (25, d)=¢(R, d).

We explain the above conditions. Assumption (A2) was required in Proposition
2 in order to obtain the Dini stationarity conclusion on the iterate x* when the
subproblem (7) has a zero optimum objective value. In essence, we need this assumption
on the limit point X for a similar reason. Assumption (A3) is a strengthening of (A1)
at the vector X; indeed, if z* =% and v* = v for all k, then the limit expression (14)
becomes (%, v) = 0°(X, v) which is exactly the condition (8) at X. Assumption (A4)
is a weak upper semicontinuity property of the function (-, d) at the vector x for all
vectors d whose norms are sufficiently small; indeed, if “liminf” were replaced by
“limsup,” then (A4) would become the usual upper semicontinuity property. It is
interesting to note that this weak upper semicontinuity property is required to hold
only for “small” d and not for all d. We shall give an example later of a function ¢
for which (A4) holds but ¢(-, d) is not weakly upper semicontinuous at x for all d.

Before stating the main convergence result, we derive a useful consequence of
assumption (A1). The following result says that although no continuity assumption in
the x variable is imposed on the function (x, d) when d is fixed but arbitrary, (A1)
implies that ¢ is lower semicontinuous in both arguments at a vector (x, 0) with a zero
second argument and an arbitrary first argument.

LEMMA 2. Let 6:R" - R be locally Lipschitzian. Suppose that the inequality (8)
holds for all vectors (x,d)e R" x R". Then, for any sequence {(z*, d*)} converging to
(x,0) for some x€ R",

,l(im y(z5 d*)=0

whenever the limit on the left-hand side exists.
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Proof. In view of the inequality (8), it suffices to prove
(15) lim 0" (z*, d*)=0.

Since the sequence {z*} is convergent and the function 6 is locally Lipschitzian, it
follows that there exists a constant L> 0 such that for all k,

|0°(z*, d*)|= L||d"|,

which clearly implies the desired limit condition (15). a

We now state and prove the main convergence result.

THEOREM 1. Let 6: R" - R be a locally Lipschitzian function which is bounded below
on R". Let y:R" X R" - R and {B,} also be given. Suppose that assumptions (Al) and
(B) hold. Let {x*} be an infinite sequence generated by the model algorithm as described
above. If % is an accumulation point of {x*} where assumptions (A2)-(A4) are satisfied,
then X is a Dini stationary point of 6.

Proof. Let {x*: ke K} be a subsequence of {x*} converging to %. Let {d*: ke K}
be a corresponding sequence of directions generated by the algorithm. By construction,
each direction d* is an optimal solution of the subproblem (7) whose optimum objective
value is negative (because of the infinite nature of the sequence {x*}).

We first show that the sequence of directions {d*: ke K} is bounded. By the
optimality of d* and assumptions (A1) and (B), we have for each ke K|

(16) [6°(x*, d%)| = —y(x*, d* >> (d )TBkd"> lld*|>.

Furthermore, as noted in the proof of Lemma 2, there is a constant L>0 such that
for all ke K|

|07 (x*, d*)=L|d"|;
this, along with the previous inequalities, gives

L
a4 =2
B

The boundedness of the sequence {d*: k € K} is thus established. This implies, by (16),
that the sequence {y(x*, d*): ke K} is also bounded.

By restricting our discussion to suitable subsequences if necessary, we assume
that both the sequence of directions {d*: k€ K} and the sequence of matrices {By: k€
K} converge, respectively, to some vector d and some matrix B. We may further assume
that
an) = UCTE
exists. Clearly, the limit matrix B is positive definite.

Recalling the limit condition (12), we consider two cases, depending on whether
the liminf of the sequence of stepsizes {7,: k€ K} is positive or zero. Suppose

liminf 7,>0.

k-0, ke K

Then, condition (12) yields

d™Bd= 1lim (d*)"B.d*=0,

k—oo, ke K

which in turn implies d =0 because B is positive definite.
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By the optimality of d¥, we have, for all vectors d € R",
P(x*, d*)+3(d*)"Bd* = y(x*, d)+3d"Bid.
By taking liminf on both sides as {k-> 00, k€ K}, the left-hand sum approaches zero

by the fact that {d*: ke K} tends to d which has just been proved to equal zero, and
also by Lemma 2. Thus, by (A4), we deduce, for all d € R" satisfying ||d|| =,

0=y(%x d)+3d"Bd.
As in the proof of Proposition 2, it follows that for all d € R" with ||d|| =S e,
0°(x,d)=0.

Since the upper Dini directional derivative is positively homogeneous in d, the last
inequality must hold for all vectors d € R". Thus, X is a Dini stationary point of 0, as
desired.

Now consider the other case where the sequence of stepsizes {7, : k € K} becomes
arbitrarily small in the limit, i.e., suppose

liminf 7, =0.
k-0, ke K

Without loss of generality, we may assume that lim, . rcx 7« =0. Then, we must have

lim my =00,
k-0, ke K

By the definition of my, it follows that for each k,
(18) 0(x"+7Ld")——0(x")>—-gf;((d")TBkd"

where 7, =p™'. Note that we also have

: [
k—»g,nl‘cleK Tk= 0.
Dividing both sides in the expression (18) by 7%, passing to the limit k>0, ke K,

using (A3) and the fact that the limit (17) exists, we deduce

. k gkv= _ 9 5TRT
k_)g’rg(lex Y(x5,d%)= 2d Bd.

On the other hand, the left-hand term of the above inequality is no greater than —3d " Bd
by taking limits in (9). Consequently, we obtain

1 O~
—~d"™Bd=-=-d"Bd.
2 2

Since o<1, we must have d =0. By repeating the argument of the previous case, we
deduce that X is a Dini stationary point of 6. 0

3. Applications. The convergence of the model algorithm has been established in
a fairly general context; an important practical issue is the construction of a function
¢¥(x, d) which satisfies the assumptions (A1)-(A4). Although we do not know how to
construct such a function for an arbitrary Lipschitzian function 6, the discussion in
this section gives an explicit expression of ¥(x, d) for a number of interesting functions
0 that arise from various application areas.
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This unified approach to the convergence theory for nonsmooth optimization
problems gives a common framework for establishing the global convergence of many
existing methods for solving these problems. We hope that by identifying what seem
to be the essential requirements in a typical convergence proof—through the use of
the ¢(x, d) function of two variables that satisfies the stated properties—we have
provided a basis for the design of effective algorithms for other nonsmooth problems
not considered here.

It is useful to point out that in several of the application problems discussed
herein, the iteration function ¢(x, d) is piecewise linear in d for each fixed x; thus,
the direction-finding subproblem (7) is a piecewise quadratic program with the quad-
ratic part coming from the term d’B,d. Admittedly, the numerical solution of a
piecewise quadratic program has not been very well studied within mathematical
programming; there are some scattered papers [31], [32], [34]. We believe that this
class of mathematical programs plays a central role throughout the subject of non-
smooth optimization and deserves a more careful investigation.

3.1. The use of the upper Dini derivative. We begin by studying the choice
(19) ¥(x,d)=6"(x, d)

for an arbitrary locally Lipschitzian function 6 and state a convergence property for
the resulting descent method. With the choice (19), assumptions (A1) and (A2) are
trivially satisfied. Note that if the algorithm terminates finitely with the subproblem
(7) having a zero optimum objective value, then the current iterate x* must be a Dini
stationary point of 6 (see Proposition 2). So, we may assume that the algorithm
generates an infinite sequence of iterates {x*}. The following consequence of Theorem
1 gives the main convergence result for the model algorithm in which the iteration
function ¢ is chosen to be the upper Dini directional derivative.

CoROLLARY 1. Let 6:R" > R be a locally Lipschitzian function which is bounded
below on R". Let {By,} be a sequence of matrices satisfying assumption (B). Suppose that
% is an accumulation point of an infinite sequence {x*} generated by the model algorithm
with the choice (19). If 6 is strongly F-differentiable at X, then V6(x)=0; in particular,
X is a stationary point of 6.

Proof. Itsuffices to verify conditions (A3) and (A4). Under the strong F-differentia-
bility assumption on 6 at X, we have 0°(%, v) =V6(x)"v for all ve R". Moreover, for
all sequences {z*}, {v*}, and {A,}, as stated in assumption (A3),

0 A0 = 0(2) — 8P (R, v5)
lim

k—oo Ak

=0,

and by Proposition 1,

lim (0°(z* v*)— 6P (x, v*)) =0.

The two required assumptions (A3) and (A4) are now easily satisfied as a result of
these two limit conditions. 0

In spite of the fact that this result requires a fairly strong differentiability assump-
tion about the function 6 at the limit point X, the result is useful in a situation where
there is no obvious way of constructing a function ¢ satisfying the assumptions
(A1)-(A4). It is interesting to note <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>