
SIAM J. OPTIMIZATION
Vol. 1, No. 1, pp. 1-17, February 1991

(C) 1991 Society for Industrial and Applied Mathematics
001

VARIABLE METRIC METHOD FOR MINIMIZATION*

WILLIAM C. DAVIDONf

Abstract. This is a method for determining numerically local minima of differentiable functions of
several variables. In the process of locating each minimum, a matrix which characterizes the behavior of
the function about the minimum is determined. For a region in which the function depends quadratically
on the variables, no more than N iterations are required, where N is the number of variables. By suitable

choice of starting values, and without modification of the procedure, linear constraints can be imposed
upon the variables.

Key words, variable metric algorithms, quasi-Newton, optimization

AMS(MOS) subject classifications, primary, 65K10; secondary, 49D37, 65K05, 90C30

A belated preface for ANL 5990. Enrico Fermi and Nicholas Metropolis used one
of the first digital computers, the Los Alamos Maniac, to determine which values of
certain theoretical parameters (phase shifts) best fit experimental data (scattering cross
sections) [8]. They varied one theoretical parameter at a time by steps of the same
magnitude, and when no such increase or decrease in any one parameter further
improved the fit to the experimental data, they halved the step size and repeated the
process until the steps were deemed sufficiently small. Their simple procedure was
slow but sure, and several of us used it on the Avidac computer at the Argonne National
Laboratory for adjusting six theoretical parameters to fit the pion-proton scattering
data we had gathered using the University of Chicago synchrocyclotron [9]. To see
how accurately the six parameters were determined, I varied them from their optimum
values, and used the resulting degradations in the fit to estimate a six-by-six error
matrix. This matrix approximates the inverse of a Hessian matrix of second derivatives
of the objective function f, and specifies a metric in the space of gradients Tf. Conjugate
displacements in the domain of a quadratic objective function change gradients by
amounts which are orthogonal with respect to this metric. The key ideas that led me
to the development of variable-metric algorithms were 1) to update a metric in the
space of gradients during the search for an optimum, rather than waiting until the
search was over, and 2) to accelerate convergence by using each updated metric to
choose the next search direction. In those days, we needed faster convergence to get
results in the few hours between expected failures of the Avidac’s large roomful of a
few thousand bytes of temperamental electrostatic memory.

Shortly after joining the theoretical physics group at Argonne National Laboratory
in 1956, I programmed the first variable-metric algorithms for the Avidac and used
them to analyze the scattering of pi mesons by protons [10]. In 1957, I submitted a
brief article about these algorithms to the Journal of Mathematics and Physics. This
article was rejected, partly because it lacked proofs of convergence. The referee also
found my notation "a bit bizarre," since I used "+" rather than "k+ 1" to denote
updated quantities, as in "x+ x + as" rather than "Xk+l Xk + akSk." While I then
turned to other research, another member of our theoretical physics group, Murray
Peshkin, modified and adapted one of these programs for Argonne’s IBM 650. An

* This belated preface was received by the editors June 4, 1990; accepted for publication August 10,
1990. The rest of this article was originally published as Argonne National Laboratory Research and
Development Report 5990, May 1959 (revised November 1959). This work was supported in part by University
of Chicago contract W-31-109-eng-38.

" Department of Mathematics, Haverford College, Haverford, Pennsylvania 19041-1392.

2 w.c. DAVIDON

Argonne physicist who used the program, Gilbert Perlow, urged me to publish a
description of the algorithm so that he and Andrew Stehney could refer to it in a paper
they were writing about their analysis ofthe radioactive decay of certain fission products
[7]. Their reference thirteen was the first one to the report I was preparing [ANL-5990].

While this report focused mainly on the particular variable-metric algorithm which
seemed to work best, it divided all algorithms of this type into five parts:

1. Choose a step direction s by acting on the current gradient g with the current
metric in gradient space. If in this metric, g has a sufficiently small magnitude, then
go to step 5.

2. Estimate the location of an optimum in the direction s; e.g., by making a cubic
interpolation. Go to this location if a sufficient change in the objective function is
expected, else choose a new direction.

3. Evaluate the objective function f and and its gradient Vf at the location x chosen
in step 2 and estimate the directional derivative OVf(x + as)/Oal_o of Vf at x.

4. Update the metric in gradient space, so that it yields s when acting on the
directional derivative estimated in step 3. Return to step 1.

5. Test the current metric and minimizer. If these seem adequate, then quit, else
return to step 1.

The hunting metaphor used in the report to name these five parts was chosen with
tongue in cheek, since I expected the report would be read mostly by friends who
knew I opposed killing for sport. The report would have been clearer had it first
presented just the basic algorithm, with only those features needed to optimize quadratic
objective functions, without the various "bells and whistles," which were added to
accelerate convergence for certain nonquadratic objective functions; e.g., Formula 6.1
for the components g(x)= hOg(x + as)/Oa[=o of the directional derivative of the

+gradient would simplify to g g, - g. It would also have been clearer if the rank-two
update to the metric presented in the body of the report (later known as the Davidon-
Fletcher-Powell (DFP) update) had been compared with the symmetric rank-one
update (which was relegated to the appendix because it had not worked as well on
certain problems).

Optimization algorithms were not among my research interests for several years
after writing ANL-5990, and I returned to them only after others had called my attention
to Fletcher and Powell’s pioneering work on the subject [11].

1. Introduction. The solution to many different types of physical and mathematical
problems can be obtained by minimizing a function of a finite number of variables.
Among these problems are least-squares fitting of experimental data, determination of
scattering amplitudes and energy eigenvalues by variational methods, the solution of
differential equations, etc. With the use of high-speed digital computers, numerical
methods for finding the minima of functions have received increased attention. Some
of the procedures which have been used are those of optimum gradient 1], conjugate
gradients [2], the Newton-Raphson iteration (see, e.g., [3], [4]) and one by Garwin
and Reich [5]. In many instances, however, all of these methods require a large number
of iterations to achieve a given accuracy in locating the minimum. Also, for some
behaviors of the function being minimized, the procedures do not converge.

The method presented in this paper has been developed to improve the speed and
accuracy with which the minima of functions can be evaluated numerically. In addition,
a matrix characterizing the behavior of the function in the neighborhood of the
minimum is determined in the process. Linear constraints can be imposed upon the
variables by suitable choice of initial conditions, without alteration of the procedure.

VARIABLE METRIC METHOD FOR MINIMIZATION 3

2. Notation. We will employ the summation convention:

N

ab , ab.

In describing the iterative procedure, we will use symbols for memory locations rather
than successive values of a number; e.g., we would write x + 3 - x instead of xi / 3 xi+.
In this notation, the sequence of operations is generally relevant. The following symbols
will be used.

x"" /z 1,. ., N" the set of N independent variables.
f(x)" the value of the function to be minimized evaluated at the point x.

g,(x)" the derivatives off(x) with respect to x evaluated at x:

0f(x)
g (x)

Ox

h" a nonnegative symmetric matrix which will be used as a metric in the
space of the variables.

A" The determinant of k.
e" 2 times fractional accuracy to which the function f(x) is to be minimized.
d" a limiting value for what is to be considered as a "reasonable" minimum

value ofthe function. For least-squares problems, d can be set equal to zero.
K" an integer which specifies the number of times the variables are to be

changed in a random manner to test the reliability of the determination
of the minimum.

3. Geometrical interpretation. It is convenient to use geometrical concepts to
describe the minimization procedure. We do so by considering the variables x to be
the coordinates of a point in an N-dimensional linear space. As shown in Fig. l(a),
the set of x for which f(x) is constant forms an N-1 dimensional surface in this
space. One of this family of surfaces passes through each x, and the surface about a
point is characterized by the gradient of the function at that point"

Of(x)
g, (x)

Ox

X

C A

B
gl

(a) (b)
FIG. 1. Geometrical interpretation of x and g, (x).

4 w.c. DAVIDON

These N components of the gradient can in turn be considered as the coordinates of
a point in a different space, as shown in Fig. l(b). As long as f(x) is differentiable at
all points, there is a unique point g in the gradient space associated with each point
x in the position space, though there may be more than one x with the same g.

In the neighborhood of any one point A the second derivatives of f(x) specify a
linear mapping of changes in position, dx, onto changes in gradient dg, in accordance
with the equation

(3.1) dg
Ox Ox

The vectors dx and dg will be in the same direction only if dx is an eigenvector
of the Hessian matrix

Ox Ox

If the ratios among the corresponding eigenvalues are large, then for most dx there
will be considerable difference in the directions of these two vectors.

All iterative gradient methods, of which this is one, for locating the minima of
functions consist of calculating g for various x in an effort to locate those values of x
for which g 0, and for which the Hessian matrix is positive definite. If this matrix
were constant and explicitly known, then the value of the gradient at one point would
suffice to determine the minimum. In that case the change desired in g would be -g,
so we would have

------7 Axe,(3.2) -g" Ox" Ox

from which we could obtain Ax by multiplying (3.2) by the inverse of the matrix

OX OX

However, in most situations of interest,

is not constant, nor would explicit evaluation at points that might be far from a
minimum represent the best expenditure of time.

Instead, an initial trial value is assumed for the matrix,

OXu OX’v

This matrix, denoted by h", specifies a linear mapping of all changes in the gradient
onto changes in position. It is to be symmetric and nonnegative (positive definite if
there are no constraints on the variables). After making a change in the variable x,
this trial value is improved on the basis of the actual relation between the changes in
g and x. If

Ox Ox

VARIABLE METRIC METHOD FOR MINIMIZATION 5

is constant, then, after N iterations, not only will the minimum of the function be
determined, but also the final value of h" will equal

Ox OX"

We shall subsequently discuss the significance of this matrix in specifying the accuracy
to which the variables have been determined.

The matrix h" can be used to associate a squared length to any gradient, defined
by h’gg. If the Hessian matrix were constant and h were its inverse, then

_
t,,,,

21

would be the amount by which f(x) would exceed its minimum value. We therefore
consider h" as specifying a metric, and when we refer to the lengths of vectors, we
will imply their lengths using h" as the metric. We have called the method a "variable
metric" method to reflect the fact that h" is changed after each iteration.

We have divided the procedure into five parts which, to a large extent, are logically
distinct. This not only facilitates the presentation and analysis of the method, but it
is convenient in programming the method for machine computation.

4. Ready: Chart 1. The function of this section is to establish a direction along
which to search for a relative minimum, and to box off an interval in this direction
within which a relative minimum is located. In addition, the criterion for terminating
the iterative procedure is evaluated.

Those operations which are only performed at the beginning of the calculation
and not repeated on successive iterations have been included in Chart 1. These include
the loading of input data, initial printouts, and the initial calculation of the function
and its gradient. This latter calculation is treated as an independent subroutine, which
may on its initial and final calculations include some operations not part of the usual
iteration, such as loading operations, calculation of quantities for repeated use, special
printouts, etc. A counter recording the number of iterations has been found to be a
convenience, and is labeled I.

The iterative part of the computation begins with "READY 1." The direction of
the first step is chosen by using the metric h" in the relation

(4.1) -h"g,, s.
The "component" of the gradient in this direction is evaluated through the relation

(4.2) sg gs.

From (4.1) and (4.2) we see that -gs is the squared length of g, and hence the
improvement to be expected in the function is -1/2g. The positive definiteness of h"
insures that g is negative, so that the step is in a direction which (at least initially)
decreases the function. If its decrease is within the accuracy desired, i.e., if gs + e > O,
then the minimum has been determined. If not, we continue with the procedure.

In a first effort to box in the minimum, we take a step which is twice the size that
would locate the minimum if the trial h" were

OXt* OX"

However, in order to prevent this step from being unreasonably large when the trial
h’ is a poor estimate, we restrict the step to a length such that ()ts’)g,, the decrease
in the function if it continued to decrease linearly, is not greater than some preassigned
maximum, 2(f-d). We then change x" by

(4.3) x" + As" - x+",

6 w.c. DAVIDON

VARIABLE METRIC METHOD FOR MINIMIZATION 7

and calculate the new value of the function and its gradient at x+. If the projection
s’g- g+ of the new gradient in the direction of the step is positive, or if the new
value of the function f/ is greater than the original f, then there is a relative minimum
along the direction s between x and x/, and we proceed to "Aim" where we will
interpolate its position. However, if neither of these conditions is fulfilled, the function
has decreased and is decreasing at the point x/, and we infer that the step taken was
too small. If the step had been limited by the preassigned change in the function d,
we double d. If the step had been taken on the basis of hv, we modify h’" so as to
double the squared length of s", leaving the length of all perpendicular vectors
unchanged. This is accomplished by

1
(4.4) h’+s"sh’,

where g is the squared length of s’. This doubles the determinant of h’. The process
is then repeated, starting from the new position.

5. Aim: Chart 2. The function of this section is to estimate the location of the
relative minimum within the interval selected by "Ready." Also, a comparison is made
of the improvement expected by going to this minimum with that from a step perpen-
dicular to this direction.

Inasmuch as the interpolation is along a one-dimensional interval, it is convenient
to plot the function along this direction as a simple graph (see Fig. 2).

The values off and f/ of the function at points x and x/ are known, and so are
its slopes, gs and g+, at these two points. We interpolate for the location of the
minimum by choosing the "smoothest" curve satisfying the obundary conditions at x
and x/, namely, the curve defined as the one which minimizes

over the curve. This is the curve formed by a flat spring fitted to the known ordinates
and slopes at the end points, provided the slope is small. The resulting curve is a cubic,
and its slope at any a (0-< a _<-A) is given by

(5.1)

where

2c O
2

gs(a) g--- (gs + z) +5 (g +g+ 2z),

3(f-f+) +z= +g+g

The root of (5.1) that corresponds to a minimum lies between 0 and 1 by virtue
of the fact that gs < 0 and either g+ > 0 or z < g + g+. It can be expressed as

where

(5.2) a

and

Omin A(1- a),

g+ +-z
/g -g+2

2 Z gg+s ’/2.

8 w.c. DAVIDON

VARIABLE METRIC METHOD FOR MINIMIZATION 9

Cl=O Q=,
FIG. 2. Plot off(x) along a one-dimensional interval

The particular form of (5.2) is chosen to obtain maximum accuracy, which might
otherwise be lost in taking the difference of nearly equal quantities. The amount by
which the minimum in f is expected to fall below f/ is given by

(5.3) dee gs (ce) = (g+ + z + 2)a2A.

The anticipated change is now compared with what would be expected from a

perpendicular step. On the basis of the metric h", the step to the optimum point in
the (N-1)-dimensional surface perpendicular to s" through x/ is given by

g
s .(5.4) -h"’g+ +--g

The change inf to be expected from this step is 1/2 " /g,. Hence, the decision whether
to interpolate for the minimum along s or to change x by use of (5.4) is made by
comparing g+ " +g with expression (5.3).

The purpose of allowing for this option is to improve the speed of convergence
when the function is not quadratic. Consider the situation of Fig. 3. The optimum
point between and x+ is point A. However, by going to point B, a greater improvement
can be made in the function. When the behavior of the function is described by a
curving valley, this option is of particular value, for it enables successive iterations to
proceed around the curve without backtracking to the local minimum along each step.
However, if evaluation of the function at this new position does not give a better value
than that expected from the interpolation, then the interpolated position is used. Should
the new position be better as expected, it is then desired to modify h" to incorporate
the new information obtained about the function. The full step taken is stored at s",
and its squared length is the sum ofthe squares ofthe step along s and the perpendicular
step, i.e., s =-g+ + 1g. The change in the gradient resulting from this step is stored
at g,, and these quantities are used in 7 in a manner to be described.

For the interpolated step, we set

(5.5)

By direct use of the x" instead of the s’, greater accuracy is obtained in the event that
a is small. After making this interpolation, we proceed to "Fire."

10 w.c. DAVIDON

A

FIG. 3. Illustration ofprocedure for nonquadratic functions. Point A is the optimum point along (x, x/);
point B is the location for the new trial.

6. Fire: Chart 3. The purposes of this section are to evaluate the function and its
gradient at the interpolated point and to determine if the local minimum has been
sufficiently well located. If so, then the rate of change of gradient is evaluated (or,
more accurately, A times the rate of change) by interpolating from its values at x, x+,
and at the interpolated point.

If the function were cubic, then f at the interpolated point would be a minimum,
the component of the gradient at this point along s would be zero, and the second
derivative of the function at the minimum along the line would be 2/A. However, as
the function will generally be more complicated, none of these properties off and its
derivatives at the interpolated point will be exactly satisfied. We designate the actual
value of f and its gradient at the interpolated point by f and ,. The component of
g along s is s s. Should f be greater than f orf+ by a significant amount (> e),
the interpolation is not considered satisfactory and a new one is made within that part
of the original interval for which f at the end point is smaller.

/ at three points along a line, weFrom the values of the gradient g, g,, and g
can interpolate to obtain its rate of change at the interpolated point. With a quadratic
interpolation for the gradient, we obtain

a 1-a
(6.1) (" g’)

1-a a

where g,s/A is the rate of change of the gradient at the interpolated point. The
component of g, in the direction of s, namely, s"g gs, can be expressed as

a 1 a) +2 --> gs.(6.2) g
1 a a

If the interpolated point were a minimum, then 0 and g 2.
An additional criterion imposed upon the interpolation is that the first term on

the left of (6.2) be smaller in magnitude than . Among other things, this insures that
the interpolated value for the second derivative is positive. If this criterion is not
fulfilled, no interpolation is made, and the matrix h" is changed in a less sophisticated
manner.

VARIABLE METRIC METHOD FOR MINIMIZATION

12 w.c. DAVIDON

7. Dress: Chart 4. The purpose of this section is to modify the metric h" on the
basis of information obtained about the function along the direction s. The new h"
is to have the property that (h)’gs As", and must retain the information which the
preceding iterations had given about the function.

If the vector h"gs were in the direction of s", then it would be sufficient to
add to h" a matrix proportional to s"s . If t" is not in the direction of s", the smallest
squared length for the difference between s and (h+ass)g is obtained when
a (A /g 1/ g). For this value of a, the squared length ofthe difference is to (g/)
where to is the square length of d, namely, hdd. When this quantity is sufficiently
small (<e), the matrix h undergoes the change:

(7.1) h" + - s"s h".

The corresponding change in the determinant of h" is

gs

When the vectors t" and s" are not suciently colinear, it is necessary to modify h"
by a matrix of rank two instead of one, i.e.,

tt A
(7.3) h -+ss h.

to g

Then the change in the determinant of h is

(7.4) Ag A A.
to

After the matrix is changed, the iteration is complete; after printing out whatever
information is desired about this pa of the calculation, a new iteration is begun. This
is repeated until the function is minimized to within the accuracy required.

8. Stuff: Chart 5. The purposes of this section are to test how well the function
has been minimized and to test how well the matrix h approximates

at the minimum. This is done by displacing point x from the location of the minimum
in a random direction.

The displacement of point x is chosen to be a unit length in terms of h as the
metric. When

Ox Ox

such a step will increase f by half the square of the length of the step.
If the direction were to be randomly distributed, then it would not be satisfactory

to choose the range of each component of t, independently; rather, the range for the

t should be such that h’t,t is bounded by preassigned values. However, this
refinement has not been incorporated into the charts nor the computer program. The
length of the step has been chosen equal to one so that the function should increase
by 1/2 when each random step is taken.

VARIABLE METRIC METHOD FOR MINIMIZATION 13

14 w.c. DAVIDON

STUFF

PRINt’OUT

66

xP" >,sV x-. AT x

READY

CHART 5" Stff.

Significance of h’’. We examine a least-squares analysis to illustrate how the
initial trial value for h’ is chosen, and what its final value signifies. In this case, the
function to be minimized will be chosen to be X2/2, where X

2 is the statistical measure
of goodness of fit. The function X2/2 is the natural logarithm of the relative probability
for having obtained the observed set of data as a function of the variables X" being
determined.

The matrix

02fhi
OXt OX"

then specifies the spreads and correlations among the variables by

(8.1)

The diagonal elements of h" give the mean-square uncertainty for each ofthe variables,
while the off-diagonal elements determine the correlations among them. The full
significance of this matrix (the error matrix) is to be found in various works on statistics
(see, for example, [6]). It enables us to determine the uncertainty in any linear function
of the variables, for, if u ax, then

(8.2a) ((Au)2) a.a((xx)-(x")(x))

a,a,,h ’.

If u is a more general function of x, then if, in a Taylor expansion about the value of
x, derivatives higher than first can be ignored, we have

(u(x)) u((x))

(8.2b)
(m U (X))2

0/,/ (9/,/

ox ((x)) x ((x))h.
If it is possible to estimate the accuracy with which the variables are determined,

the use of such estimates in the initial trial value of h’ will speed the convergence
of the minimization procedure. Suppose, for example, that to fit some set of experi-

VARIABLE METRIC METHOD FOR MINIMIZATION 15

mental data, it is estimated that the variables x have the values:

xl =3.0+0.1

(8.3) x 28.0 + 2

x 104 + 102.

Then, the initial values for x" and h’ would be

x=(3.0 28.0 104

h’= 4

0 104

If this estimate is even correct to within a couple of orders of magnitude, the number
of iterations required to locate the minimum may be substantially fewer than that for
some more arbitrary choice, such as the unit matrix.

If it is desired to impose linear constraints on the variables, this can be readily
done by starting with a matrix h, which is no longer positive definite, but which has
zero eigenvalues. For the constraints

axt

(8.5)
bx" fl,

etc., the matrix h must be chosen so that

h"a, =0
(8.6)

h""b, =0,

and the starting value for x" must satisfy (8.5). For example, if x is to be held constant,
all elements of h’ in the third row and third column are set equal to zero and x is
set equal to the constant value.

When constraints are imposed instead of setting A equal to the determinant of
h’ (=0), it is set equal to the product of the nonzero eigenvalue of h. Then, except
for roundoff errors, not only will the conditions (8.6) be preserved in subsequent
iterations, but also A will continue to equal the product of nonzero eigenvalues.

Though A is not used in the calculations, its value may be of interest in estimating
how well the variables have been determined, since Y, h"" gives the sum of the
eigenvalues of h, while A gives their product. The square root of each of these
eigenvalues is equal to one of the principal semiaxes of the ellipse formed by all x for
which f(x) exceeds its minimum value by 1/2.

9. Conclusion. The minimization method described has been coded for the IBM-
704 using Fortran. Experience is now being gathered on the operation of the method
with diverse types of functions. Parts of the procedure, not incorporating all of the
provisions described here, have been in use for some time in least-squares calculations
for such computations as the analysis of 7r-P scattering experiments [10], for the
analysis of delayed neutron experiments [7], and similar computations. Though full
mathematical analysis of its stability and convergence has not been made, general
considerations and numerical experience with it indicate that minima of functions can
be generally more quickly located than in alternate procedures. The ability of the

16 W. C. DAVIDON

metric, h", to accumulate information about the function and to compensate for
ill-conditioned g. is the primary reason for this advantage.

10. Acknowledgment. The author wishes to thank Dr. G. Perlow and Dr. M.
Peshkin for valued discussions and suggestions, and Mr. K. Hillstrom for carrying out
the computer programming and operation.

Appendix. If we have the gradient of the function at a point in the neighborhood
of a minimum together with G-1, where

OXt OX

then, neglecting terms of higher order, the location of the minimum would be given
in matrix notation by

(1) =x-G-1V.
In the method to be described, a trial matrix is used for G-1 and a step determined
by (1) is taken. From the change in the gradient resulting from this step, the trial value
is improved and this procedure is repeated. The changes made in the trial value for
G-1 are restricted to keep the hunting procedure "reasonable" regardless of the nature
of the function. Let H be the trial value for G-. Then the step taken will be to the point

(2) x+=x-HV.
The gradient at x+, 7+, is then evaluated. Let D V+- V be the change in the gradient
as a result of the step S x+-x =-HT. We form the new trial matrix by

(3) H.+ H. + a(HV+).(HV+)
The constant a is determined by the following two conditions:

1. The ratio of the determinant of H+ to that of H should be between R- and
R, where R is a preassigned constant greater than 1. This is to prevent undue
changes in the trial matrix and, in particular, if H is positive definite, H+ will
be positive definite also.

2. The nonnegative quantity

(4) A= DH+D+ S(H+)-’S-2S D

is to be minimized. This quantity vanishes when S H+D. The a which satisfies these
requirements, together with the corresponding A, as functions of N =V+HV+ and
M V+HV, are as follows: 2

(5) Range ofM a A

M<-N/(R-1) 1/(M-N) 0
-N/(R-1)<M<N/(R+I) (1/RN)-(1/N) (N-M+MR)Z/RN
N/(R+I)<M<NR/(R+I) (N-2M)/N(M-N) 4M(N-M)/N
NR/(R+I)<M<NR/(R-1) (R/N)-(1/N) (M+NR-MR)Z/RN
NR/(R- 1)< M 1/(M- N) 0

The dependence of A on M is bell-shaped, symmetric about a maximum at M N/2,
for which a 0 and A N.

The following method is a description of a simplified method embodying some of the ideas of the
procedure presented in this report.

When the function is known to be quadratic, the first condition can be dispersed with, in which case
a=(M-N)-, A=0.

VARIABLE METRIC METHOD FOR MINIMIZATION 17

After forming the new trial matrix H+, the next step is taken in accordance with
(2) and the process repeated, provided that N V+HV+ is greater than some pre-
assigned e. When the G is constant, A can be written as

(6) 7 G(x-).
If u is an eigenvector of HG with eigenvalue one, then it will be an eigenvector of
H+G with eigenvalue one as well, since

H+Gu HGu + aHV+(V+HGu)
(7) u + aHV+[VHG(1 HG)u]

Furthermore, when A 0,

(8) H+GS H+D S,
so that S becomes another such eigenvector. After no more than N steps (for which
A 0), H will equal G-1 and the following step will be to the exact minimum.

The entire procedure is covariant under an arbitrary linear coordinate transforma-
tion. Under these transformations of x, V transforms as a covariant vector, G transforms
as a covariant tensor of second rank, and H transforms as a contravariant tensor of
second rank. The intrinsic characteristics of a particular hunting calculation are deter-
mined by the eigenvalues of the mixed tensor HG, and the components of the initial
value of (x) along the direction of the corresponding eigenvectors. Since successive
steps will bring HG closer to unity, convergence will be rapidly accelerating even when
G itself is ill-conditioned. Constraints of the form b.x c can be improved by using
an initial H which annuls b, i.e.,

H.b=0,
and choosing the initial vector x such that it satisfies b. x c. Then all steps taken will
be perpendicular to b and this inner product will be conserved. For example, if it is
desired to hold one component of x constant, all the elements of H corresponding to
that component are initially set equal to zero.

REFERENCES

[1] A. CAUCHY, Mdthode gdndrale pour la rdsolution des systmes d’dquations simultandes, Compt. Rend.,
25, 536 (1847).

[2] M. R. HESTENES AND C. STIEFEL, Methods of conjugate gradients for solving linear systems, J. Res.
Nat. Bur. Standards, 49 (1952), pp. 409-436.

[3] F. B. HILDEBRAND, Introduction to Numerical Analysis, McGraw-Hill, New York, 1956.
[4] W. A. NIERENBERG, Report UCRL-3816, University of California Radiation Laboratory, Berkeley,

CA, 1957.
[5] R. L. GARWIN AND n. A. REICH, An efficient iterative least squares method (to be published).
[6] H. CRAMER, Mathematical Methods of Statistics, Princeton University Press, Princeton, NJ, 1946.
[7] G. J. PERLOW AND A. F. STEHNEY, Halogen delayed-neutron activities, Phys. Rev., 113 (1959),

pp. 1269-1276.
[8] E. FERMI AND N. METROPOLIS, Los Alamos unclassified report LA-1492, Los Alamos National

Laboratory, Los Alamos, NM, 1952.
[9] H. L. ANDERSON, W. C. DAVIDON, M. G. GLICKSMAN, AND U. E. KRUSE, Scattering of positive

pions by hydrogen at 189 MeV, Phys. Rev., 100 (1955), pp. 279-287.
10] n. L. ANDERSON AND W. C. DAVIDON, Machine analysis ofpion scattering by the maximum likelihood

method, Nuovo Cimento, 5 (1957), pp. 1238-1255.
11] R. FLETCHER AND M. J. D. POWELL, A rapidly convergent descent methodfor minimization, Comput.

J., 6 (1963), pp. 163-168.

SIAM J. OPTIMIZATION
Vol. 1, No. 1, pp. 18-21, February 1991

(C) 1991 Society for Industrial and Applied Mathematics

002

A NEW VARIATIONAL RESULT FOR QUASI-NEWTON FORMULAE*

R. FLETCHERt

Abstract. The recent measure function of Byrd and Nocedal [SIAM J. Numer. Anal., 26 (1989),
pp. 727-739] is considered and simple proofs of some of its properties are given. It is then shown that the
BFGS and DFP formulae satisfy a least change property with respect to this new measure.

Key words, quasi-Newton method, BFGS formula, DFP formula

AMS(MOS) subject classifications. 65K, 90C

1. Introduction. Recently Byrd and Nocedal [2] introduced the measure function
:R R defined by

(1.1) $(A) trace (A) -f(A)

where f(A) denotes the function

(1.2) f(A)=ln(detA).

Byrd and Nocedal use this function to unify and extend certain convergence results
for quasi-Newton methods. In this paper, simple proofs of some of the properties of
these functions are given. These properties are then used in 2 to give a new variational
result for the BFGS and DFP updating formulae.

LEMMA 1.1. f(A) is a strictly concavefunction on the set ofpositive definite diagonal
n n matrices.

Proof. Let A=diag(ai). Then V2f=diag(-1/a2) and is negative definite since
ai > 0 for all i. Hence f is strictly concave.

LEMMA 1.2. f(A) is a strictly concavefunction on the set ofpositive definite symmetric
n n matrices.

Proof Let A B be any two such matrices. Then there exist n x n matrices X and
A, (X is nonsingular, A=diag(Ai)) such that XTAX=A and XT"BX I. Denote
C=(1-O)A+OB, 0(0, 1). Then

XrCX (1 O)XTAX + OXTBX (1 0)A + 0I.(1.3)

Also,

(1.4)

and likewise

f(XrAX) In det (XrAX) ln(det2 X det A)

f(A) + In det2 X,

f(XTBX f(B + In det2 X

f(XrCX) =f(C) +ln det X.

Now A B <=> A /, so by Lemma 1.1 and Eq. (1.3) it follows for 0 (0, 1) that

f(XrCX) =f((1 0)A + OI) > (1 0)f(A) + Of(I) (1 O)f(XrAX) + Of(XrBX).

* Received by the editors January 12, 1990; accepted for publication (in revised form) May 7, 1990.
Department of Mathematical Sciences, University of Dundee, Dundee DD1 4HN, Scotland, United

Kingdom.

18

A NEW VARIATIONAL RESULT FOR QUASI-NEWTON FORMULAE 19

Hence from (1.4)-(1.6),

f(C) > (1 O)f(A)+ Of(B),
and so the lemma is established.

Remark. Concavity of f(A) is proved elsewhere, for example as a consequence
of (1) [1, Chap 8.5]. The above method of proof is different and also shows strict
concavity.

LEMMA 1.3. q(A) is a strictly convexfunction on the set ofpositive definite symmetric
n n matrices.

Proof This follows from Lemma 1.2 and the linearity of trace (A).
LEMMA 1.4. For nonsingular A the derivative of det (A) is given by d(det A)/ dao

[A-T]odetA.
Proof From the well-known identity det (I + uv T) 1 + v TU it follows that

det (a+ eeiejT. =det (I + eeiefa-1) det A= (1 + e(a-)ji) det a.
Hence

d det A det (A + ee,ejT. -det A
(A-1)j, det A.lim

da0 -.o e

TIaEOREM 1.1. (A) is globally and uniquely minimized by A I over the set of
positive definite symmetric n n matrices.

Proof Because A is nonsingular, 4’ is continuously differentiable and so

dO Io
1 d

det a (I a-r)o,(1.7)
dao det A dao

using Lemma 1.4. Hence 4’ is stationary when A I and the theorem follows by virtue
of Lemma 1.3.

Remark. It is also shown in [2] that A I is a global minimizer of q(A).

2. A variational result. The BFGS updating formula

B(k)tt TB(k)
,)ly

T

(2.1) B+)=B
TB k (TO/

and the DFP updating formula

(2.2) H(k+) H(k) H(k),y,y TH(k) ((T

occupy a central role in unconstrained optimization. (Here and y denote certain
difference vectors occurring on iteration k of a quasi-Newton method, with T> 0.
B(k) denotes the current Hessian approximation, and H(k) its inverse: see, for example,
[3] for details.) A significant result due to Goldfarb [4] is that the correction in the
BFGS or DFP formula satisfies a minimum propey with respect to a function of the
form [[E[[=trace (eWW) (e.g., Theorem 3.3.2 and its corollary in [3]). The main
result of this paper is to show that these formulae also satisfy a minimum propey
with respect to the measure function of Byrd and Nocedal defined in (1.1).

TEOREM 2.1. IfH(k) is positive definite and 6ry > O, the variational problem

(2.3) minimize O(H(k)/ZBH(k)/2)
B>0

(2.4) subject to B T B

(2.5) =
is solved uniquely by the matrix B(k+l) given by the BFGS formula (2.1).

20 R. FLETCHER

Proof. The matrix product that forms the argument of 0 can be cyclically permuted
so that

O(H(k)I/2BH(k)1/2) =trace (H(k)B)-ln(det H(k) det B)
(2.6)

O(H(k)B) O(BH(k).
A constrained stationary point of the variational problem can be obtained by the
method of Lagrange multipliers. A suitable Lagrangian function is

L(B, A, A 1/2 O(H(k)’/2BH(k)I/2) nt- trace (AT(B T B)) + A T(B(/)

=1/2(trace(H(k)B)-lndetH(k)-lndetB)+trace(AT(BT-B))
+ T(B6)

where A and A are Lagrange multipliers for (2.4) and (2.5), respectively. To solve the
first order conditions, it is necessary to find B, A, and to satisfy (2.4), (2.5), and the
equations OL/OBo 0. Using the identity OB/OBo eef and Lemma 1.4, it follows that

OL
0 1/2(trace (H(k)ee[)- (B-)) + trace (AT(eeT- eef))+ h Tee6OBo

1/2((H())j,- (B-1)ji) + A,- Ao +(T),.
Transposing and adding, using the symmetry of H() and B, gives

H()- B-1 + h(r nt (h r 0

or

(2.7) B-1 H() + 16 T
__
(A T,

which shows that the optimum matrix inverse involves a rank-2 correction of H(). To
determine , (2.7) is post-multiplied by % It then follows, using the equation B-iT (3

derived from (2.5), that

t H k
"y q- At T,)/ -t- 6A T y,

and hence

lt
T6 ,)l

TH k
,l - lt

TA6 T’)t 4i T
T6A T

"l.

Rearranging this gives yTA 1/2(1 /TH(k)7/6 TT) and so

a (-/4) -k(1 ,H),/))/,.
Substituting this expression into (2.7) gives the equation

B-1 H(k) H(k),ytT _[_ 3/TH(k).jc __&T(1 + YTH(k) ,y

It is a well-known consequence of the Sherman-Morrison formula (e.g., [3]) that
there exists a corresponding rank-2 update for B, which is given by the right-hand side
of (2.1). Moreover, the conditions of the theorem ensure that the resulting updated
matrix B is positive definite (as in [3, Thm. 3.2.2]). This establishes that the BFGS
formula satisfies first order conditions (including feasibility) for the variational problem.
Finally, O(H(k)I/2BH(k)/2) is seen to be a strictly convex function on B> 0 by virtue
of (2.6) and Lemma 1.2, so it follows that the BFGS formula gives the unique solution
of the variational problem. [3

A NEW VARIATIONAL RESULT FOR QUASI-NEWTON FORMULAE 21

COROLLARY. If B(k) is positive definite and 7
3’ > 0, the variational problem

minimize d/(B(k)l/:ZHB(k)l/:Z)
H>0

subject to Hr H

H3’= 6

is solved uniquely by the matrix Hk+l) given by the DFP formula (2.2).
Proof. The result follows by replacing (B, H, 6, 3’) by (H, B, 3’, 6) throughout

Theorem 2.1. [q

REFERENCES

[1] R. BELLMAN, Introduction to Matrix Analysis, McGraw-Hill, New York, 1960.
[2] R. H. BYRD AND J. NOCEDAL, A tool for the analysis of quasi-Newton methods with application to

unconstrained minimization, SIAM J. Numer. Anal., 26 (1989), pp. 727-739.
[3] R. FLETCHER, Practical Methods of Optimization, Second Edition, John Wiley, Chichester, 1987.
[4] D. GOLDFARB, A family of variable metric methods derived by variational means, Math. Comp., 24

(1970), pp. 23-26.

SIAM J. OPTIMIZATION
Vol. 1, No. 1, pp. 22-29, February 1991

(C) 1991 Society for Industrial and Applied Mathematics

003

ON THE PERFORMANCE OF KARMARKAR’S ALGORITHM OVER A
SEQUENCE OF ITERATIONS*

KURT M. ANSTREICHER?

Abstract. Karmarkar’s projective algorithm for linear programming is considered with real arithmetic
and exact linesearch of the potential function. It is shown that for every n _-> 3 there is a linear program,
with n variables, such that the algorithm obtains a potential reduction of about 1.3 on each iteration. For
the same problems the algorithm requires O(ln (n!e)) iterations to reduce the objective gap to a factor e

of its initial value. It is thus proved that in the worst case the convergence of Karmarkar’s algorithm, with
exact linesearch, cannot be independent of n, and moreover, potential reduction may be a poor indicator
of algorithm performance.

Key words, linear programming, Karmarkar’s algorithm, potential function

AMS(MOS) subject classification. 90C05

1. Introduction. The true worst-case complexity of Karmarkar’s projective
algorithm for linear programming is a problem of considerable theoretical interest. In
his original paper [4] introducing the algorithm, Karmarkar showed that the potential
function, a surrogate for the linear objective, can be reduced by a constant on each
iteration. As a consequence, the gap reduction time for the algorithm, applied to a
linear program with n variables, is no worse than O(n). (We use the phrase "gap
reduction time" to refer to the number of iterations required to reduce the objective
gap (value minus optimal value) by a given, constant factor.) In practice, however,
the gap reduction time seems to be virtually independent of n, or perhaps grows very
slowly, like In (n).

The worst-case performance on a single step of the algorithm has been completely
characterized (see Anstreicher [1] and McDiarmid [5]). In fact, it is possible that on
a single step, using exact linesearch of the potential function, the potential value is
reduced by only about 0.72. It is also known (see [5]) that using an "optimal" fixed
steplength could result in the algorithm reducing the potential function by only about
0.69 on every iteration. (However, if a linesearch were performed in McDiarmid’s
example of the latter, the algorithm would terminate with optimality in a single
iteration.) The asymptotic behavior of a "short step" implementation of the algorithm
was obtained by Asic, Kovacevic-Vujcic, and Radosavljevic-Nikolic [2]. Finally, it
has been shown that the algorithm, using exact linesearch of the potential function,
does not produce superlinear convergence of the objective gap (see Bayer and
Lagarias [3]).

In this paper we consider Karmarkar’s algorithm, applied using exact linesearch
of the potential function. We show, by construction, that for every n => 3 there is a
linear program such that the algorithm reduces the potential value by only about 1.3
on each iteration. This shows that the worst-case gap reduction time for the algorithm,
with exact linesearch, cannot be improved by showing that potential reduction somehow
increases as the algorithm iterates. We also show that the actual gap reduction time,
for the same linear programs, is O(ln (n)). In particular, we show that the number of

*Received by the editors December 26, 1989; accepted for publication (in revised form) June 20, 1990.
This work was written while the author was a research fellow at the Center for Operations Research and
Econometrics, Universit6 Catholique de Louvain, Louvain-La-Neuve, Belgium. It was first presented at the
Second Asilomar Workshop on Progress in Mathematical Programming, Monterey, CA, February 5-7, 1990.

Department of Operations Research, Yale University, New Haven, Connecticut 06520.

22

THE PERFORMANCE OF KARMARKAR’S ALGORITHM 23

iterations required to reduce the gap to a factor e of its initial value is O(ln (n/e)),
compared to the bound of O(n In (l/e)) implied by the constant potential reduction.
The two results taken together demonstrate that potential reduction may be a very
poor indicator of the actual convergence of the algorithm. Similar results hold for the
algorithm implemented with a "fixed fraction to the boundary" step rule, for any
fraction in (, 1).

2. Karmarkar’s algorithm. Consider a linear program

LP z*=min c-x
Ax =0

x S,

where A is an m n matrix, and S c n is the simplex S {x _-> Ole-rx n}. (Throughout,
we will use e to denote the vector in n with each component equal to 1.) We assume
that Ae 0, and that z*= 0. In [4] it is shown that any standard form linear program
may be converted into the form above by combining the original linear program with
its dual.

We now describe Karmarkar’s algorithm for LP. Let k_-> 0, and let xk> 0 be an
iterate of the algorithm, feasible for LP(x=e). Let Xk be the diagonal matrix

Xk diag (xk). Using the projective transformation T(. S S,

y= r(x)= erX-lx X x

(2.1)

(n)xky,X= T-l(y)=
erXky

we obtain the transformed problem

LP min

Ay 0

yS,

where/ AXk, XkC. Note that T(xk) e, so a step starting at e in LP corresponds
to a step starting at xk in LP. Under the assumption that z* 0, the optimal objective
value in LP is also 0.

Let g " be some direction satisfying/g 0, rg > 0. The algorithm makes a

step of the form

(2.2) y(a)=e-a
g

where 0<_ A <= 1, and gma is equal to the maximum component of g. (Similarly, gmin

will be used to denote the minimum component of g.) Note that z* =0 and Tg > 0
imply that gmax > 0, SO A is simply the fraction of a step to the boundary of the
nonnegative orthant. In practice A is often determined by an approximate linesearch
of the potential function

(2.3) f(6, y)= n In (e-ry) In (yj),
j=l

along y= y(A). It can be shown that if y= T(x), then f(, y) differs from f(c, x) by a
constant which is independent of x. Following the choice of ,L we set xk/l T-I(y(A)),
and go to the next iteration.

24 K. M. ANSTREICHER

Karmarkar’s algorithm is usually described with g gp, the projection of g onto
{x "lx=0, e-x =0}. For this choice of g it can be shown (see [1] or [5]) that

(2.4) 6-e /’lgmingma

and furthermore there is a A such that f(, y(A))-f(, e)<-72. It follows that the
potential function f(c,. can be reduced by at least 0.72 on each iteration, and such
uniform reduction is sufficient to obtain a polynomial-time bound for the algorithm.
It turns out, however, that when basing steplength on a linesearch of f(?,.), it is
equivalent to use g ?q, the projection of ? onto the nullspace of A. This was first
noted by Jean-Philippe Vial (Todd [7]), and follows from the homogeneity of f(?,.
and the fact that Ae 0. Note that the inverse transformation in (2.1) may be applied
to a point 0 y _-> 0, to obtain an x S, even when e-y # n. In the sequel, we will find
it convenient to describe the algorithm using g q.

Let ?k XkC denote the value of ? on iteration k. Note that since xk+l T-I(y(A)),
we have

(2.5) k+l=X+lc= eVX,y(A
X,Y(A)c,--, Y(A)’,

where Y(A) is the diagonal matrix diag (y(A)), and u---v indicates that two vectors
u and v in " differ by a positive scaling.

3. A specific example. We now consider a simple, specific case:

LP min c-x
xS,

where n=>3, e=(0, 1,...,1, % /3)v, 0<3,<1, /3> 1. So m=0, and we may take
g c-q ? on each iteration. (Directions of a similar form have previously arisen in the
analysis of Karmarkar’s algorithm. In particular, the case y 1,/3 2 leads to g ?p
giving the worst case in (2.4), see [1], [5].) Consider the first iteration (k=0), with
g= c. The step y(A), as in (2.2), is then

A ,1-,1 AT 1-A(3.1) y(A)= 1,1
/, fl’

Following the choice of A, by (2.5) the rescaled objective will be

g y(A)c=(O, fl-A fl-A y(fl-Ay))-/3 /3 /3
,/3(l-A)

Thus --- (0, 1," ", 1, fl-, /)-, where

),(/3 AT) /32(1 A)
/-- -Our goal is to choose/3, % and h so that/3 =/3, /= y. If this is the case, the above

derivation repeats for the next iteration, with Y,-I and y, interchanged. It follows that
in the transformed problem LP, every step will be equivalent to the first, and in
particular the decrease in the potential function, always using the same value for A,
will be the same on each iteration. Via straightforward manipulations we have

(3.2) /3 =/=h =/3(/3 T)
2

t(-)
(3.3) 3, /<=>A /32_

THE PERFORMANCE OF KARMARKAR’S ALGORITHM 25

Note that A given by (3.3) immediately satisfies 0-<_ A -<_ 1. Since the values of A in (3.2)
and (3.3) must coincide, and the numerators in the two expressions are identical, we
are led to the condition

(3.4) fl-y:2=fl:2-3, y(1- y) =/3(fl- 1).

Regarding/3 > 1 as a function of y, 0< y < 1, we obtain a unique value

1 +v/l +4y(1- y)
(3.) /3

2

Thus for any 0< y < 1, if/3 is chosen via (3.5), and A by (3.3) (giving the same value
as (3.2)), we obtain/3 =/3, /= 3’ following the step y(A), as desired.

We next examine the behavior of the potential function for the same step. We have

c-re=(n-3)+ y+ fl
c-ry(A (n -3)(1 A/fl) + y(1 Ay/fl) +/3(1 -A)

(n -3)+ y+/3 h[(n -3)+ 3,2+/32]//3
[(n-3)+ y+/3](1-A/fl),

where the last equality uses the fact that 3’ and/3 are related by (3.4). Thus

(3.6) c-Y(A)
1 -A--

cTe

Using (3.6), for y(A) as in (3.1), we obtain

(3.7) F(A)=-f(c,y(A))-f(c, e)=3 In (1 -A//3)-ln (1-Ay/fl)-ln (1 -A).

One steplength strategy when implementing Karmarkar’s algorithm is to select a fixed
value of A, typically greater than .9, and take a step using A so long as the potential
function decreases. If descent is not obtained for this initial value, A is reduced by a
"backtracking" procedure until descent is obtained. (As mentioned in 2, implementa-
tions of Karmarkar’s algorithm usually base the step on g C-p rather than g , but
it still makes sense to think of a fixed A for the step using gq.) We now show that for
any 0< y < 1, if/3 is chosen by (3.5), and A by (3.3), then the potential function indeed
decreases.

LEMMA 3.1. Let 0< y < 1, and let be given by (3.5). Suppose that Karmarkar’s
algorithm is applied to LP, using A from (3.3) on each iteration. Then for every k >-O,
the algorithm obtains f(c, xk)-f(c,x)=-k6, where 6=ln [(/32- y)/(/32-/3)]> 0.

Proof Substituting (3.3) into (3.7), F(A) is given by- y(-) t(-))
-In (/32-3,)+ 3 In [(/32- y)- (/3 y)]-ln [(/32-3,)-3,(/3 -3’)]

In [(/32- y) -/3(/3 y)]

=-ln (/- y) +3 In [/(3 1)]-ln [3(1- y)]-ln [y(/ 1)]

In (2_ y-i- 1)y(1- y)

in ((_._-. 1)

26 K. M. ANSTREICHER

where the second and final equalities both use 7(1-7)=/3(/3-1), from (3.4). The
lemma follows from the fact that in the transformed problem the potential reduction
is 6 =-F(A) on every step.

For example, if y .4, then (3.5) gives/3 1.2; (3.3) gives A 12/13 .9231; and
Lemma 3.1 gives 6 1.466. Thus for 3’ .4 and/3 1.2, using the fixed value A 12/13
(why not?) results in an identical transformed problem on each step, and gives a
reduction in the potential function of roughly 1.5 on each step.

Of considerably more interest theoretically is the strategy of choosing A according
to a linesearch of F(A), 0<_-A _-< 1. For F(. as in (3.7), straightforward differentiation
shows that the exact minimizer A satisfies

3 y 1 y(1-A)+(fl

Cross-multiplying, and collecting terms, results in a quadratic equation for

(3.8) 2(+ 3 73) + (33 73 3) 0.

The solution of (3.8) can be presented in a more appealing form by first simplifying
the discriminant term"

4(y +/3 7/3)2 4T(3 Tfl 3 2) 4(/3272- fl2,y fl,),2 fit + ,y2 + 32)
=4(7/3(7/3-7-/3-1)+7+/3)

4(yfl (yfl 1) + (y+/3)(1)3))
4(1 yfl)(y+/3 y/3),

where the second equality used the fact that 1/and/3 are related by (3.4). The unique
solution to (3.8) satisfying 0 <_-A =< 1 is then given by

7 + 3 y3 -x/(1- 73)(7 + 3 73(3.9) A’=

To summarize, at this point we have shown the following. For any choice of
0<3,<1, if /3 is chosen using (3.5), and A by (3.3), then /3=/3, /=,, so in the
transformed problem all steps are identical to the first (with y,_ and y, interchanged
on every other iteration). On the other hand, for the same 3’ and /3, the value M in
(3.9) corresponds to exact minimization of the potential function. The natural question
is whether 3’ may be chosen so that A from (3.3) coincides with M from (3.9). In Fig.
1 we plot A from (3.3), and A’ from (3.9), as functions of y, where for each y, /3 is
chosen according to (3.5). The curves intersect at a unique 3’* in (0, 1), with y* .525.
Choosing y y*, and /3 =/3" 1.207 from (3.5), then causes exact minimization of
the potential function to result in /= % /3 =/3, so that each step of the algorithm
obtains the same reduction in the potential function (approximately 1.3) as the first
step. As a consequence of this construction, we have proved the following theorem.

THEOREM 3.2. For each n >-3 there is a problem LP such that Karmarkar’s
algorithm, applied to LP using real arithmetic and exact linesearch ofthepotentialfunction,
obtains f(c, Xk) -f(c, x) -k6* for each k >- O, where 6" 1.3 is independent of n.

Proof Take y y* .525 in Lemma 3.1.
Richard Stone [6] has succeeded in obtaining analytic expressions for y* and/3",

as well as the resulting A* and 6*. Letting u ((2x/)-3)1/, they are:

y* (x/- u)/2,

/3" (x/+ u)/2,
(3.10) A* (x/- 1) (x/+ u)/2,

6" In ((x/+ 1)/(x/- 1)).

THE PERFORMANCE OF KARMARKAR’S ALGORITHM 27

1.0

0.9

0.8

0.7

6 ,, i, i,

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
FIG.

Validity of these values can be established by direct substitution into (3.3), (3.4), (3.8),
and the formula for 6 in Lemma 3.1. We omit the details, but mention, for the interested
reader, that verification is simplified by leaving "u" as a variable for as long as possible
before substituting in the value given above.

Theorem 3.2 shows that any attempt to improve the worst-case complexity bound
for Karmarkar’s algorithm, with exact linesearch, cannot be based solely on showing
that the reduction in the potential function somehow improves as the algorithm iterates.
Ultimately, of course, what is important is not the potential function, but rather the
objective value. We next turn to examine the objective values c-xk for the class of
problems analyzed in this section. For 0< y < 1, let /3 be given by (3.5), and A by
(3.3), so that in the transformed problem the algorithm repeats itself on each iteration.
By Lemma 3.1, there is then a constant 6 > 0 so that the potential function is reduced
by exactly on each iteration. To analyze the behavior of c-xk, we are led to obtain
more information regarding the iterates x k. The following lemma provides a complete
characterization. For the remainder of the paper, we will find it convenient to define
c (1 A //3). We will use (a)k to denote powers of a, to avoid any possible confusion
with superscripts, as in x k.

LEMMA 3.3. For 0 < y < 1, let fl be given by (3.5), and suppose that the algorithm
uses A from (3.3) on each iteration. Let a (1- A//3). Then for each k >-1, Xk--

(n/e-rk)k where k , is given by

37.k { 1

for k even, and

1

yk Ol
k

j=l

2<--j<=n

j=l

2<=j<=n-2

j=n-1

j=n

for k odd.

28 K. M. ANSTREICHER

Proof The proof is by induction on k. For k 1 the result is immediate, by (3.1).
So assume that for some k >_- 1 the result holds. On iteration k the step in the transformed
problem is again of the form (3.1), except that Yn-1 and yn are interchanged if k is
odd. Consequently let 37 be the vector y(A), with the last two components interchanged
if k is odd. Then by the definition of T-l(in (2.1) we have

xk+l= n(eVXkf)-lXkf
n -1 n

where is the diagonal matrix diag (fi). To complete the proof we need to show
that fi+=fi, j= 1,... n. This is immediate for j= 1, n-2, and also for
n-1Nj N n when k is even. However, for , , and I satisfying (3.3) and (3.4), it is
straightforward to verify that (1 I)(1 I/) (1 I /) (), which completes
the argument for n 1 Nj N n when k is odd.

LEMMA 3.4. For 0 < < 1, let be given by (3.5), and suppose that the algorichm
uses from (3.3) on each iteration. Lee (1- /). en for each k 1,

cx n()
cZx l+n(a)-r’

where r 0 geometrically fast in k, independent of n.

Proo We have cx (n 3) + +, and, from Lemma 3.4,

cZx n(n -3 + 7+ B)(a)
+(n-)()

for k _-> 2, even, and

c_xk n((n -3)(a) k +[3’(1 13’//3)+/3(1 h)](a) k-’)
1 + (n 3)(a) k + [(1- ar//) + (;)](.)

for k _-> 1, odd. However, for 3’ and fl satisfying (3.4) it is straightforward to verify that

[3’(1 A3’//3) + fl(1 A)] (1 A/fl)(3’+ fl)

Therefore, the lemma holds with

(_[_a(+ ,/](-1
k even

k odd.

THEOREM 3.5. For n >--3, and e < 1, there are linear programming problems such
that Karmarkar’s algorithm, applied using exact linesearch of the potential function,
requires k=(R)(ln (n/e)) iterations to obtain C-r-xk/ cTxO E.

Proof Take y= 3’* =.525, and let fl fl* 1.207 be given by (3.5). Then the
algorithm, using exact linesearch, repeats itself on each iteration, and Lemma 3.4
applies. Then C-xk/CVX <-- e is equivalent to

n(a) k <-- e(l+ n(c)k- rk)
n(1/e--1)(a)k<=l--rk

k_->/x[ln (1/e 1)+ln (n)-ln (1- rk)],
where/z -l/In (a) > 0. [q

THE PERFORMANCE OF KARMARKAR’S ALGORITHM 29

Theorem 3.5 proves that in the worst case, Karmarkar’s algorithm, using exact
linesearch, requires at least f(ln (n/e)) iterations to reduce the gap to a factor e of
its initial value. Note that the role of In (n) in this bound is similar to set-up charge,
or fixed cost; in particular, we have not demonstrated a lower bound of
l(ln(n) In(I/e)) iterations. For the problems considered here, the bound of
(R)(In(hie)) iterations, in Theorem 3.5, should be compared to the bound
of O(n In (1/e)) iterations implied by the constant potential reduction shown for the
same problems in Theorem 3.2. These bounds, taken together, demonstrate that poten-
tial reduction may provide a poor indication of the algorithm’s actual convergence.
Analogous results hold for an implementation of the algorithm using a "fixed fraction
to the boundary" step rule, fixing A (, 1). The only change required is the choice of
y--note that by Fig. 1 it is clear that for any A (, 1) there is a unique 0 < y < 1, and
/3 from (3.5), so that the given A agrees with , from (3.3). Lemma 3.1 then applies,
as does a straightforward analog of Theorem 3.5.

The difference between the constant potential reduction of Lemma 3.1, and the
actual objective performance of Lemma 3.4, can be even more striking when the step
in the transformed problem is viewed in terms of ?p rather than ?q (see 2 for the
distinction). For example, consider the case of 3’ =/3 1, as used in [5]. By the analysis
at the beginning of this section, it is clear that the algorithm repeats itself for any
0 < A < 1; in fact, A 1 leads to the optimal solution in one step. Take A =, so on
each step y(A)=(1,.5,...,.5)-, and e-y(A) l+(n-1)/2. Rescaling to remain on
the simplex S, in the transformed problem, then obtains the point 33
[n/(n+ 1)](2, 1,..., 1)-. Note that liP-ell---R/(n+ 1)< r, where r= x/n/(n-1) and
R x/n n 1) denote the radii of spheres, centered at e, which inscribe and circumscribe
S. The move from e to)3 corresponds to a step in the direction -Cp of norm less than
r, compared to the step of length R, which would lead immediately to the solution.
Thus a "fraction to the boundary" of h 1/2, using q, corresponds to a "fraction to the
boundary" of only 1/(n + 1), using ?p. Viewed in terms of t?p, this is an extremely short
step. However, Lemmas 3.3 and 3.4 continue to apply, with)t =1/2, so the algorithm
still requires only O(ln (n/e)) steps to reduce the gap to a fraction e of its initial value.

Acknowledgment. The author would like to thank Richard Stone, for obtaining
the closed-form solutions in (3.10); Jeff Lagarias and an anonymous referee, for
suggestions which considerably improved the presentation of Lemmas 3.3 and 3.4, and
Theorem 3.5; and Mike Todd, for a conversation which led to the observation regarding
the step viewed in terms of p, at the end of 3.

REFERENCES

[1] K. M. ANSTREICHER (1989), The worst-case step in Karmarkar’s algorithm, Math. Oper. Res., 14,
pp. 294-302.

[2] M. D. AsIc, V. V. KOVACEVIC-VUJCIC, AND M. D. RADOSAVLJEVIC-NIKOLIC (1990), Asymptotic
behavior of Karmarkar’s method for linear programming, Math. Programming, 46, pp. 173-190.

[3] O. BAYER AND J. C. LAGARIAS (1987), Karmarkar’s algorithm and Newton’s method, AT & T Bell
Laboratories, Murray Hill, NJ; Math. Programming, to appear.

[4] N. KARMARKAR (1984), A new polynomial time algorithm for linear programming, Combinatorica, 4,
pp. 373-395.

[5] C. McDIARMID (1990), On the improvement per iteration in Karmarkar’s algorithm for linear program-
ming, Math. Programming, 46, pp. 299-320.

[6] R. STONE (1990), Private communication.
[7] M. J. TODD (1989), Private communication.

SIAM J. OPTIMIZATION
Vol. 1, No. 1, pp. 30-41, February 1991

1991 Society for Industrial and Applied Mathematics

004

COMPOSITE NONSMOOTH PROGRAMMING WITH GTEAUX
DIFFERENTIABILITY*

V. JEYAKUMAR-

Abstract. This paper examines constrained nonsmooth optimization problems where the objective
function and the constraints are compositions of locally Lipschitz functions and Gteaux differentiable
functions, but are not necessarily Fr6chet differentiable or strict differentiable. Lagrangian necessary and
sufficient optimality conditions are presented for various classes of composite programs. These are obtained
by constructing appropriate convex approximations for composite functions. The Lagrange multipliers are
also characterized in terms of subgradients of the value function under appropriate conditions.

Key words, nonsmooth optimization, optimality conditions, convex approximations, Clarke subdifferen-
tials, convex composite problems

AMS(MOS) subject classifications. 90C30, 49B27, 49A52, 90C48

1. Introduction. In this paper we study composite nondifferentiable programming
problems of the form

minimize fo(Fo(x))

subjectto xX, f(Fi(x))<-O, i=l,2,...,m,

where X is a real Banach space, fo,’" ", f,, are real-valued locally Lipschitz functions
on R n, and for each i=0, 1,..., m, Fi" X R is locally Lipschitz and Gteaux
differentiable with Gteaux derivative F’(.), but not necessarily continuously Fr6chet
differentiable or strict differentiable [5]. Many applications of optimization concern
objective functions and constraints that are not necessarily smooth, but are of "com-
posite" type. The model problem (P) covers a very wide range of practical optimization
problems, which often arise in penalty methods or restricted step methods for con-
strained optimization, and in minimax problems (see [7], [11], [4], [3]). Convex com-
posite problems (P) were examined in regard to Lagrangian conditions in [7] and [11]
for the case in which the functions Fi, i= 0, 1,. ., m, are assumed to be continuously
Fr6chet differentiable.

Studies of optimization problems have led in recent years to the development of
a nonsmooth calculus (e.g., [5], [16], [20]-[21], [23]-[24]). In particular, the Clarke
subdifferential calculus has proved to be a potent and flexible tool in mathematical
programming. However, the lack of generalized calculus such as chain rules (cf. [5,
Thm. 2.3.10]) for Gteaux differentiable functions is one of the chief reasons why the
study of composite programming problems has so far been limited mainly to problems
(P) in which the functions Fi, i=0, 1,..., m are assumed to be continuously Fr6chet
differentiable or strict differentiable. In this paper, it is shown how Clarke subdifferen-
tials can be used to study the composite model problems (P) with locally Lipschitz
and Gteaux differentiable functions.

This paper examines various classes of composite nondifferentiable programming
problems. First, the composite model problem (P) is analysed in regard to Lagrangian
necessary optimality conditions and Gteaux differentiability assumptions. The

* Received by the editors November 20, 1989- accepted for publication (in revised form) August 1,
1990. This research was partially supported by Australian Research Council grant A68930162.

t Department of Applied Mathematics, University of New South Wales, Kensington, New South Wales,
Australia.

30

COMPOSITE NONSMOOTH PROGRAMMING 31

necessary conditions are obtained in an easily verifiable form by first establishing
appropriate upper convex approximations ([11], [13]; see also the definition below)
for the composite functions. This approach allows us to relax the usual continuously
Fr6chet ditterentiability or strict differentiability assumptions used in the literature [7],
and leads to a generalized chain rule for locally Lipschitz and Gteaux differentiable
functions. Second, it is shown that the necessary conditions become sufficient for global
optimality under appropriate hypotheses in the case where for each i= 1,. , m, f is
convex, and Fi F. A duality theorem is also given for this class of (nonconvex)
composite programs. Finally, a complete characterization of the Lagrange multipliers
is given in terms of subgradients of the value function for (P) in which, for each

0, 1, 2,. , m, f is convex and Fi F, and the range of F is assumed to be convex.
These problems provide a class of programs which are not convex but possess many
of the nice properties that convex programs have.

2. Gteaux derivatives, composite functions, and convex approximations. In this
section we present various properties of generalized derivatives of locally Lipschitz
functions and new versions of upper convex approximations for the composite function
g of the form g :=f F, where f is a real-valued locally Lipschitz function on R", and
F" X- R" is a locally Lipschitz and GSteaux differentiable function on a real Banach
space X. These properties deal with generalized subdifferentials for locally Lipschitz
functions due to Clarke [5], and Michel and Penot [16].

For a real locally Lipschitz function h:X-, R, the Clarke directional derivative
[5], the Michel-Penot directional derivative 16], and the upper Dini-directional deriva-
tive are, respectively, defined by

h(a, x):= lim sup A-l[h(a + d + Ax)- h(a + d)],
d0 , $0

h(a, x):= sup lim sup h-l[h(a + Az + Ax) h(a + Az)],
zX

h+(a, x):= lim sup h-[h(a + hx)- h(a)].

The Clarke subdifferential and Michel-Penot subditterential are, respectively,
defined by

Oh(a) := {v 6 X’[h(a, x) >- v(x), Vx X},

and

O>h(a) := {re X’l h<>(a; x) >- v(x), Vx X}.

Then, h(a,.), and h(a, .) are continuous sublinear functions with h+(a,x)<=
h(a, x) <= h(a, x), x X, and h(a, x) lim supy_,a h(y, x). The subdifferentials
Oh(a) and Oh(a) are nonempty convex weak* compact subsets of X’, the topological
dual space of X. These subdifferentials satisfy the relation that Oh(a)c Oh(a). When
h is convex, d h(a Oh(a Oh(a), the subditterential in the sense of convex analysis.
The Clarke subdifferential mapping x - Oh(x) is weak* upper semicontinuous; whereas
the Michel-Penot subditterential has the property that h is Gteaux ditterentiable at
a if and only if Oh(a)={h’(a)}. The locally Lipschitz function h :X R is said to
be regular [5] at aX if the usual directional derivative h’(a, .) at a exists and
h’(a,x)= h(a,x), for all xX. Following Ioffe [11] (see also Jeyakumar [13]), we
say that a function q,a :X -* R, a X, is an upper convex approximation for h at a if ,
is a continuous sublinear function and h/(a, x) <= q(x), for each x X. It is clear that
h<>(a, .), and h(a, are upper convex approximations for h at a. We also note that

32 V. JEYAKUMAR

the Clarke directional derivative has the useful property that for each x X, the mapping
y- h(y, x) is upper semicontinuous at a and serves as a (semi-)continuous upper
convex approximation for h. As we shall see later, this property turns out to be helpful
in applications. The Michel-Penot directional derivative mapping y- h(y, x) is not,
in general, upper semicontinuous. The next proposition presents a characterization
result for upper semicontinuity of h(x) at a point.

PROPOSITION 2.1. Let a X, and let h :X- R be locally Lipschitz at a. Then, for
each x X, h(., x) is upper semicontinuous at a X if and only if h(a, h(a,).

Proof Let xX. If h(.,x) is upper semicontinuous at a then
lim SUpy_,ah(y, x) <= h(a, x), and so, lim SUpy--,a h(y, x) <-_ h(a, x) <-_ h(a, x). The
equality h(a,x)=h(a,x), will now follow from the property that h(a,x)
lim SUpy-,a h(y, x). Conversely, if the equality holds for each x X, then

lim sup h(y, x) <= h(a, x) <= h(a, x),
ya

which establishes the upper semicontinuity of
It should be noted that if the function h is regular at a then it satisfies the equality

that h(a, x)= h(a, x), for each x X. Moreover, if Pa is allowed to be an extended
real-valued function then the radial generalized directional derivative [10], [20] of h
at a can also be chosen as an upper convex approximation for h at a for continuous
functions h. For the properties of this directional derivative and its associated general-
ized subditterential, see [10], [20], and [22].

We now see that for the locally Lipschitz function h, the sublinear function defined
by qa(x):=p(a, x)-q’(a)x is a better upper convex approximation of h at a than
the above-mentioned approximations, where q" X - R is locally Lipschitz and Gteaux
differentiable at a, and p h + q. This follows from the fact that p(a,. is an upper
convex approximation ofp and a, and the property that pO(a, x) _-< h O(a, x) + qO(a, x)
h(a,x)+q’(a)x. This observation leads us to construct the following more general
class of upper convex approximations for locally Lipschitz functions. We first note
that the function h is said to be quasi-differentiable at a point a in the sense of
Pshenichnyi [17] if h is directionally differentiable and h’(a, x)--maxveo.h(a) V(X), for
some convex weak* compact set 0* h (a).

PROPOSITION 2.2. Let q X R be locally Lipschitz and quasi-differentiable at a
with the convex weak* compact set O* q(a). Let p h + q. Then for each v O* q(a), the
sublinear function defined by

qa(X):=p(a,x)-v(x)

is an upper convex approximation of h at a.
Proof Since q is directionally differentiable,

h+(a, x) <- p+(a, x) q’(a, x) <= p+(a, x) v(x),

for each v eO*q(a). The conclusion now follows by observing that p+(a,x) <
p(a,x).

It is worth noting that the latter classes of approximations may be used to establish
tighter optimality conditions for optimization problems. Recall that if a function h
attains its minimum at a and admits an upper convex approximation q(. at a, then
00p(0). We now present a general chain rule for differentiation with Gteaux
differentiability. Let us first note that iff" R" - R and F" X R" are locally Lipschitz,
then the composite function g := f F is locally Lipschitz. The open unit ball in R" is
denoted by B.

COMPOSITE NONSMOOTH PROGRAMMING 33

THEOREM 2.1 (generalized chain rule). Let F" X- R be locally Lipschitz near
x X and G8teaux differentiable at x; let f" Rn R be locally Lipschitz near F(x).
Assume thatfor each y, g/y is an upper convex approximation forfat y. If, for each d X,
y - @y (d) is upper semicontinuous at F(x) then

(2.1) O(fo F)(x)=

Moreover, iff is regular at F(x) and if is chosen as the Clarke directional derivative
then equality holds in (2.1) with the subdifferential OfF at zero replaced by the Clarke
subdifferential off at F(x).

Proof Let A {wT"F’(x)[w 0qvo,)(0)}. Then, the support function of A, evaluated
at a point h in X, is given by

(2.2) 7r(h) := max {L= wF’(x)h wOvo,(O)}.
The conclusion will follow if we show that for any h X,

(f F)O(x, h)<- Trx(h).

From the mean-value theorem of Studniarski [22, Thm. 4.3], for any h, k in X
and small positive,

t-l[f F(x + th + tk)-(f F)(x + tk)] t-l[f(F(x + th + tk))-f(F(x + tk))]

t-lvr(F(x + th + tk)- F(x + tk)),

for some Vz Oqz(O), z [F(x + tk), F(x + tk + th)]. Now, fix h, k X; let e > 0. Then,

It-[Fi(x + th + tk)- Fi(x + tk)]- F;(x)hl
-It-[F,(x / th + tk)- F(x)]- Fl(x)(h + k)

+ t-’[F,(x)- F,(x + tk)]+ F’,(x)k
<-_

+ It-[F(x)- F,(x + tk)]+ F$(x)kl
[t-l[Fi(x + th + tk)- F(x)] F’i(x)(h + k)l
+]t-l[F(x + tk) F(x)] Fl(x)k].

Thus,

E
(2.3) It-[Fi(x + th + tk)- Fi(x + tk)]- Fl(x)hl <-+-= e

2 2

for sufficiently small > 0. Since f" R" R and for each d Y, y qy(d) is upper
semicontinuous at F(x), it follows from the same arguments as in Proposition 2.1.5
of [5] that, for sufficiently small > 0,

Oz(0) oq,,(,,(o) + B,
and so,

VzOO(O)+eB.
Therefore, for any suciently small positive,

t-[f f(x + th + k) f F(x + k)] vt- F(x + th + tk) F(x + tk)]
i=1

34 V. JEYAKUMAR

where Ko is the Lipschitz constant of F(x) near zero, and Ki, 1, 2,. ., n are the
Lipschitz constants of Fi’s near x. Hence,

(f F)>(x, h)<- zr,(h),

and so the inclusion (2.1) holds.
Iff is further assumed to be regular at F(x) then the equality in (2.1) is obtained

by adapting the same lines of arguments as in Theorem 2.3.9 of Clarke [5]. The details
are left to the reader. [3

An inclusion of the form (2.1) is obtained in [1] under the assumption that
of(F(x)) of(F(x)). The functions f which satisfy this equality are called "normal"
at F(x) in [1]. A related chain rule is proved in [16] under a stronger differentiability
assumption. The methods of proof used in our Theorem 2.1 and Theorem 2.3.9 of
Clarke [5] suggest a more general chain rule for locally Lipschitz functions without
any differentiability assumptions. This will be presented in [14].

We now see that the generalized chain rule leads us to a general upper convex
approximation for the composite function g :-f F using the Clarke subdifferential.
A simple chain rule for convex composite functions (see 1]) also easily follows from
Theorem 2.1.

COROLLARY 2.1 (upper convex approximation with Gteaux differentiabil-
ity). Let F X R be locally Lipschitz near x X and Gteaux differentiable at x; let
f: R -0 R be locally Lipschitz near F(x). Then, the function 7rx defined by

(2.4) 7r,,(h) := max {i=1 wF’i(x)h w60f(F(x))}
is an upper convex approximation off F at x.

Proof Define q,y (h) := fO(y, h). Then, for each y, q’v is an upper convex approxima-
tion for f at y, and for each d X, y d/y(d) is upper semicontinuous at F(x). Then,
the conclusion follows from Theorem 2.1 by noting that Ov(x)(O)--of(F(x)). [3

COROLLARY 2.2. Let F X R" be locally Lipschitz and Gteaux differentiable at
x X; let f: R - R be a convex function. Then,

O(f F)(x) {v rF’(x) v Of(F(x))}

and the directional derivative off F exists at x.

Proof The conclusion follows from Theorem 2.1 by noting that the convex function
on R" is regular at F(x). [3

3. Necessary Lagrangian conditions. Consider now the constrained composite
minimization problem with a convex set constraint

minimize fo(Fo(x))
(PC)

subject to x C, f(F(x)) <= O, i= 1,2,... ,m,

where C is a convex subset of X, f, and F, 0, 1,. ., m are as in problem (P). The
functions Fi, i= O, 1,. ., m are not assumed to be.continuously Fr6chet ditterentiable
(or strictly differentiable). For (PC) with C X R", but functions F, 0, 1,. , m,
continuously ditterentiable, necessary Lagrangian conditions are known (see [7]).
In this section we show how necessary Lagrangian conditions for the general problem
(PC) can directly be obtained with Clarke subditterentials using upper convex approxi-
mations.

In passing, we note that the composite function h of the form h(x):=
g(x) +fo F(x), where g X- R", and F X R" are Gteaux differentiable and

COMPOSITE NONSMOOTH PROGRAMMING 35

f" R" -* R is convex, can be expressed simply in the form off F(x) for some suitable
locally Lipschitz function j7 and Gteaux ditIerentiable function/3.

The following alternative theorem will be required. It is an immediate special case
of an alternative theorem in [6] and [12].

LEMMA 3.1. Let A c X be convex, and let gl,"’, gp be real-valued continuous
convex functions on X. Then exactly one of the following systems is consistent"

(i) 71X /, gl(X) < O, gp(X) < O,

(3.1) P
(ii) (::lh Rp, h => O, h O) (Vx /) E h,g,(x) >-- O.

i--1

For a convex set C and a C, we denote by cone (C a) := {a (c a)[c C, a _-> 0},
the cone generated by C at a, and C/= {v X’[v(x)>=O, Vx C}, the dual cone of
C. The following Fritz John type theorem holds for (PC).

TtEOREM 3 1 Let a be feasible for (PC) and let qivi(a) be an upper convex
approximation for f at Fi(a). Suppose that the function y qy is upper semicontinuous
at Fi(a). If the problem (PC) attains a local minimum at a C, then there exist Lagrange
multipliers " > O, hi > O, 1, 2, m, not all zero, and vi Obv,(,,)(O),i=O, 1,2,...,m,
satisfying

()T TiiVi Fi((x a) >
(3.2) rvoFo(a)+i=ly a =0 Vx C,

A(Fi(a)) 0, i=l,2,...,m.

Proof Let I(a) { If (Fi (a)) 0, 1, 2,. ., m} and let gi f Fi. Suppose that
the following system has a solution:

(3.3) dX, dcone(C-a), Try(d)<0, ieI(a)U{O},

where 7r/ is defined by (see (2.2))

"rr,(d) := max wiFi(a)d w e OOF,(,)(O)
i=1

Then, the system

(3.4) d6X, dcone(C-a), g-(a,d)<O, iI(a){O}

has a solution d X. Hence, there exists ao > 0 such that

a+adC, go(a+ad)<go(a), g,(a+ad)<gi(a)=O,

whenever 0< a =< ao, and I(a). Since gi(a) < 0, for ! I(a) and gi is continuous in
a neighbourhood of a, there exists a > 0 such that gi(a + ad) < 0, whenever 0 < a _-< a,
and i_ I(a). Now, let c7 =min {ao, a}. Then, a+ ad is a feasible solution for (PC)
and go(a + ad) < go(a), for sufficiently small a such that 0 < a -<_ c7. This contradicts
the local minimum of (PC) at x= a. Hence, the system (3.3) has no solution. Since,
for each i, r(’) is a sublinear function and cone(C-a) is convex, it follows from
Lemma 3.1 that there exist z-> 0 and ,i--> 0, 1, 2,. ., m, not all zero, such that

ozTr,(x) + Y XiTra(X) >- 0 Vx cone (C- a).
iI(a)

Then, by a separation theorem and by choosing Ai=0, for i I(a), we get

oe 0(0)+ 2 x,o’(o)-(C-a)+.
i=1

36 V. JEYAKUMAR

Hence, there exist vi 00V,(a)(0), 0, 1, ", m such that

T T)+.ZVo Fo(a) + E (aAivi Fi C a
i=1

The conclusion now follows from the definition of the dual cone and Ai, for
i:I(a).

Necessary conditions of Kuhn-Tucker type follow from Theorem 3.1, under any
constraint qualification that ensures ’# 0. In particular, the following Slater type
constraint qualification does this"

(0) iI(a),qXo6cone(C-a), vTFi(a)xo<O VVO$F,(a)
where I(a)= {i[f(Fi(a))-O}; thus, if the problem (PC) attains a local minimum at
a C and a suitable constraint qualification holds at a, then there exist Lagrange
multipliers hi >-- 0, 1, 2, , m, and vi OOv,(a)(O), O, 1, 2, , m, satisfying

rvoFo(a)+ vr Fi(a) (x-a)>-O Vx C
i=1

and hif(Fi(a))=O, i= 1,2,..., m.
We now show how Clarke subdifferentials can be used to describe necessary

conditions for the composite model problem (P) with locally Lipschitz and Gteaux
differentiable functions. The following Kuhn-Tucker type optimality conditions with
Clarke subdifferentials for (P) easily follow from Theorem 3.1 by taking C X and
choosing the Clarke directional derivatives as upper convex approximations.

COROLLARY 3.1. Assume that the problem (P) attains its local minimum at x a
X. If there exists xo6X such that vTF’i(a)xo<O, for all vofi(Fi(a)), i6I(a), then
there exist Lagrange multipliers Ai>=O, i= 1, 2, , m, and viOf(Fi(a)), i=

1, 2, , m, satisfying

.--.(3.5) voFo(a)+7" E Aivf Fi(a)=O; Af(Fi(a)):O, i=l,2,...,m.
i=1

It is worth noting that the Clarke calculus [5] cannot directly be applied to our
composite model problem (P). We have seen that our upper convex approximation
scheme and our analysis in 2 pave the way for use of Clarke subdifferentials for
general composite nonlinear programming problems. Moreover, we shall show in the
next section that the condition (3.5) becomes sufficient for global optimum for certain
class of nonconvex problems.

4. Convex composite programs. In this section, we examine sufficient conditions
for global (and local) optimum of convex composite programs. We first consider

minimize f(F(x))
(UP)

subject to x C

where f" Rn- R is a convex function, F" X- R is a locally Lipschitz and Gteaux
differentiable function on X, and C is a convex subset of X. Using a mean value
theorem [2] and Theorem 2.1, we shall present a sufficient condition for a local minimum
of (UP).

PROPOSITION 4.1. For the problem (UP), let a C. If there exists a neighbourhood
N(a) of a such that

(4.1) (Vx CCIS(a)\{a}) (VvOf(F(x))) vTF’(x)(x--a)>O,
then a is a strict local minimum for (UP).

COMPOSITE NONSMOOTH PROGRAMMING 37

Proof Suppose that a is not a strict local minimum for (UP). Then, there exists
y N(a) C such that y a, and f(F(y))<=f(F(a)). From the mean value theorem
[2], there exists 0<a<l such that z=y+a(a-y)CfqN(a), za, and 0=<

fo F(a)-fo F(y)= wT(a-y), for some wO(fo F)(z). Now, by Theorem 2.1 (see
also Corollary 2.2), there exists vOf(F(z)) such that w(a-y) vT"F’(z)(a-y)>=O.
Since a-z=(1-a)(a-y), vT"F’(z)(a-z)>=O. This contradicts our assumption
(4.1). F1

Remark 4.1. In proving Proposition 4.1, we only used the property thatf is locally
Lipschitz on R. The result therefore holds for locally Lipschitz function f by replacing
Of(F(x)) by Of(F(x)) or 0),(0) in (4.1). For related sufficient conditions for locally
Lipschitz functions, see Chaney [4].

Let us now examine conditions for global minimum for (UP).
PROPOSITION 4.2 (conditions for global minimum). Consider the problem (UP).

Let a C. If F’(a)(clcone (C-a))= R n, then the following statements are equivalent:

(4.2) (i) f(F(a))=minf(F(x)),
xcC

(4.3) (ii) (:Iv Of(F(a))) (/x C) vrF’(a)(x -a)>=O.
Proof ((4.2)=:>(4.3)). This follows from the results of the previous section.
((4.3)0(4.2)). Let x C; let F(x)=y and F(a)=37. From the convexity of f,

we get

f(F(x) f(F(a f(y f(fi)

>= vr(y-fi).
By our assumption, F’(a)z=y- is solvable for zeclcone(C-a). Hence,

vrF’(a)(clcone (C-a))c R/, and so,

f(F(x))-f(F(a)) >- vrF’(a)z >- O.

Thus, (4.2) holds.
Remark 4.2. When C--X, our hypothesis in Proposition 4.2 requires that the

GRteaux derivative of F at a is onto. However, it provides new and easily verifiable
conditions for global minima of a class of nonconvex problems. We now give an
extremely simple example, merely to provide some intuitive grasp for the kind of
problem that falls within the scope of Proposition 4.2. Considerf(x, y) 3x2- 2xy + 4y2,
and F(x, y)= (x-x3, y+ y3). Then the hypothesis of Proposition 4.2 is satisfied with
C R2, e.g., at a (1,-1). Proposition 4.2 extends a well-known characterization of
optimality result for convex programs to composite (nonconvex) problems.

Now, consider the following special class of convex composite programs"

minimize fo(F(x))
(PF)

subject to xX, f(F(x))<=O, i=l,2,...,m,

where F" X- R is a locally Lipschitz and Gteaux differentiable function, and
f" R" - R, 0, 1, 2, , m are convex functions. We shall see that for this class of
programs the necessary condition (3.5) becomes sufficient for global minimum under
an additional assumption on the derivative of F at the optimum.

The null space of a function f is denoted by N[f]. Note that, by the Farkas
theorem (see [6, Thm. 2.2.6]), for each fixed x, a X, F(x) F(a) F’(a)(X) if and
only if F’(a)ru=Our(F(x)-F(a))=O. This implication is equivalent to the
inclusion that N[F’(a)r]c N[F(x)-F(a)]. Note that this null space condition is
trivially satisfied, in particular, when F’(a) is onto.

38 v. JEYAKUMAR

THEOREM 4.1. Consider theproblem (PF). Let a be afeasiblepoint of (PF). Suppose
that the constraint qualification in Corollary 3.1 holds. Assume that for each feasible x
of (PF), N[F’(a)7"]c N[F(x)-F(a)]. Then, a is a global minimum for (PF) if and
only if there exist Ai->0, i= 1,2,..., m and viOf(F(a)), i=O, 1,2,..., m such that

vF’(a)+ Aivi F’(a)=O,
i=1

Aif(F(a)) =0.

Proof. The necessary conditions follow from Corollary 3.1. We shall prove the
sufficient part. Let x X be a feasible point of (PF). Then, from the convexity property
of f, we get,

fo(F(x))-fo(F(a)) >- v(F(x)- F(a)).
From the null space condition, there exists ix(x, a)X such that F(x)-F(a)=
F’(a)ix(x, a). Now,

fo(F(x)) fo(F(a)) >= vF’(a)ix(x, a),

E AivT"i F’(a)ix(x, a),
i=1

-->-E A,f(F(x))+ E Aif(F(a)),
i=1 i=1

=>0,

since x is feasible, f/ is convex, and Aifi(F(a))=O. Hence, fo(F(x))>-fo(F(a)), for
each feasible x X and so a is a global minimum of (PF). [3

Theorem 4.1 extends the well-known necessary and sufficient optimality theorem
for convex programming problems (e.g., [6]) to a class of convex composite non-
differentiable problems. A nonsmooth version of the Wolfe duality theorem [6] is now
presented for the problem (PF). Using the optimality conditions in the previous
theorem, the following dual problem for (PF) can now be formulated:

(DF)

maximize fo(F(sr)) + Z A,f(F())
i=1

subject to O F’()TOfo(F())+ E A,F’()Tof(F()), A >=0.
i=1

Note that the generalized subdifferential of the convex composite function f F
is the set O(f F)(’):= F’()rOf(F()). Note also that z F’()Of(F()) if and
only if z vfF’(), for some vi Of(F()).

THEOREM 4.2 (duality). For the problem (PF), letf, O, 1, 2, , m, be convex,
let F be locally Lipschitz and Gdteaux differentiable on X, let (PF) attain a minimum at

x a, and let the Kuhn- Tucker type conditions (3.5) hold at a. Iffor each feasible (, A
of (DF), and x of (PF), N[F’(sr)r]c N[F(x)-F()], then the dual problem (DF)
attains its maximum and the optimal values of (PF) and (DF) are equal

Proof Let x be feasible for (PF) and let (’, A) X x R be feasible for (DF).
Then, there exist vi of(F()), i=0, 1, 2,..., m, such that v{F’()+Z=I AivF’()=
0. So,

fo((xll- fo(F(ll+ f; f(F(ll
i=1

>-_ v[(F(x)- F())- E
i=1

(by convexity of fo)

COMPOSITE NONSMOOTH PROGRAMMING 39

i=1

for some p(x, sr) X

E ,,vF’(r),l,(x,)- Y ,,fi(F())
i=1 i=1

(by the null space condition)

(by feasibility)

>-- Z ,,vF’()q(x,)- Z A,f(F(x))+ Y’, h,v(F(x)-F())
i=1 i=l i=1

(by convexity of f and nonnegativity of ,i)

>-- ,,vF’()dy(x,)+ ,,v(F(x)-F()) (by feasibility)
i=1 i=1

E ivi F’()6(x,
i=1 i=1

--0.

Hence, fo(F(x))>=fo(F())+E=l hf(F(’)); thus the weak duality holds.
Now, from the optimality condition (3.5), there exists A e R’, A->0 such that

(a,,) is feasible for (DF) and i=1Xif(F(a))=O. So,

max (DF)>=fo(F(a))+ E ,f(F(a))=min (PF).
i=1

This with the weak duality shows that (a, ,) is optimal for (DF) and the optimal values
are equal.

5. Convex transformable composite programs. In this section, we consider the
following convex composite problem"

minimize fo(F(x))
(PFT)

subject to xX, f(F(x)) =< 0, i=l,2,...,m,

where f, 0, , m, are convex functions and F’X- R" is a locally Lipschitz and
Gteaux differentiable function with range of F, F(X), convex. We shall see that these
model problems (PFT) provide a class of programs which are not convex but possess
some of the nice properties that convex programs have.

Following Heal [9], these programs are termed convex transformable programs.
However, our assumptions are much weaker than the ones used in [9, p. 402], where
F is assumed to be a bijective mapping. For various properties of ditterentiable convex
transformable programs, see [8] and [9]. The value function from R" to [-oG c] for
(PFT) is defined by

V(z):=inf {fo(F(x))lxX,f(F(x))<-z, i= 1,2,..., m}.

Note that infimum over the empty set is +o. The domain of V is denoted by

dom (V) {z e Rml V(z) < q-oo}.

We first observe the useful property that the valuefunction ofthe convex composite
problem (PFT) is convex. This follows easily from a known result of convex program-
ming [18], and [19] by writing the value function V(z) as

Y(z) inf {fo(Y)lY F(X),f(y) <= z, i= 1, 2,..., m}.

40 V. JEYAKUMAR

Note here that F(X) is convex and, for each 1, 2, , m, f is convex. We further
note that, although (PFT) is not a convex program, it falls into the category of convexlike
program in the following sense:

(v (o,)) (Vx, x x) (Xo x)

f(F(xo)) <= af(F(x,)) + (1 a)f(F(x2)),
for each 0, 1, 2, , m. For detailed study ofthis class ofprograms, see [12] and [15].

It is well known that, for a convex program, the Lagrange multipliers in the
Kuhn-Tucker relations can be completely characterized in terms of subgradients of
the value function. Here we show that this characterization is not limited to convex
problems, but continues to hold for the class of nonsmooth (nonconvex) composite
problems (PFT). The convexity property of the value function and the composite
structure in the program (PFT) allow us to obtain such a characterization theorem for
Lagrange multipliers in terms of subgradients of the value function. The interior of a
convex set C is denoted by int C. The Lagrangian function for (PFT) is denoted by
L(x, h)=fo(F(x))+Y,= h,f(F(x)).

THeOreM 5.1. For the problem (PFT), let f, i=0, 1,..., m be convex; let F:X-
R be locally Lipschitz and Gteaux differentiable on X with F(X) convex. Suppose that
0 int (dom (V)). If (PFT) attains its minimum at x a and if F’(a) is onto then the
value function V is continuous at 0, 0 V(0) is nonempty and

0V(0)= -h h R",h >=O, v[F’(a)+ E hivi F’(a) =0,
i=1

viOf(F(a)),hif(F(a))=O, i=l,2,...,m}.
Proof. Since the value function I/ is convex, the first two conclusions of the

theorem follow from the known results of convex programming [19, Thms. 16-18].
Now, from the Lagrangian duality theorem in 12], there exists I Rm, A >- 0 such that

minL(x,A)=fo(F(a)) and Aif(F(a))=O,
xEX

since (PFT) is a convexlike program. Furthermore,

0V(0)={-A ARm, A>=0,fo(F(a))=minL(x,A)}"
The last conclusion will follow from this if we show that minxx L(x, h) =fo(F(a)) if
and only if vF’(a)+Eg= hivF’(a)--O, for some veOf(F(a)). Since hf(F(a))=O,
the function fo+__ hf is convex and F’(a) is onto, the equivalence follows from
Proposition 4.2, and hence the proof is completed.

Remark 5.1. It should be noted that if 0 e int (dom (V)) then the generalized Slater
condition [12], that f(F(Xo))<0, i= 1, 2,..., m, for some Xoe X, holds. Moreover, it
is worth noting that Theorem 5.1 may also be derived from certain results in convex
analysis by converting the problem (PFT) into an equivalent convex problem.

Acknowledgments. The author is extremely grateful to the referees for their valuable
suggestions and helpful comments, which have contributed to the final preparation of
this paper.

REFERENCES

[1] J. R. BIRGE AND L. Ql, The Michel-Penot Subdifferential and Stochastic Programming, Applied
Mathematics Preprint, No. 12, University of New South Wales, Kensington, New South Wales,
Australia, 1989.

COMPOSITE NONSMOOTH PROGRAMMING 41

[2] J. M. BORWEIN, S. P. FITZPATRICK, AND J. R. GILES, The differentiability of realfunctions on normed
linear space using generalized subgradients, J. Math. Anal. Appl., 128 (1987), pp. 512-534.

[3] J.V. BURKE, Descent methodsfor composite nondifferentiable optimization problems, Math. Programming,
33 (1985), pp. 260-179.

[4] R. W. CHANEY, On sufficient conditions in nonsmooth optimization, Math. Oper. Res., 7 (1982),
pp. 463-475.

[5] F. H. CLARKE, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983.
[6] B. D. CRAVEN, Mathematical Programming and Control Theory, Chapman and Hall, London, 1978.
[7] R. FLETCHER, Practical Methods of Optimization, John Wiley, New York, 1987.
[8] M. A. HANSON AND B. MOND, Convex transformable programming problems and invexity, J. Inform.

Optim. Sci., 8 (1987), pp. 201-207.
[9] G. HEAL, Equivalence of saddle-points and optima for non-concave programs, Adv. in Appl. Math., 5

(1984), pp. 398-41,5.
[10] J. B. HIRIART-URRUTY, Mean value theorems in nonsmooth analysis, Numer. Funct. Anal. Optim., 2

(1980), pp. 1-30.
11] A. D. IOFFE, Necessary and sufficient conditions for a local minimum 2: Conditions ofLevitin-Miljutin-

Osmolovskii type, SIAM J. Control Optim., 17 (1979), pp. 251-265.
[12] V. JEYAKUMAR, Convexlike alternative theorems and mathematical programming, Optimization, 16

(1985), pp. 643-652.
[13] , On optimality conditions in nonsmooth inequality constrained minimization, Numer. Funct. Anal.

Optim., 9 (1987), pp. 535-546.
14] , Generalized differentiability properties of locally Lipschitz functions, in preparation.
15] V. JEYAKUMAR AND H. WOLKOWICZ, Zero duality gaps in infinite dimensionalprogramming, Research

Report 24, University of New South Wales, New South Wales, Australia, October 1988; J. Optim.
Theory Appl., 67 (1990), pp. 87-108.

[16] P. MICHEL AND J. P. PENOT, Calcul sous-differentiel pour des fonctions lipschitziennes et non lipschitzi-
ennes, Comptes Rendus de l’Academie des Sciences Paris, 298 (1984), pp. 269-272.

[17] B. N. PSHENICHNYI, Necessary Conditions for an Extremum, Marcel Dekker, New York, 1971.
[18] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1969.
[19] , Conjugate Duality and Optimization, CBMS-NSF Regional Conference Series in Applied

Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1974.
[20] ., Generalized directional derivatives and subgradients of nonconvex functions, Canad. J. Math.,

32 (1980), pp. 257-280.
[21] First and second order epi-differentiability in nonlinear programming, Trans. Amer. Math. Soc.,

307 (1988), pp. 75-108.
[22] M. STUDNIARSKI, Mean value theorems and sufficient optimality conditions for nonsmooth functions, J.

Math. Anal. Appl., 111 (1985), pp. 313-326.
[23] D. E. WARD, Convex subcones of the contingent cone in nonsmooth calculus and optimization, Trans.

Amer. Math. Soc., 302 (1987), pp. 661-682.
[24] D. E. WARD AND J. M. BORWEIN, Nonsmooth calculus in finite dimensions, SIAM J. Control Optim.,

25 (1987), pp. 1304-1312.

SIAM J. OPTIMIZATION
Vol. 1, No. 1, pp. 42-56, February 1991

(C) 1991 Society for Industrial and Applied Mathematics

005

LOCAL AND SUPERLINEAR CONVERGENCE FOR
PARTIALLY KNOWN QUASI-NEWTON METHODS*

JOHN R. ENGELS AND HICTOR J. MARTNEZ’:I:

Abstract. This paper develops a unified theory for establishing the local and q-superlinear convergence
of quasi-Newton methods from the convex class when part of the Hessian matrix is known. One first proves
the bounded deterioration principle due to Dennis (and popularized by Broyden, Dennis, and Mor6) for
the appropriate modifications of all update formulas in the convex Broyden class. Using standard conditions
on the quasi-Newton updates, one then deduces local and q-superlinear convergence. Particular cases of
these methods are the SQP augmented scale BFGS and DFP secant methods for constrained optimization
problems introduced by Tapia and a generalization ofthe A1-Baali and Fletcher modification ofthe structured
secant method considered by Dennis, Gay, and Welsch for the nonlinear least-squares problem. In all cases,
bounded deterioration is proved for the approximate Hessian, not for its inverse.

Key words, convergence theory, bounded deterioration, superlinear convergence, unconstrained optimi-
zation, constrained optimization, least squares, secant methods, quasi-Newton methods

AMS(MOS) subject classifications. 65K05, 90C30

1. Introduction. In this paper we extend the results for the partially known BFGS
secant method of Dennis, Martfnez, and Tapia [11] and prove convergence theorems
for those secant methods which use a secant update from the convex class studied by
Broyden [4] and Fletcher [17] and have been modified to take advantage of a known
part of the Hessian in constructing approximate Hessians.

The theory we will present can also be viewed as a generalization of the result
for the partially known DFP secant method given by Dennis and Walker [14] to any
partially known secant method with updates in the convex class. It is an extension of
the results for secant methods which use updates from Broyden’s convex class obtained
by Griewank and Toint [19] to handle those partially known secant methods which
use a secant update in the same class. Indeed, our approach is similar to the ones used
in all three of these papers. We follow Griewank and Toint in showing bounded
deterioration for the Hessian approximations in every case rather than for their inverses.

The methods of interest in this paper are iterative methods for solving

minimize f(x), f: R" R
xR

in the case when the complete computation of the Hessian matrix V:f(x) is infeasible.
In several applications, the Hessian matrix is partially available; this suggests that we
work with an approximation Bk of V:f(xk) of the form

Vf(x)--- B C(x)+A
where C(x) is a computed part of Vf(x) and A is an approximated part of Vf(x).
For example, such approximations are used in the nonlinear least-squares case [1],
[10] and proved to be very competitive, at least in the large residual case. For more
details on partially known updates and an historical survey see Dennis, Martfnez, and
Tapia [11] or Martfnez [20].

Received by the editors December 29, 1989; accepted for publication February 22, 1990.
f Department of Mathematics, Facult6s Universitaires ND de la Paix, B-5000 Namur, Belgium.
The research of this author was sponsored by SDIO/IST/ARO, Air Force Office of Scientific Research

grant 85-0243, U.S. Department of Energy grant DEFG05-86ER 25017, Department of Mathematical
Sciences, Rice University, Houston, Texas 77251-1982, and by COLCIENCIAS, Departamento de
MatemS.ticas, Universidad del Valle, A.A. 25360, Cali, Colombia.

42

PARTIALLY KNOWN QUASI-NEWTON METHODS 43

But nonlinear least squares is not the only case where algorithms are of interest.
Engels 15] used an algorithm of reduced gradient type to solve optimization problems
for large scale econometric models. He used the same framework to solve the reduced
problem, where C(x) is the known part of the reduced Hessian. His tests outperformed
a simple BFGS algorithm by a factor of 2 to 30, which increased with the size of the
problem. Another important application of partially known secant methods was given
by Tapia [22]. He used the well-known bounded deterioration of the DFP and the
inverse form of the BFGS secant updates as a basis for establishing bounded deterior-
ation of the partially known DFP and the inverse of the partially known BFGS secant
updates. Then he proved local and q-superlinear convergence for the partially known
DFP and BFGS secant versions of his algorithms for equality-constrained optimization
problems. We will give more details about these algorithms in 4.

We will call the class of symmetric rank-2 secant updates suggested by Broyden
[4] the Broyden class of secant updates. Fletcher [17] shows that this class of secant
updates can be written as

(la) B+ Broy (s, y, B, th)

where the parameter b R, and Broy (s, y, B, b) is given by

yyt BsstB
(lb) Broy (s, y, B, b) B 4 - qbstBs tttlyts stBs

(lc) u
y Bs

yts stBs"
The following are well-known choices of the parameter b:
(2a) Convex Class q5 e [0, 1],

(2b) DFP b 1,

(2c) BFGS b =0,

yts
(2d) SR1 b yts-stBs

Assuming that

(3) V2f(x) C(x)+ S(x)

where C :Rn- R is the available part of Vf, we consider the following class of
algorithms: For given Xo and Ao symmetric, define

Bk C(Xk) + Ak,

(4) Xk+l Xk B-lf(xk),
Ak+ e U(Xk, Ak),

where the update function U will be defined later (see (7) and (8) in 2).
Throughout this paper we make the following standard assumptions.
Let f: Rn- R be two times differentiable in an open convex neighborhood 12 of

a strong local minimizer x, with V2f(x,) positive definite, and let C :Rn- R be
such that C(x) is symmetric. Assume further that V2f and C are locally H/51der
continuous at x, and let v >_-0, v _-> 0 and p]0, 1 be such that for all x f

Iv2f(x)-V2f(x,)l <- lx-x,I and IC(x)-C(x,)l<-_clx-x,I
where]. denotes a vector norm and its subordinate operator norm.

44 J. R. ENGELS AND H. J. MARTNEZ

In addition, we will use the following standard notation:

Sk Xk+ Xk

Yk "vZf(x,)Sk,
r(X, X2) max (Ix,- x,[p, Ix2- x, lP),

(X+l, x),

Z(x,, x2) {x Ix x,I--< max (Ix, x,], Ix2 x,])},

E X(x+, x).

We will omit the subscript k, replace the subscript k+ 1 by the subscript +, and use

fk or C, instead off(xk) or C(x,) when no ambiguity is possible. One way of defining
y, and the most often used, is

=Vf(x+)-Vf(x),

but it can also be defined as

y=y*+C()s

where ff Ek and y is a given approximation of S(x.)s.
One of the main issues in the development of the theory given in this paper is the

bounded deterioration principle given by Dennis [7] and popularized by Broyden,
Dennis, and Mor6 [5]. It was Griewank and Toint [19] who first established a unified
bounded deterioration principle for all the members of the convex class ((1) with (2a)).
In the same paper, they gave sufficient conditions for a member of this subclass of
secant methods to have a q-superlinear rate of convergence. However, mainly due to
the fact that they assume that the problem had been transformed into a particular form
and their big 0 notation, it was not obvious how to extend this result to the partially
known secant methods described above. It also was not clear how to obtain the direct
form rather than the inverse form of the bounded deterioration principle for the
partially known secant methods, except DFP, from other approaches in the literature.
The theory given in 2 and 3 answers the open question of the local and q-superlinear
convergence of any partially known secant method which uses a secant update from
the convex class.

In 2 we prove that the partially known secant approximations to the Hessian
defined in 1 satisfy the bounded deterioration principle for th [0, 1]. Moreover, by
just setting th =0 we will have the surprising and stronger form of this bounded
deterioration for the partially known BFGS secant method given by Dennis, Martnez,
and Tapia 11].

In 3 we establish the local and q-superlinear convergence for all of the partially
known secant methods which use updates from the convex class using the theories of
Broyden, Dennis, and Mor6 [5], Griewank and Toint [19], and Dennis and Mor6 [12]

Finally, in 4 we use this theory to prove the local and q-superlinear convergence
of any partially known secant method which uses a secant update from the convex
class for the equality-constrained optimization problem and the nonlinear least-squares
problem. Particular cases of these methods are the SQP augmented scale BFGS and
DFP secant methods for constrained optimization problems introduced by Tapia [22].
Another particular case, for which local and q-superlinear convergence was proved
for the first time in Dennis, Martinez, and Tapia 11], is the A1-Baali and Fletcher 1]
modification of the partially known BFGS secant method considered by Dennis, Gay,

PARTIALLY KNOWN QUASI-NEWTON METHODS 45

and Welsch [10] for the nonlinear least-squares problem and implemented in the
current version of the NL2SOL code.

2. Bounded deterioration. Our objective in this section is to show that the partially
known quasi-Newton approximations to the Hessian derived from the convex Broyden
class ((1) with (2a)) satisfy the direct form of the bounded deterioration principle, i.e.,
for x sufficiently close to x,, these updates satisfy

(5) liB+-X72f(x,)II _--<[1 + OlO’(X x+)]lln- X72f(x,)II / cr(x, x+)

where a and a2 are positive constants, and II" is the Frobenius norm weighted by
f(x,.

The bounds needed to prove inequality (5) follow from the standard assumptions
and the fact that y and y are "good" approximations to V2f(x,)s and S(x,)s,
respectively. We formalize this in the following two propositions.

PROPOSITION 1. Letf satisfy the standard assumptions, let D be a neighborhood of
x,, and let y be an approximation to V2f(x,)s. Assume that there exists a constant K1
such that for each Xl, x2 D and s x2-Xl it holds that

ly-Vf(x,)sl KlO-(Xl, x2)ls I.
Then there are positive constants e, 2, K3, !4, 15, and K6 such that for all Xl, x2 D1,
defined by D1 {xllx x,I <-- e } c D, the following inequalities hold"

sO.

Proof We will make strong use ofthe equivalence of all norms on Rn; in particular,
for I" and l" 12 (the Euclidean norm) we assume for some sol and so2 and any x R that

Let xl, x2 D and let/31 and 2 be constants such that

IX7f-l(x,)[1, IV2/(X,)I 2
then (6a) and (6b) follow directly from the fact that y (y V2f(x,)s) + V2f(x,)s with
K2 (1s21 and 3 sclse2/32. Now choose e so that Sel2122 co/31<= 1 and D1 c D’, then
(6c) follows immediately with 4 (1 ::Kle/31)/:12/31. Finally, notice that for s 0

lyllsl_ lyl= [sl
yts Isly’s’

so that (6d) follows from inequalities (6a) and (6c) with n.s n2/K4 and/6 /3/K4" [[]

PROPOSITION 2. Let f and C satisfy the standard assumptions, let D c fl be a
neighborhood ofx,, and let y be an approximation to S(x,)s. Assume that there exists
a constant 7 such that for each xl, x2 D and s x2-xl it holds that

ly S(x,)s[7r(x, x=)lsl.

46 J. R. ENGELS AND H. J. MARTJNEZ

Then there exists a positive constant K1 such thatfor all Xl, x_ D, y y + C(g)s satisfies
lY--V2f(x,)S[K10"(X1, X2)ISI

whenever g E(Xl, x2).
Proof Let Xl, x D. Taking advantage of the structure in y and in the Hessian

(3), we can write

[Y V2f(x,)s[lY S(x,)sl + 1[C() C(x,)]s[
(x, x=)lsl + l-x,llsl

Before establishing the bounded deterioration inequality for the partially known
quasi-Newton updates derived from the convex class, we reformulate the corresponding
result obtained by Griewank and Toint [19] for the convex class. Our hypotheses are
slightly weaker than those used by Griewank and Toint. This will permit us later to
generalize their result to the partially known quasi-Newton updates.

PROPOSIXION 3. Assume that f satisfies the standard assumptions and let B+ be a
secant update from the convex class ((1) with (2a)) where s=x+-x and y is an

approximation to V2f(x,)s. If there exist D c f a neighborhood ofx, and a constant 1
such that for each x, x+ D it holds that

[y Vf(x,)sl <-/(lO(x, x/)lsl.
Then there exists a neighborhood D D such that the bounded deterioration inequality
(5) holds whenever x, x+ D1 and B is positive definite.

Proof In their paper Griewank and Toint assume that y- V2f(x+)-7f(x), but
to prove the bounded deterioration for the convex class they only need inequalities
like (6). Therefore their proof remains correct in this case and the result follows from
Proposition 1. Moreover, using the same set of inequalities and a slightly different
approach, it is possible to prove that inequality (5) holds with a bpo and a =/91 q- qPo
for some positive constants Po and /91 (see [20, Thm. 2.4] for more details), lq

Note that the stronger form of the bounded deterioration, i.e., a 0 when b 0,
obtained by Dennis, Martinez, and Tapia [11] for the BFGS secant update follows
from the last observation.

We will now prove an analogous result for the partially known quasi-Newton
updates derived from the convex class. In the theorems hereafter we use an update
function which is slightly more general than this class. We use this update function to
clarify the fact that at each iteration we can change the update formula of the
approximation of the Hessian matrix without losing any of the convergence properties
stated hereafter. Let us define the following update functions

(7a) U’(x, A) U {A + C(:)- C+},
eX(x, x+)

(Tb)

(7c)

U2(x,A)= tO t2 {Broy(s,y, C(Y)+A, b)-C+},
(x, x+) b[0, 1]

U(x, A) U(x, A) U2(x, A)
with

(7d)
s=x+-x, y=y*+C()s,
* is an approximation to S(x,)s.

First note that these update functions ofA correspond to the following update functions

PARTIALLY KNOWN QUASI-NEWTON METHODS 47

of B:

(8a) U(x, B) U {B + C(X)- C},
z ;(x, x+)

(8b) U(x,B)= [._J t.J {Broy(s,y, C()+A, b)},
Z(x, x+) b[0, 1]

(8c) U (x, B)= U (x, U (x,
and note that taking Ul(x, A) with x+ corresponds to an update formula in which
only the computed part C is updated and the matrix A remains constant; taking
Ul(x, A) with g=x corresponds to the classical chord method, i.e., the matrix B
remains constant; taking UZ(x,A) with g=x+ corresponds to the most common
partially known quasi-Newton updates derived from the convex class, and taking
U2(x, A) with g x corresponds to the standard convex class.

Let us now state our first result.
THEOREM 4. Letfand C satisfy the standard assumptions and let B+ be an update

of B defined by

B+ A+ + C+
where A+ U(x, A), given by (7), and x+ x- B-17f(x). If there exist D = , a
neighborhood of x., and a constant K such that for each x, x+ D it holds that

ly * S(x,)sl <- ,7(r(x, x/)lsl.
Then there exists a neighborhood N= N x N of (x,, Vf(x,)) such that the bounded
deterioration inequality (5) holds whenever x, B) N.

Proof. From Propositions 2 and 3 we can easily deduce that there exist, positive
constants SOl and s such that B/ Broy (s, y, B, b) with b e [0, 1] satisfies

(9) IlB+-V=f(x,)ll<=(l/,,)llB-V=f(x,)ll/2,
whenever x, x+ D and B is positive definite.

We will now prove a similar result for U(x, B). We will make strong use of the
equivalence of all norms on R""; in particular, for [. land I1" we assume for some
,/> 0 and any M R"", that

(10) IIMII-<_ nlMI.
If we define the neighborhoods N of X, and N of Vf(x,) as

N {xllx-x,I
and

Nz={BIB=A+C(x),x N and IA-S(x,)l<e2}
then, following the same arguments used by Broyden, Dennis, and Mor6 [5], it is
possible to prove that there exist constants e and e2 such that N1 c D, N2 contains
only positive-definite matrices and x+ e N for any x N and B N2 (see Engels 16,
Thm. 1] for more details).

It follows that/r A + (B + (- C, is positive definite and/- well defined.
Therefore Broy s, y, B, cb) and Broy s, y, M, oh)with b[0,1] and E(x,x+) are
well defined and satisfy (9).

Now, since

11/- V2f, A- a- V2f, -4- C,- C, A- C C

(11)
_-< IIs-v2f, /2n,, o

48 J.R. ENGELS AND H. J. MARTNEZ

inequality (5) holds with al 0 and a2 2r/Vc for B+ ul(x, B) and, if B+ U2(x, B),
we have from (9)-(11)

with 3 (+2enUc + 2nUc). We conclude that for each (x, B) N N x N2, and
x+=x-B-7f(x), the bounded deterioration inequality (5) holds for each B+6
U.(x, B). 0

3. Local convergence theory. In this section we will establish the local and q-
superlinear convergence of the partially known quasi-Newton updates derived from
the convex class. The local and linear convergence follows directly from the results of
2 and the Broyden-Dennis-Mor6 theory. For completeness we restate the linear

convergence theorem as follows.
THEOREM 5. Letfand C satisfy the standard assumptions. Then for each r]0, 1[,

there are positive constants er and 6r such that for]Xo- x.] < er and]Ao- S(x.)] < 6r,
the sequence {Xk}, defined by (4) with U(xk, Ak) defined by (7), is well defined and
converges to x.. Furthermore, it holds that

IXk+ 1-- X:[fixk X,]
for each k >= O, and {IBkl}, {lB ll are uniformly bounded.

Of course to prove the superlinear convergence we must restrict the update
functions to their second part, i.e., U2(x, A) and U(x, B), respectively. Due to the
invariance properties of the updates in the Broyden family and the fact that C can
be changed according to the changes in V2f, we assume without loss of generality that

V2f(x,) I.

The norm II" then reduces simply to the Frobenius norm.
THEOREM 6. Let f and C satisfy the standard assumptions mentioned in 1. Then

for (xo, Ao) sufficiently close to (x,, S(x,)) the sequence {Xk} defined by (4) with the
update function defined by (7b) and (Td), converges q-superlinearly to x,.

Proof. We will prove that

(12) lim
II(Bk I) Sk

0.

The superlinear convergence then follows from the well-known Theorem 2.2 of Dennis
and Mor6 [12].

First consider the matrix

where M=A+C=B+C-C.

(13)

B_ Broy (s, s, M, th)

Using arguments similar to those of Griewank and Toint [19], we get

0<= h(6,/, s) def ii/r 1112_ lIB,__ 1112
s=(1-){(1-] +2[stMMMs

+b 1- sts ,l +24 sts sts ,l

+ b(1-b){ (s’/Q/Qs]
2

s’lf4s] -(s’]

PARTIALLY KNOWN QUASI-NEWTON METHODS 49

We can find a constant 74 independent of b, such that

(14) lIB+- nll--< sea(JIM III / 2).
From Theorem 5, liB-III is bounded, and it holds that for some

II/ I -<- II/ n / n I

It then follows from (14) that

and consequently,

IIB+-B’

< lIB,- III + 6r,

liB+- III= (lln- Zll + 6)2

(15)

-IIn- III 2
for some 6 and 7. Using (13) we obtain that

0 h(6, , s)= II- zll=- IIn- III 2

(11-
(6)

(2w
<8

for some 8. We deduce from (15) and the linear convergence of {x} (Theorem 5)
that the sum

E (+ [[n -tll2- [[B+,-
k0 k0

k0

is finite; and this implies that

lim [8+ IIn -tll=- B+,- tll3 0;

and by (16) it holds that

lim h(, M, s)= 0.
k

Using arguments similar to those of Griewank and Toint 19], we prove, for an arbitrary
sequence {} in [0, 1] and an arbitrary sequence {}, E, that

lim
[I(M I)s

0,

50 J. R. ENGELS AND H. J. MARTNEZ

The conclusion (12) follows then from

0 =< lim I[(Bk I) Sk
IIs ll

_<- lim
II(M I) Sk + lim 2 r/VcCr

C,)3s ll

4. Applications. In this section we use the results of 2 and 3 to establish the
local and q-superlinear convergence of any partially known secant method which uses
an update from the convex class for the constrained optimization problem and the
nonlinear least-squares problem. Particular cases of these methods are the SQP aug-
mented scale BFGS and DFP secant methods for constrained optimization problems
suggested by Tapia [22]. Another particular case (for which local and q-superlinear
convergence was proved for the first time by Dennis, Martinez, and Tapia [11]) is the
A1-Baali and Fletcher [1] modification of the partially known BFGS secant method
considered by Dennis, Gay, and Welsch [10] for the nonlinear least-squares problem
and implemented in the current version of the NL2SOL code.

4.1. Nonlinear least squares. Our presentation of the nonlinear least-squares prob-
lem follows Chapter 10 of Dennis and Schnabel [13]. The nonlinear least-squares
problem is

(17) minimizef(x)=1/2 R(x)tR(x) - E ri(x)2
i-l

where rn -> n, the residual function R:R" R" is nonlinear, and ri(x) denotes the ith
component function of R(x). Straightforward calculations show that the gradient of
f is given by

Vf(x)=J(x)tR(x)
where J(x) denotes the Jacobian of R at x, and the Hessian of f is given by

where

v:f(x)=C(x)+S(x)

C(x)=J(x)’J(x), S(x)-- E ri(X)V:zri(X),
i-1

and Vri(x) is the Hessian of ri at x.
By a partially known secant method for the nonlinear least-squares problem (17),

we mean the iterative procedure defined by (4) and (7) where s is the quasi-Newton
step defined by

Bs -Vf(x)
and y and y* are approximations to V2f(x,)s and S(x,)s, respectively.

The choice for y

(18) y* [J(x+) J(x)]’R(x+)
was suggested independently by Dennis [8] and Bartholomew-Biggs [3] and is currently
used in the algorithms given by Dennis, Gay, and Welsch [10] and A1-Baali and
Fletcher [1]. Initially, Dennis, Gay, and Welsch [10] used, in the NL2SOL code,

(19) y=Vf(x+)-Vf(x),

PARTIALLY KNOWN QUASI-NEWTON METHODS 51

and, in the update function, U2(x, A). It was AI-Baali and Fletcher [1] who first
suggested using

y=y -ll-J(xw)tj(x+)s

instead of (19), introducing, in this way, the known part of the problem into the update
function. This modification improved the numerical performance of the NL2SOL code
[9].

Consider the following standard assumptions for problem (17).

(SA1) Problem (17) has a strong local minimizer x, with V2f(x,) positive definite.

(SA2) The function f C2, and J and V2f are locally H61der continuous at x,,
i.e., there exist L >- O, L_-> O, e => 0 and p]0, 1] such that

and

IJ(x)-J(x,)l--< lx-x,I"

IVY(x) v2f(x,)l L2Ix x,Ip

for xe D={x[lx-x,l< e}.

The following lemma will serve as the foundation of our convergence result for
the nonlinear least-squares algorithm (17) as it was in Dennis, Martfnez, and Tapia 11].

LEMMA 7. Assume that the standard assumptionsforproblem (17) hold. Then, there
exists a positive constant K such that

ly S(x,)sl <- Kr(x, /+)lsl

where y is given by (18), x, x+ e D, and s x+- x.
The following result is a generalization of Theorem 4.1 of [11].
THEOREM 8. Assume that the standard assumptions for problem (17) hold. Then,

there exist positive constants e, 6 such that, for Xo R and symmetric Ao R satisfying
IXo- x,I < e and [Ao- S(x,)[< 6, the iteration sequence {Xk} generated by the partially
known secant method which uses the update function U2(x, A) given by (7) for problem
(17) is q-superlinearly convergent to x,.

Proof The proof of this theorem is a straightforward application of Theorem 6
and Lemma 7. [3

4.2. Constrained optimization. We will consider the special case of the nonlinear
programming problem where we only have equality constraints, namely,

minimize f(x)
(20)

subject to g(x) 0

where f: R ---> R, and g" R --> R" are smooth functions (rn _-< n).
Associated with problem (20) is the Lagrangian function

l(x,A)=f(x)+g(x)’A.

Straightforward calculations show that the gradient of with respect to x is
given by

Vxl(x, A Vf(x) + Vg(x)A,

52 J. R. ENGELS AND H. J. MARTNEZ

and the Hessian of with respect to x is given by

VZl(x, h) V2f(x)+ 2
i=1

where gi" R’-> R denotes the ith component function of g.
Following Tapia [22], by the SQP augmented scale secant method for the con-

strained optimization problem (20), we mean the iterative process

(21) x+ x + s, h+ h + AA, A+ U(x, A)

where A is a symmetric approximation to Vl(x, h), and s and AA are, respectively,
the solution and the multiplier associated with the solution of the quadratic program-
ming problem

minimize V1 x, h s + 1/2s ’As
(22)

subject to Vg(x)’s+g(x)=O.

In (22), A is a symmetric approximation to Vaxl(x, h), and U(x, A) is the partially
known update function given by (7) where

y V,/(x+, h+)- Vxl(x, a+),

(23) y y* + pVg(x+)Vg(x+)’s,

B=A+pVg(x+)Vg(x+)’

and p is the penalty constant in the augmented Lagrangian function

L(x,h; p)=l(x,h)+1/2pg’g, p>=O.

Observe that B is a partially known approximation to the Hessian of the augmented
Lagrangian at the solution, i.e.,

B.V2L(x,,h,; p)=Vl(x, h,)+pVg(x,)Vg(x,)

since the last term of

V2xt(X, l’ P) V2xl(X, l)"]oVg(X)Vg(x)t’Jf-]) 2 gi(X)V2gi(x)
i=1

vanishes at the solution x.. Moreover, Tapia [22] gave strong arguments for ignoring
this second-order term in any type of SQP augmented Lagrangian quasi-Newton
method.

Three issues are important in the derivation of the SQP augmented scale secant
method: first, the use of the augmented Lagrangian instead of the standard Lagrangian
to compensate the lack of positive definiteness of vz,,/(x., .); second, the use of the
structure of VZL(x., h.; p) as much as possible; and third, the fact that the penalty
constant cancels out in all parts of the algorithm except in the scale of the secant
update (see [22] or [20] for the definition of scale).

In fact, the SQP augmented scale secant method is an SQP (standard) Lagrangian
secant method with a modified (or augmented) scale (see [20] and [22] for more
details). It is this change of scale which takes care of the lack of positive definiteness
in the Hessian of the Lagrangian and allows us to use positive-definite secant updates,
like the ones from the convex class, for constrained optimization problem (20) without
assuming that Vl(x,, A,) is positive definite.

PARTIALLY KNOWN QUASI-NEWTON METHODS 53

Clearly, since y*’s is not necessarily positive, the augmented scale secant updates
in (22) do not have the hereditary positive-definiteness property. However, they do
possess this property on N(x/) where

(24) N(x)= {z R"" Vg(x)’z=O}

(Tapia [22, Prop. 4.4]).
The following are standard assumptions in the theory of quasi-Newton methods

for problem (20).

(SA1) Problem (20) has a local solution x, with associated multiplier A,.

(SA2) The functions f and gi, i= 1,..., m have second derivatives which are
locally H61der continuous at x,, i.e., there exist L>= O, Li >= O, 1,. ., m,
e >= 0, and p]0, 1 such that

(25a) IV2f(x) V2f(x,)l =< LIx x,Ip

and

(25b) IV2gi(x) V2g(x,)[<_- Llx x,[p 1,..., m

for x D={xllx-x,l< e}.

(SA3) The matrix

(V2/(x,, A,) Vg(x,))vZ/(x,, A,)
\ Vg(x,)’ 0

is nonsingular.

To develop the local convergence theory for problem (20), we will use the following
well-known results of Avriel ([2, Cor. 12.9. Thin. 12.10]).

Result 9. Assume (SA1) holds. Then (SA3) is equivalent to the following two
statements"

(SA3a)

(SA3b)

The matrix Vg(x,) has full rank.

The matrix V2l(x,, A,) is positive definite on the subspace N(x,), where
N(x) is given by (24).

Result 10. Assume that the standard assumptions for problem (20) hold. Then
there exists p, such that vZ,,L(x,, A,; p) is positive definite for any p > p,.

Tapia [22] used the Fontecilla-Steihaug-Tapia [18] and Broyden-Dennis-Mor6
[5] theories to prove that, under the standard assumptions, the SQP augmented scale
BFGS and DFP secant methods were locally and q-superlinearly convergent to x,. In
this section, we will use a similar approach to generalize this result to the SQP augmented
scale secant method which uses the update function U(x, A) given by (7). The main
difference in our approach is the unified way in which we obtain the bounded
deterioration inequality for all the augmented scale secant updates from the convex
class. Indeed, this inequality follows from Theorem 4 and the following lemma.

LEMMA 11. Assume that the standard assumptions for problem (20) hold. Then,
thereexists a positive constant K such that

(26) ly -VZl(x,, A,)s Kcr(x,

where y is given by (23), x, x+ D, and s x+- x.

54 J. R. ENGELS AND H. J. MARTNEZ

Proof. Observe that by adding and subtracting the appropriate term we have

y -Vx/(X,, A,)s Vfl(x+, A+)- Vfl(x, A+)-V2x/(X,, A,)s
Vf(x+) + Vg(x+)A+ Vf(x) Vg(x)A+

2-Vf(x,)s- 2 A,V gi(x,)S
i=1

(27t Vf(x+)-Vf(x)-vZf(x,)s

-F 2 [Vgi(x+)-Vgi(x)-V2gi(x,)s]A,
i:1

i=1

+ 2 [A+-A]V2gi(x,)s
i=1

andwhere A+ , are the ith component of I+ and i,, respectively.
From (25) and Lemma 4.1.15 of Dennis and Schnabel [13] we have

(28a) IVf(x+) Vf(x) V2f(x,)s[<- Let(x, x+)ls
and

(28b) [Vg(x+) Vgi(x) V2gi(x,)sI <= gio(x, X+)ISI, 1,..., m.

Therefore, using (27), (28), and the Cauchy-Schwarz inequality

ly -X7/(x,, A,)sl--< Lr(x, x/)lsl/ E tilh,lcr(x, x/)lsl
i=1

at- Z LilA+ A,lo-(x x+)ll / Z Li]A+ A,] Isl
i:1 i:1

(29)
-<_ L+ 2 gl,l ,(x, x/lsl

i=1

+
i=1 i=1

where L-/= Ivgi(x,)l
From Proposition 4.2 of Fontecilla, Steihaug, and Tapia [18] we have that there

exists a positive constant 3’ such that

(30) Ih+ ,1 _-< 3/Ix x,I
for all x close enough to x,.

Therefore, using (29) and (30), we establish (26) with

(31) K L+
i=1 i=1 i=1

TIqZOF,M 12. Assume that the standard assumptions for problem (20) hold and
o>-O has been chosen so that V/(x,, A,) is positive definite (see Result (10)). Then,
there exist positive constants e, such that, for Xo R and symmetric Ao R satisfying
[Xo- x,I < e and IAo- Vl(x,, A,)l < , the iteration sequence {x} generated by the SQP
augmented scale secant method which uses the update function U(x, A) given (7) is
q-superlinearly convergent to x,.

PARTIALLY KNOWN QUASI-NEWTON METHODS 55

Proof. First, let us remember that the quadratic problem (22) would have the same
solution if we used B and VxL(x, A; p) instead of A and V,l(x, A), respectively (Tapia
[22, Prop. 3.1]). Now, the bounded deterioration inequality for B, the partially known
secant approximation to V2,L(x., A., p), follows from Lemma 11 and Theorem 4 for
the augmented scale secant update function U2(x, A) given by (7). In turn, this bounded
deterioration inequality allows us to use Theorem 3.1 of Fontecilla, Steihaug, and
Tapia [18] to establish the existence of the constants e, and the q-linear convergence
of the sequence {Xk}. Then, using an argument identical to the one we used in Theorem
6, we can prove

(32) lim
I[Bk--VL(x*’ A,; O)]Skl

=0.
k ISk}

Finally, the q-superlinear convergence follows from Corollary 5.4 of Fontecilla,
Steihaug, and Tapia 18].

5. Conclusions. In this paper we have proved local and superlinear convergence
for partially known quasi-Newton updates generated from the convex Broyden class.
This theory allowed us to generalize both the results given by Dennis, Martfnez, and
Tapia [11] and those given by Tapia for equality-constrained optimization problems
[22]. We feel that these updates are of great potential value as it has been shown by
the popular NL2SOL code [10]. There is a very good chance that, by imposing some
restrictions on the computed part C(x) of the Hessian, the results of this paper could
be extended to obtain global convergence theorems of the sort given by Powell [21]
and Byrd, Nocedal, and Yuan [6].

Acknowledgments. Special thanks go to Richard A. Tapia and John E. Dennis, Jr.
Their wise advice, opportune suggestions, and encouragement made this work really
easy.

REFERENCES

[1] M. AL-BAALI AND R. FLETCHER, Variational methods for non-linear least-squares, J. Oper. Res. Soc.,
36 (1985), pp. 405-421.

[2] M. AVRIEL, Nonlinear Programming: Analysis and Methods, Prentice-Hall, Englewood Cliffs, NJ, 1976.
[3] M. C. BARTHOLOMEW-BIGGS, The estimation of the Hessian matrix in nonlinear least squares problems

with non-zero residuals, Math. Programming, 12 (1977), pp. 67-80.
[4] C. G. BROYDEN, Quasi-Newton methods and their application to function minimization, Math. Comp.,

21 (1967), pp. 368-381.
[5] C. G. BROYDEN, J. E. DENNIS, JR., AND J. J. MORI, On the local and superlinear convergence of

quasi-Newton methods, J. Inst. Math. Appl., 12 (1973), pp. 223-245.
[6] R. H. BYRD, J. NOCEDAL, AND Y. YUAN, Global convergence of a class of quasi.Newton methods on

convex problems, SIAM J. Numer. Anal., 24 (1987), pp. 1152-1170.
[7] J. E. DENNIS, JR., Toward a unified convergence theoryfor Newton-like method, in Nonlinear Functional

Analysis and Applications, L. B. Rall, ed., Academic Press, New York, 1971.
[8] , A brief survey of convergence results for quasi-Newton methods, in Nonlinear Programming,

SIAM-AMS Proceedings, R. Cottle and C. Lemke, eds., 1976.
[9] , Private communication, Department of Mathematical Sciences, Rice University, Houston, TX,

April 1987.
[10] J. E. DENNIS, JR., D. M. GAY, AND R. E. WELSCH, An adaptative nonlinear least-squares algorithm,

ACM Trans. Math. Software, 7 (1981), pp. 348-368.
[11] J. E. DENNIS, JR., H. J. MART[NEZ, AND R. A. TAPIA, Convergence theoryfor structured BFGS secant

method with an application to nonlinear least squares, J. Optim. Theory Appl., 61 (1989), pp. 161-178.
[12] J. E. DENNIS, JR. AND J. J. MOR, A characterization ofsuperlinear convergence and its application to

quasi-Newton methods, Math. Comp., 28 (1974), pp. 549-560.

56 J. R. ENGELS AND H. J. MARTNEZ

[13] J. E. DENNIS, JR. AND R. B. SCHNABEL, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.

[14] J. E. DENNIS, JR. AND H. F. WALKER, Convergence theoremsfor least-change secant updates methods,
SIAM J. Numer. Anal., 18 (1981), pp. 949-987.

[15] J. R. ENGELS, Simulation and optimization of macro-econometric models: a new computational method,
SIAM Conference on Optimization, Houston, TX, May 18-20, 1987.

[16], Local convergence analysis for partially known quasi-Newton updates, Tech. Report 88/13,
Department of Mathematics, Facult6s Universitaires ND de la Paix, B-5000 Namur, Belgium, 1988.

[17] R. FLETCHER, A new approach to variable metric algorithms, Comput. J., 13 (1970), pp. 317-322.
[18] R. FONTECILLA, Z. STEIHAUG, AND R. TAPIA, A convergence theory for a class of quasi-Newton

methods for constrained optimization, SIAM J. Numer. Anal., 24 (1987), pp. 1133-1152.
[19] A. GRIEWANK AND P. L. TOINT, Local convergence analysis for partitioned quasi-Newton updates,

Numer. Math., 39 (1982), pp. 429-448.
[20] H. J. MARTNEZ, Local and superlinear convergence of structured secant methods from the convex class,

Ph.D. thesis, Department of Mathematical Sciences, Rice University, Houston, TX, 1988.
[21] M. J. D. POWELL, Convergence properties of a class of minimization algorithms, in Nonlinear Program-

ming 2, O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, eds., Academic Press, New York,
1975, pp. 1-27.

[22] R. A. TAPIA, On secant updates for use in general constrained optimization, Math. Comp., 51 (1988),
pp. 181-202.

SIAM J. OPTIMIZATION
Vol. 1, No. 1, pp. 57-82, February 1991

(C) 1991 Society for Industrial and Applied Mathematics

006

MINIMIZATION OF LOCALLY LIPSCHITZIAN FUNCTIONS*

JONG-SHI PANG, SHIH-PING HANt, AND NARAYAN RANGARAJt

Abstract. This paper presents a globally convergent model algorithm for the minimization of a locally
Lipschitzian function. The algorithm is built on an iteration function of two arguments, and the convergence
theory is developed parallel to analogous results for the problem of solving systems of locally Lipschitzian
equations. Application of the theory to a wide range of nonsmooth optimization problems is discussed.
These include the minimax problem, the composite optimization problem, the implicit programming problem,
and others. A recently developed nonmonotone linesearch technique is shown to be applicable in this
nonsmooth context, and an extension to constrained problems is also presented.

Key words, nonsmooth optimization, locally Lipschitzian functions, Dini stationary points, global
convergence, minimax problem, implicit programming

AMS(MOS) subject classifications. 90C30, 90C33

1. Introduction. Starting with the seminal work of Clarke [4], there has been a
growing amount of research in the area of nonsmooth optimization. Broadly speaking,
this topic is concerned with the optimization of an objective function which is not
differentiable in the traditional sense of Fr6chet or Gteau; constraints defined by
nonsmooth functions may also be present.

Much of the algorithmic development in nonsmooth optimization has been based
on the notion of the subgradient as well as on Clarke’s generalized subdifferential or
their variants. There are several texts which provide a good summary of various solution
methods in this area [6], [10], [17], [35], as well as a large body of published articles
which include [2], [9], [14], [18], [19], [20], [22], [23], [36], to name just a few.

In the present paper, we propose a fairly general model algorithm for minimizing
a nonsmooth function which is assumed only to be locally Lipschitz continuous. We
develop a convergence theory for the algorithm and discuss the specialization of the
theory to some specific classes of nondifferentiable optimization problems. Extensions
of the algorithm to allow for nonmonotone linesearch and to treat problems with
constraints will also be discussed.

The main difference between our model algorithm and many existing methods for
nonsmooth optimization problems is that we make no explicit use of the concept of
subgradients; instead, it is built on an abstract function of two variables which is used
to define the direction-finding subproblem at each iteration. Under appropriate assump-
tions, our algorithm will compute what we call a Dini stationary point of a locally
Lipschitzian function. The development in the present paper is closely related to that
in the recent paper [15] in which a similar theory is established for the problem of
solving systems of nonsmooth equations by Newton-type descent methods.

The research of this paper is partly motivated by our interest in developing some
robust numerical methods for solving the class of mathematical programming problems
subject to equilibrium constraints [16]. Such problems have diverse applications and
include the so-called bilevel programming problem 1], the continuous network design

Received by the editors April 16, 1990; accepted for publication (in revised form) June 13, 1990.
? Department of Mathematical Sciences, The Whiting School of Engineering, The Johns Hopkins

University, Baltimore, Maryland 21218.
$ The work of this author was based on research supported by National Science Foundation grant

ECS-8717968.

57

58 J.-S. PANG, S.-P. HAN, AND N. RANGARAJ

problem in transportation systems [21], and the Stackelberg game problem in oligopolis-
tic models of competition [33]. In general, these problems are very difficult to solve
due to their intrinsic nonconvexity and nonditterentiability; they are not easily amenable
to solution by existing methods for nonditterentiable problems. There have been many
heuristics proposed under very restrictive smoothness/differentiability assumptions
[7], [11]. We shall consider an important subclass of these mathematical programs
with equilibrium constraints and discuss how the specialization of our model algorithm
results in an effective descent method for solving these problems. The convergence of
the resulting method requires only a single ditierentiability assumption at the candidate
solution; this is a significant improvement over the existing methods, which essentially
treat the nonsmooth problem as a smooth problem by assuming the continuous
difterentiability condition throughout.

The organization of this paper is as follows. In the next section, we define the
concept of a Dini stationary point of a locally Lipschitzian function, describe the
model algorithm, and establish its convergence. Section 3 demonstrates how various
known algorithms for special classes of nonsmooth optimization problems can be fitted
into this framework. In 4, we discuss the implicit programming problem; this is the
special case of the mathematical programming problem with equilibrium constraints
that we mentioned above. Finally, the last two sections extend the general theory to
allow for nonmonotone linesearches and to handle constrained problems.

2. A model descent method. Let O:R" R be a locally Lipschitzian function.
Consider the optimization problem

(1) minimize 0 (x): x R n.
In this section, we describe a globally convergent descent method for solving the
problem (1). Before doing this, we review some concepts involving directional deriva-
tives and define the notion of a Dini stationary point of the function 0. Most of the
derivative ideas reviewed have been widely used in the nonsmooth optimization
literature (see [4], [17]).

2.1. Directional derivatives and Dini stationary points. We first recall some familiar
definitions. For a function 0: R" - R, the (usual) directional derivative of 0 at x R"
in the direction d R" is defined to be

O(x+d)-O(x)
O’(x, d):= lim

A0

if the limit exists. The function 0 is said to be directionally differentiable at x if O’(x, d)
exists for all d R". A slightly more general concept is the upper Dini directional
derivative of 0 at x in the direction d; this is defined to be

O(x+a)-O(x)O(x, d):= lim sup
AO

The Clarke generalized directional derivative of 0 at x in the direction d is defined to
be

O(x, d):= lim sup
O(y + Ad) O(y).

A-O+,y

In general, both the upper Dini directional derivative O(x, d) and the Clarke
directional derivative O(x, d) are well defined and finite if 0 is locally Lipschitzian at

MINIMIZATION OF LOCALLY LIPSCHITZIAN FUNCTIONS 59

x; whereas the usual directional derivative O’(x, d) need not exist for such a 0. Note
that if 0 is locally Lipschitzian at x, then,

O(x, d) lim sup
O(x + hv)- O(x),

v-,d, ,X O A

and a similar expression holds for the Clarke derivative O(x, d). Clearly, we have

(2) O(x,d)>-O(x,d),
and O(x, d) O’(x, d) for all d e R" if 0 is directionally ditterentiable at x. Moreover,
all three directional derivatives are positively homogeneous in d for each fixed x; i.e.,
for all scalars a-> O,

O(x, Ad)= AO(x, d), O(x, Ad) AO(x, d) and O’(x, ,d) aO’(x, d).

It is not difficult to show that if 0 is locally Lipschitzian at x, then both the upper
Dini directional derivative O(x, d) and the Clarke directional derivative O(x, d) are
Lipschitz continuous functions in d with the same modulus as 0 [4]. The same
conclusion holds for the directional derivative O’(x, d) if 0 is directionally ditterentiable
at x.

The function 0 is said to be subdifferentiably regular at x if 0 is directionally
differentiable at x and O(x, d)= O’(x, d) for all d [4]. The function 0 is said to be
strongly F(rchet)-differentiable or to have a strong F-derivative at x if the gradient
vector V0(x) exists and the following limit condition holds"

O(u)- o(v)-VO(x)(u v)
lim O.

It is easy to see that if 0 has a strong F-derivative at x, then 0 is subdifferentiably
regular there; moreover, we have O(x, d) O(x, d) O’(x, d) V (x)rd for all d
R n. It is well known that a convex function 0" Rn R is subditterentiably regular at
every point x R n.

By applying essentially the same proof of [25, Thm. 2] and replacing the usual
directional derivative with the upper Dini directional derivative, we can establish the
following result, which relates the strong F-ditterentiability of 0 at a given point x to
the continuity of the upper Dini directional derivative 0(., d) at x.

PROPOSITION 1. Suppose that O"RR is Lipschitz continuous in a neighborhood
of a vector x. Then, the following three statements are equivalent:

(a) The upper Dini directional derivative 0 (x, satisfies the stronger limit property"

O(u)-O(v)-O(x,u-v)
lim 0;

u,v-x,x) Ilu-vll
(b) 0 has a strong F-derivative at x;
(c) The upper Dini directional derivative 0(d) is continuous at x, and the

continuity is "uniform" for each d R", i.e., for each e > O, there exists a neighborhood
N ofx such that for all vectors y N and all d R,

IO(x, d)- O(y, d)l--<
In the context of optimization, the directional derivative, if it exists, can be used

to describe optimality as follows. If x is a local minimum point of the problem (1),
then x is a stationary point of 0, i.e.,

(3) O’(x, d) >- 0 for all d

60 J.-S. PANG, S.-P. HAN, AND N. RANGARAJ

Conversely, if 0 is convex, then a vector x satisfying (3) must be a globally optimal
solution of (1).

If 0 is locally Lipschitzian, we call a vector x R a Dini stationary point of 0 if

(-4) OD(x, d) >= 0 for all d R".

It is easy to see that if x is a local minimum point of a locally Lipschitzian function
0, then x must be a Dini stationary point of 0. If 0 is directionally differentiable at x,
then x is a Dini stationary point of 0 if and only if x is a stationary point of 0.
Nevertheless, if 0 fails to be directionally differentiable at x but is locally Lipschitzian
there, then the concept of x being a (usual) stationary point is meaningless, while that
of x being a Dini stationary point remains well defined.

In view of the inequality (2), it follows that if x is a Dini stationary point of 0,
then x must be a stationary point of 0 in the sense of Clarke [17], i.e., OeO0(x), where
O0(x) is Clarke’s generalized gradient:

O0(x) {a Un O(x, d) >= a Td for all d R"}.

Nevertheless, if 0 is not subdifferentiably regular at x, then it is possible for x to be
a point such that O O0(x), but x is not a Dini stationary point of O. For example, if

O(x)=-lxl, xR,

then O(O,d)=ldl for all d eR; thus, x=O satisfies the property OeO0(x). Since
oD(o, d) 0’(0, d)=-[dl, clearly x =0 is not a Dini stationary point of this function O.

In its most general form, the model algorithm to be described later is designed
to compute a Dini stationary point of a locally Lipschitzian function O.

2.2. Background of method. Like many descent methods for minimizing a smooth
objective function, our method for solving the problem (1) is iterative; each iteration
consists of two major steps: a direction-finding step and a linesearch step. In traditional
smooth optimization, the direction-finding step typically involves the minimization of
a quadratic approximation of 0 which depends on the gradient vector of 0 at the
current iterate. More specifically, if x k is given, we compute a search direction d k by
solving the problem

(5) minimize VO(xk)Td +1/2dTBkd

where Bk is a symmetric positive-definite matrix which is, presumably, an approxima-
tion of the Hessian matrix V20(xk). The linesearch step involves computing a stepsize
k >0 SO that the next iterate xk+l--xk-k-’rkdk satisfies a certain rule which yields
"sufficient decrease" in the objective function 0.

When the gradient vector V O(xk) does not exist, but 0 is locally Lipschitzian, we
could, in principle, replace the direction-finding problem (5) by the following one:

(6) minimize OD(xk, d)+1/2dTBkd.

Nevertheless, as stated in Proposition 1, if 0 is not Fr6chet ditterentiable, the directional
derivative OD(x, d) need not be continuous in x for each fixed d. As we shall see, such
continuity of the Dini directional derivative is essential for the convergence of a descent
method that makes use of problem (6) to generate the search direction at each iteration.

In summary, the nondifferentiability of 0 has created two technical issues when
either one of the subproblems, (5) or (6), is used as a direction-finding procedure. One
is the nonexistence of the gradient vector V 0(x); the other is the discontinuity of the

MINIMIZATION OF LOCALLY LIPSCHITZIAN FUNCTIONS 61

directional derivative OD(x, d) in the variable x. The algorithm to be described next
is a proposal to circumvent these two difficulties.

2.3. Description of method. Consider the problem (1) where 0 R
_
R is locally

Lipschitzian. Let xg be a given iterate. We consider the following subproblem to obtain
a search direction d g:

(7) minimize O(Xk, d)+1/2d rBkd" d R

where : R x R R is a given function and Bk R is a given symmetric matrix.
Examples of the function b corresponding to specific functions 0 will be given in 3.
For now, we make the following blanket assumptions on the function and the
sequence of matrices {Bk}:

(A1) For each fixed vector x, the function O(x, d) is continuous in the variable d,
and O(x, 0)= 0. Moreover, for all (x, d) R x R n,

(8) O(x,d)>-OD(x,d);
(B) There exist constants a >-]3 > 0 such that for all x R,

fix rx <- xrBkX <-- axrx for all k.

We do not assume the continuity of the function O(x, d) in the x-variable. This
is consistent with the previous discussion about the discontinuity of the upper Dini
directional derivative in the same variable. The condition (8) says that the iteration
function majorizes the upper Dini directional derivative 0 D. Another noteworthy
point is that unlike the various directional derivatives, the function O(x, d) is not
assumed to be positively homogeneous or Lipschitz continuous in d.

Besides having the theoretical properties (A1) and others which will be stated
later, the iteration function O(x, d) should render the subproblem (7) computationally
easier to solve than the original problem (1). For the special classes of application
problems discussed later, the function @(x, d) is a kind of "linearization" of the
objective function O(x).

Under the two assumptions (A1) and (B), the subproblem (7) always has a globally
optimal solution; moreover, any such solution that is nonzero yields a "descent
direction" for the function 0 at the iterate x k. More specifically, we can establish the
following result.

LEMMA 1. Let O: R" R be locally Lipschitzian. Suppose that assumptions (A1)
and B hold.

(a) The problem (7) has a globally optimal solution, and the optimum objective value
is nonpositive.

(b) If d k is any nonzero optimal solution of (7), then for any tr (0, 1), there exists
a scalar > 0 such that for all z [0,],

O"
k) kO(xg + zd g) O(xg) <= -- "r(d TBgd

Proof Let L> 0 be the Lipschitz modulus of 0 at the vector xg. Then, we have

[OD(xg, d) _-< LIId[I
for all vectors d R". By the inequality (8) and the positive definiteness of the matrix
Bg, we obtain

1 /3O(xk, d)+- dTBkd >---Llld +- dTd.

62 J.-S. PANG, S.-P. HAN, AND N. RANGARAJ

Hence, it follows that

lim (d/(x k, d)/1/2drBkd)=o.

Consequently, the objective function of (7) is coercive. Thus, an optimal solution of
(7) exists. Since ,(xk, 0)=0, it follows that the optimum objective value of (7) is
always nonpositive. This proves part (a).

To prove part (b), let d k be a nonzero optimal solution of (7). Then,

(9) IJI(X k, d k <- --1/2(dk) TBkdk.
Suppose that no > 0 as stated exists. Then there exists a sequence {r} of positive
scalars converging to zero, such that for each l,

O(xk + rldk O(xk > -- 7"l(d k rBkd k.

Dividing both sides by rl, passing to the limit 1-, and using the definition of the
upper Dini directional derivative tg(x k, dk), we deduce that

O(xk, dk)>----(dk)TBkd k.

Thus, condition (A1) implies

rt(X k, dk) >= oD(xk, dk) > --1/2(dk) TBkdk
where the last inequality holds because ere (0, 1) and (dk)TBkdk is positive. But this
contradicts (9).

Remark. Throughout the discussion, we do not require that the subproblem (7)
has a unique solution. Note also that the conclusion of part (b) in the above lemma
remains valid as long as d k is a nonzero direction satisfying the inequality (9).

The above lemma establishes that ifthe problem (7) has a nonzero optimal solution,
then that solution constitutes a "descent direction" of 0 at the iterate x k. We want to
establish the converse of this conclusion. In other words, we wish to be able to show
that if the zero vector is the only globally optimal solution of (7), then xk is a Dini
stationary point of 0. The next result gives a sufficient condition for this converse
statement to hold.

PROPOSITION 2. 111 addition to the assumptions ofLemma 1, suppose the following
condition holds: (A2) for all vectors d

(10) lim inf
d/(xk’ Ad)

< OO(xk, d).
h0

Then, the following statements are equivalent:
(a) d 0 is the only globally optimal solution of the problem (7);
(b) d 0 is a globally optimal solution of the problem (7);
(c) The optimum objective value of the problem (7) is zero;
(d) xk is a Dini stationary point of O, i.e., O(xk, d)>-0 for all d R.
Proof. (a) (b) (c). These implications are obvious.
(c)(d). Since the optimum objective value of (7) is zero, we have, for all vectors

d R" and all scalars h > 0,

0 I(X k, hd)+ d TBkd.
2

MINIMIZATION OF LOCALLY LIPSCHITZIAN FUNCTIONS 63

Dividing by A, letting A $0, and invoking assumption (A2), we deduce the desired
conclusion.

(d)(a). Suppose that the problem (7) has a nonzero optimal solution d k. Then
the inequality (9) implies $(xk, dk)<o. By assumption (A1), it follows that
O(xk, d k) <0; this contradicts the assumption that xk is a Dini stationary point
of 0.

Remarks. (1)Since the upper Dini directional derivative O(x, d) is positively
homogeneous in d, it follows that under the combined assumptions (A1) and (A2),
equality must hold in (10).

(2) The only place in the proof of Proposition 2 where assumption (A2) is used
is to prove the implication [(c)(d)].

With Lemma 1 and Proposition 2, we may state the following algorithm for
computing a Dini stationary point of the problem (1).

The Model Algorithm. Let p, r (0, 1) be given. Let x R" be arbitrary. Set k 0.
In general, given x, let d be an (arbitrary) globally optimal solution of (7). Terminate
if the optimum objective value of (7) is zero; in this case, x is a desired Dini stationary
point of 0 (assuming that the (A1) and (A2) are in force). Otherwise, let m be the
smallest nonnegative integer rn such that

(11) O(xk+p"dk)--O(xk)<-----p"(dk)rBkdk.
Set Xk+l’-" xk" pmkdk’, test X

k+l for convergence. Repeat the general step with k+ 1
replacing k if xk+l fails the convergence test.

The linesearch step in the algorithm follows the usual Armijo rule; according to
Lemma 1 (b), the integer mk can be determined after a finite number of trials starting
with m=0,1,2,....

2.4. Convergence of the method. Without loss of generality, we assume that the
algorithm generates an infinite sequence of iterates {xk} along with an infinite sequence
of nonzero directions {dk}. The sequence {xk} satisfies

O(xk+l) O(xk) --’ "rk(dk) TBkdk < O(Xk)

where ’k----p"k is the steplength in the kth iteration. Consequently, the sequence of
objective values {O(xk)} is strictly decreasing. If the function O(x) is bounded below,
then the sequence { O(xk)} converges and hence { O(xk+l) O(xk)} O. The stepsize rule
(11) therefore implies that

(12) lim ’k(dk)TBkdk=o.
k--,

Our goal is to establish that every accumulation point of the sequence {xk}, if it
exists and satisfies certain properties to be stated, is a Dini stationary point of the
function 0. A sufficient condition for such an accumulation point to exist is that the
sequence {xk} is bounded, which in turn is true if the level set

(13) {x R" O(x) <= 0(x)}
is bounded. Under this boundedness assumption, let g be an arbitrary accumulation
point of {xk}. In the sequel, we impose some assumptions on the function q at the
limit point in order to establish the Dini stationarity property of 0 at . To motivate
these assumptions, we recall that the reason for using an iteration function q(x, d)

64 J.-S. PANG, S.-P. HAN, AND N. RANGARAJ

instead of the upper Dini directional derivative OD(x, d) in defining the direction-
finding subproblem was to circumvent the discontinuity problem of the directional
derivative in the first argument. In essence, two of the assumptions imposed below,
(A3) and (A4), have to do with some kind of continuity of the q function in that
argument. At present, we do not know how to construct such an iteration function
q(x, d) to satisfy all these assumptions when 0 is a general locally Lipschitzian function;
as a matter of fact, the function q(x, d) with all these properties may not even exist.
Nevertheless, in the next section, we shall discuss a variety of nonsmooth optimization
problems for which the desired function q(x, d) can be identified.

The following are the assumptions imposed on the function q at the limit point

(A2) For every d R n,

lim inf
q()’)td) _< 0o(), d);

AO

(A3) For every sequence (zk} converging to), every convergent sequence { v k} and
every sequence of positive scalars {Ak} converging to zero,

(14) lim t(zk, vk)limsup O(Zk+Akvk)-O(Zk)"
koo k-eo /k

whenever the limit in the left-hand side exists;

(A4) There exists a scalar e > 0 such that for every vector d g satisfying [[dll <_- e
and every sequence (zk} converging to g,

lim inf @(zk, d) <- (, d).
k-eo

We explain the above conditions. Assumption (A2) was required in Proposition
2 in order to obtain the Dini stationarity conclusion on the iterate xk when the
subproblem (7) has a zero optimum objective value. In essence, we need this assumption
on the limit point) for a similar reason. Assumption (A3) is a strengthening of (A1)
at the vector); indeed, if Zk= , and vk= v for all k, then the limit expression (14)
becomes q(), v)>-0()7, v) which is exactly the condition (8) at). Assumption (A4)
is a weak upper semicontinuity property of the function q(., d) at the vector) for all
vectors d whose norms are sufficiently small; indeed, if "liminf" were replaced by
"limsup," then (A4) would become the usual upper semicontinuity property. It is
interesting to note that this weak upper semicontinuity property is required to hold
only for "small" d and not for all d. We shall give an example later of a function
for which (A4) holds but q(., d) is not weakly upper semicontinuous at : for all d.

Before stating the main convergence result, we derive a useful consequence of
assumption (A1). The following result says that although no continuity assumption in
the x variable is imposed on the function q(x, d) when d is fixed but arbitrary, (A1)
implies that q is lower semicontinuous in both arguments at a vector (x, 0) with a zero
second argument and an arbitrary first argument.

LEMMA 2. Let O R"- R be locally Lipschitzian. Suppose that the inequality (8)
holds for all vectors (x, d) R" x R". Then, for any sequence { (zk, d k)} converging to

(x, O) for some x

lim O(zk, d k) >= 0

whenever the limit on the left-hand side exists.

MINIMIZATION OF LOCALLY LIPSCHITZIAN FUNCTIONS 65

Proof In view of the inequality (8), it suffices to prove

lim OD(zk, d k) O.(15)

Since the sequence {zk) is convergent and the function 0 is locally Lipschitzian, it
follows that there exists a constant L> 0 such that for all k,

IO(z, d)l __< LIId II,
which clearly implies the desired limit condition (15).

We now state and prove the main convergence result.
THEOREM 1. Let O" R -* R be a locally Lipschitzianfunction which is bounded below

on R. Let b" R R R and {Bk} also be given. Suppose that assumptions (A1) and
(B) hold. Let {xk} be an infinite sequence generated by the model algorithm as described
above. If is an accumulation point of {xk} where assumptions (A2)-(A4) are satisfied,
then is a Dini stationary point of O.

Proof Let {x k" k K} be a subsequence of {xk} converging to . Let {d k" k K}
be a corresponding sequence of directions generated by the algorithm. By construction,
each direction d k is an optimal solution ofthe subproblem (7) whose optimum objective
value is negative (because of the infinite nature of the sequence {xk}).

We first show that the sequence of directions {d k" k K} is bounded. By the
optimality of d k and assumptions (A1) and (B), we have for each k K,

1 k) k /3 k 2(16)]oD(xk, d)l>--O(x, dk)>(d rBkd >=- lid

Furthermore, as noted in the proof of Lemma 2, there is a constant L> 0 such that
for all k K,

[O(x, d)l <=
this, along with the previous inequalities, gives

2L
oIIdl[-<
t

The boundedness of the sequence {d k" k K} is thus established. This implies, by (16),
that the sequence {q(x k, dk) k K} is also bounded.

By restricting our discussion to suitable subsequences if necessary, we assume
that both the sequence of directions {d k. k K} and the sequence of matrices {Bk" k
K } converge, respectively, to some vector d and some matrix B. We may further assume
that

(17) lim (xk, d
keo, k K

exists. Clearly, the limit matrix B is positive definite.
Recalling the limit condition (12), we consider two cases, depending on whether

the liminf of the sequence of stepsizes {Zk" k K} is positive or zero. Suppose

Then, condition (12) yields

dd

lim inf zk > O.
k, kK

lim d k) TBkd k O,
k-cx, ke K

which in turn implies d 0 because B is positive definite.

66 J.-S. PANG, S.-P. HAN, AND N. RANGARAJ

By the optimality of d k, we have, for all vectors d e R",

O(xk, dk)+1/2(dk)TBkd k <_ d/(x k, d)+1/2dTBkd.

By taking liminf on both sides as {k-, k e K}, the left-hand sum approaches zero
by the fact that {d k" k K} tends to which has just been proved to equal zero, and
also by Lemma 2. Thus, by (A4), we deduce, for all d R" satisfying Ildll--< ,

o <- d/(g, d)+1/2dTd.

As in the proof of Proposition 2, it follows that for all d R" with d [[-< e,

O(,d)>=O.

Since the upper Dini directional derivative is positively homogeneous in d, the last
inequality must hold for all vectors d R ". Thus, is a Dini stationary point of 0, as
desired.

Now consider the other case where the sequence of stepsizes {’k :k e K} becomes
arbitrarily small in the limit, i.e., suppose

lim inf rk 0.
k-c, ke K

Without loss of generality, we may assume that limk_, keK Tk --O. Then, we must have

lim mk
k-c, k K

By the definition of mk, it follows that for each k,

(18) O(xk+’r’kdk)--O(xk)>--’r’k(dk)TBkd k

where ’ p-k-. Note that we also have

lim - 0.
kx, ke K

Dividing both sides in the expression (18) by r, passing to the limit k-, k K,
using (A3) and the fact that the limit (17) exists, we deduce

lim 6(xk, d k) >_ T.
k,kK 2

On the other hand, the left-hand term of the above inequality is no greater than
by taking limits in (9). Consequently, we obtain

Since tr < 1, we must have d =0. By repeating the argument of the previous case, we
deduce that is a Dini stationary point of 0. [3

3. Applications. The convergence of the model algorithm has been established in
a fairly general context; an important practical issue is the construction of a function
(x, d) which satisfies the assumptions (A1)-(A4). Although we do not know how to
construct such a function for an arbitrary Lipschitzian function 0, the discussion in
this section gives an explicit expression of (x, d) for a number of interesting functions
0 that arise from various application areas.

MINIMIZATION OF LOCALLY LIPSCHITZIAN FUNCTIONS 67

This unified approach to the convergence theory for nonsmooth optimization
problems gives a common framework for establishing the global convergence of many
existing methods for solving these problems. We hope that by identifying what seem
to be the essential requirements in a typical convergence proof---through the use of
the $(x, d) function of two variables that satisfies the stated properties--we have
provided a basis for the design of effective algorithms for other nonsmooth problems
not considered here.

It is useful to point out that in several of the application problems discussed
herein, the iteration function $(x, d) is piecewise linear in d for each fixed x; thus,
the direction-finding subproblem (7) is a piecewise quadratic program with the quad-
ratic part coming from the term d TBkd. Admittedly, the numerical solution of a
piecewise quadratic program has not been very well studied within mathematical
programming; there are some scattered papers [31], [32], [34]. We believe that this
class of mathematical programs plays a central role throughout the subject of non-
smooth optimization and deserves a more careful investigation.

3.1. The use of the upper Dini derivative. We begin by studying the choice

(19) @(x,d)=OD(x,d)
for an arbitrary locally Lipschitzian function and state a convergence property for
the resulting descent method. With the choice (19), assumptions (A1) and (A2) are
trivially satisfied. Note that if the algorithm terminates finitely with the subproblem
(7) having a zero optimum objective value, then the current iterate x must be a Dini
stationary point of (see Proposition 2). So, we may assume that the algorithm
generates an infinite sequence of iterates {x}. The following consequence of Theorem
1 gives the main convergence result for the model algorithm in which the iteration
function , is chosen to be the upper Dini directional derivative.

COROLLARY 1. Let O" R- R be a locally Lipschitzian function which is bounded
below on R. Let {Bk} be a sequence of matrices satisfying assumption (B). Suppose that

is an accumulation point of an infinite sequence {xk} generated by the model algorithm
with the choice (19). If 0 is strongly F-differentiable at , then V 0(g)= 0; in particular,

is a stationary point of O.
Proof. It suffices to verify conditions (A3) and (A4). Under the strong F-differentia-

bility assumption on 0 at g, we have 0(g, v)=VO(g)Tv for all v R". Moreover, for
all sequences {zk}, {vk}, and {Ak}, as stated in assumption (A3),

O(z + tv) O(z) to(, v)
lim O,

and by Proposition 1,

lim (O(zk, vk)--O(, vk)) 0.
k-

The two required assumptions (A3) and (A4) are now easily satisfied as a result of
these two limit conditions. q

In spite of the fact that this result requires a fairly strong differentiability assump-
tion about the function 0 at the limit point , the result is useful in a situation where
there is no obvious way of constructing a function satisfying the assumptions
(A1)-(A4). It is interesting to note that if the iteration function @(x, d) is chosen to
be the Clarke directional derivative O(x, d), then, in the absence of a strong F-
differentiability condition at g, the only assumption that is possibly violated is (A3).

68 J.-S. PANG, S.-P. HAN, AND N. RANGARAJ

3.2. Composite convex functions. Our next application is that of a composite convex
minimization problem. For this problem, we exhibit an iteration function for which
the satisfaction of assumptions (A3) and (A4) requires no strong F-differentiability
property at .

Let h :R - R be a convex function and f:R --> R be a continuously differenti-
able function. Note that h is not assumed differentiable and the component functions
of f are not assumed convex. The composite function O:R --> R

(20) O(x) := (h f)(x) h(f(x))

can be used to describe a large number of interesting problems. Some specific examples
are discussed in more detail in subsequent sections.

The above function 0 is locally Lipschitzian and directionally differentiablemin
the terminology of Robinson [30], 0 is a B(ouligand) differentiable function. By the
chain-rule for directional derivatives of a locally Lipschitzian function (see the cited
reference), the directional derivative of 0 at a vector x R" in the direction d R" is

O’(x, d)= h’(f(x), Vf(x)d).

Define the iteration function q(x, d) by

(21) q(x, d)= h(f(x)+Vf(x)d)-h(f(x)).

With this choice of q(x, d), the objective function in the direction-finding problem (7)
belongs to the class of "casting functions" used by Burke [2] for solving the problem
(20). Note that the function q(x, d) in (21) is, in general, neither positively
homogeneous nor (globally) Lipschitz continuous in d. But q,(x, d) must be convex
in d for each fixed x. Thus, the direction-finding problem (7) is a strictly convex
program in d; in particular, (7) has a unique globally optimal solution. If, in addition,
the function h is piecewise linear, then so is the iteration function q(x, .) for each
fixed x; in this case, each subproblem (7) becomes a strictly convex piecewise quadratic
program.

We now verify that the assumptions (A1)-(A4) are all satisfied by the choice of
the iteration function given by (21).

Obviously, q(x, d) is continuous in both arguments x and d, and q(x, 0)=0 for
all x. Thus, (A4) holds. Moreover, q(x, d) majorizes the directional derivative O’(x, d)
by the convexity of the function h. Thus, (A1) holds. It remains to verify (A2) and (A3).

Fix the vector . Define the function q:R R by q&(d)= 0(, d). Then, condi-
tion (A2) will hold if for all d e R"

(22) q’(O, d) <- O’(g, d).

By taking the directional derivative of the function q(d) at the zero vector and along
a given direction d, we can see that the last inequality must hold as an equality. Thus,
(A2) follows.

Finally, to establish (A3), let {zk} be a sequence converging to g, {v k } be a sequence
converging to 3, and {A} be a sequence of positive scalars converging to zero. Then,

O(zk + AkVk) O(zk) h(f(zk + Akvk)) h(f(zk)) h(yk
at- Akuk) h(yk)

where

yk:f(zk) and uk:Vf(zk)vk+
k

MINIMIZATION OF LOCALLY LIPSCHITZIAN FUNCTIONS 69

and

o(x)
lim 0.
k-) k

Clearly, the sequences (yk) and (uk) converge to f() and Vf()3, respectively. Since
a convex function is subdifferentiably regular, it follows that

0(+)-0()
lim sup h’(f(g), Vf(g)e).
k Ak

Since the function O(x, d) is continuous in both arguments, we have

lim (zk, v k) (, e)
k

h(f(g) + Vf(:) 5) h(f(g))

>-h’(f(g),Vf(g.))

where the last inequality follows because h is a convex function. Consequently, the
required inequality (14) holds.

Summarizing the above derivation and invoking Theorem 1, we have established
the following convergence result of the model algorithm specialized to minimize a
composite convex function of the form (20).

COROLLARY 2. Let h" R" -) R be a convex function bounded below on R", and let
f" R"--)R" be a continuously differentiable function. Let the iteration function b(x, d)
be defined by (21) and {Bk} be a sequence ofmatrices satisfying assumption (B). Suppose
that {xk} is a sequence ofiterates produced by the model algorithm. Then, every accumula-
tion point of {xk} is a stationary point of the composite function O(x) h(f(x)).

Remark. The bounded-below property of O(x) follows from the same condition
of h(y).

3.3. The discrete minimax problem. An important special case of the composite
convex minimization problem is the discrete minimax problem which has been studied
extensively in the literature of nonsmooth optimization:

(23) minimize O(x) := max (f(x)" I), x R"

where I {1,. , rn} and each f" R"- R is continuously differentiable but not
necessarily convex. In the notation of the composite convex minimization problem,
we have

h(y) max (y,..., y,,) and f(x) (f(x), ,f(x)).

The iteration function that results from the specialization of (21) to the discrete minimax
problem (23) is given by

qq(x, d) max (fi(x) + Vf/(x) 7d) O(x).
iI

A noteworthy point about this function ql(x, d) is that the range of functions involved
in the "max" operator is indexed by the whole set L In the sequel, we define an
alternative iteration function which takes into account only those component functions
that do not deviate too significantly from the maximum. Specifically, let 3 > 0 be a
given "tolerance" and define the index set I(x) for each vector x Rn:

I(x) := {i I" O(x)-f(x) < 3}.

70 J.-S. PANG, S.-P. HAN, AND N. RANGARAJ

Clearly, we have I(x)
_
I (x), where

I(x) := {i I: O(x) =f(x)}

is the maximizing index set of O(x). We define the iteration function:

(24) (x, d) max (f(x) + Vf(x) Td) O(x).
i Is(x

The use of an index set such as I(x) is rather well known for the minimax problem
(see [27]). Note that the resulting function @(x, d) is piecewise linear and convex in
d for each fixed x. In this case, the direction-finding subproblem (7) can be formulated
as a convex quadratic program (see e.g., [14], [27]). Also note that, theoretically, any
> 0 in (24) will ensure that the method works, but there may be numerical reasons

for not choosing to be too close to zero.
We verify that the assumptions (A1)-(A4) are satisfied. Clearly, for each fixed

vector x, the function @(x, d) is continuous in d, and @(x, 0)= 0. Since

O’(x, d)= max (Vf(x)rd),
iel(x)

and I(x)_ I(x), the function @ majorizes the directional derivative 0’; thus (A1)
holds. Unlike @l(X, d), the function @(x, d) is generally not continuous in the variable
x" an example will be provided below to illustrate this discontinuity. Thus, (A4) is a
nontrivial condition.

Fix the vector 2. To establish (A2), we define the function @:R - R by @(d)=
(2, d). As in the case of the composite convex minimization problem, it suffices to
verify the inequality (22). Again, by taking the directional derivative of the function

@e at the zero vector along a given direction d, it is not difficult to see that this required
inequality must hold as an equality. Thus, (A2) is proved.

It remains to verify (A3) and (A4). The proof of (A3) is not difficult. Let {zk},
{vk}, and {Ak} be sequences as given in (A3). Then, since {zk} converges to 2, we must
have for all k large enough, I(2) I(zk). Thus, the left-hand limit in (14) is at least
as large as

max [f(2) + Vf(2)r 0(2)] 0’(2,)lim max [f/(zk) -- Vfii(zk) Tvk o(zk)]
il(2)ko iI()

where 3 is the limit of the sequence {vk}. By the argument used in the previous case
of a composite convex function, we see that the right-hand limsup in (14) is no greater
than 0’(2, 3), thus, the desired condition (A3) is satisfied.

Finally, we verify condition (A4). For this purpose, let d be an arbitrary vector
and {zk} be a sequence of vectors converging to 2 such that the limit

lim (zk, d)
k-c

exists. Since the index set I is finite, there must exist a subsequence {Zk" k K} such
that the index set I(zk) is the same for all k K. Call this common index set J. Then,
we have

j

_
I() u I()

where

(2) {i I" 0(2)-f(2)= 8}.

MINIMIZATION OF LOCALLY LIPSCHITZIAN FUNCTIONS 71

Consequently, we have

lim /(z k, d)= lim [mx (f(zk)+Vf(zk)7"d)--O(zk)]
k-)(x:) k--)o, kK

_-< max. (f() +V()rd) 0()
il()UI(2)

(max (V()Td--))"max imaxi() (f() + Vf()Vd 0()), ,()
Now, pick e > 0 such that for all d with ldll e,

max (Vf(ff)Vd-6) max (f()+Vf()vd-O()).
i() il()

This is possible because, for all i I(), we have ()-0()>-8. Consequently, it
follows that for such vectors d,

lim (zk, d) (, d),
k

which is what assumption (A4) requires.
Summarizing the above derivation, we obtain the following result which establishes

the convergence of our model descent algorithm specialized to the minimax problem
(23).

COROLLARY 3. Let " R R be continuously differentiable functions for I
{1,..., m}. Suppose that at least one function (x) is bounded below on R. Let the
iterationfunction O(x, d) be defined by (24) and {Bk} be a sequence ofmatrices satisfying
assumption (B). Suppose that {xk} is a sequence of iterates produced by the model
algorithm. en, every accumulation point of {xk} is a stationary point of the pointwise
maximum function O(x) max ((x)" I).

Remark. The bounded-below propey of O(x) follows from that of one of the ’s.
The example below shows that the e in assumption (A4) is essential in order for

this condition to hold with the iteration function (x, d) given by (24).
Example. Consider three univariate functions

f(x x, f(x) -x, f(x (x-)+.
Then,

O(x) max (Ixl, (x-&)= +&).
The unique global minimum point of 0 is . Choose the scalar 1 and let the
iteration function O(x, d) be defined by (24). We claim that condition (A4) fails at the
point if there is no restriction on the size of d. Indeed, the limit condition in (A4)
fails at d =-2 when {zk} is any sequence in the interval [0,) converging to . We can
easily verify that

lim (zk, -2) 1 > 0 (, -2).
k

3.4. The nonlinear complementarity problem. In the recent paper [15], we have
presented a generalized Gauss-Newton method for solving a system of locally Lipschit-
zian equations. In what follows, we describe how the convergence theory developed
for that method fits into the present framework of optimizing a locally Lipschitzian
function. Rather than speaking in a general context, we focus our discussion on the
nonlinear complementarityproblem formulated as a system of B-differentiable equations.
The two papers [25], [26] are also relevant to the treatment that follows.

72 J.-S. PANG, S.-P. HAN, AND N. RANGARAJ

The nonlinear complementarity problem is to find a vector x R" satisfying the
conditions

(25) x >- O, f(x) >- O, xf(x) 0

where f" Rn- R" is a given continuously differentiable function. Define the function
H" R R by

H(x)=min(x,f(x))

where the "min" operator denotes the componentwise minimum of two vectors.
Consider the minimization problem (1) where

O(x)=1/2H(x)rH(x)
is the norm function of H. The function H is B-differentiable, and so is 0. Our goal is
to find a global minimizer 2 of the function 0; if 0(2)=0, then 2 solves the problem
(25).

In order to apply the model algorithm to minimize the norm function 0, we define
the iteration function by

(26) (x, d)= H(x)TrG(x, d)

where the function G" R"x R"--> R" is defined as (see [15])"

di if xi <f(x),
Gi(x, d)= Vf(x) 7d if xi >f(x),

min (d, Vf(x) Td) otherwise,

for each 1, , n. Unlike the other iteration functions discussed so far, the function
q(x, d) given by (26) is positively homogeneous in d. Note that q(x, d) is piecewise
linear in d for each x. Moreover, if the vector x is such that there is no component
with x =f(x) > 0, then the function 0(x, d) is convex in d; in this case, the correspond-
ing subproblem (7) can be easily reformulated as a convex quadratic program. In
general, the function q,(x, d) belongs to the class of quasi-differentiable functions
expressible as the difference of two piecewise linear convex functions (see [5] and the
papers therein for more discussion of this class of nonsmooth functions).

As demonstrated in the reference, the function 0(x, d) defined above satisfies the
assumptions (A1) and (A3). However, the remaining two assumptions (A2) and (A4)
are not likely to hold without further conditions. As a substitute for these latter two
conditions, we invoke the concept of regularity as defined in [25] and [26]. Specifically,
we say that the vector 2 is regular if

(a) The matrix \7+f+(2) is nonsingular;
(b) The Schur complement

Vtft(2) V,+.ft(2) (V,+f,,+(2))-1Vf+(2)
is a P-matrix.

Here, the index sets a+ and/3 are given by

c+ {i: 2, >f(2), 2 > 0},

fi { i" 2, =f(2)} [.J { i" max (,f()) =< 0},

and Vyfj(2) denotes the partial Jacobian matrix (Of(2)/Oxi) for (i,j)65 xJ.
It has been proved in [26, Prop. 3] (see also [25, Prop. 3]) that if the vector 2 is

regular, then there exists a neighborhood N of 2 so that all vectors x e N are also

MINIMIZATION OF LOCALLY LIPSCHITZIAN FUNCTIONS 73

regular. Moreover, if x is a regular vector, then the mapping Gx" R" - R" defined by
G,(v) G(x, v) is a homeomorphism of R" onto itself. Finally, if 2 is regular, then
for all vectors x N, the inverse mapping of Gx is Lipschitzian with the Lipschitz
modulus independent of x in N. It is important to point out that the regularity of 2
implies these useful properties of vectors that are close to 2; vectors that are not within
the given neighborhood N of 2 do not necessarily possess the stated properties.

We are now ready to state the following consequence of Theorem 1 when the
model algorithm is specialized to solve the nonlinear complementarity problem (25).

COROLLARY 4. Let f R"- R" be a continuously differentiable function. Let the
iteration function b(x, d) be as defined by (26) and {Bk} be a sequence of matrices
satisfying assumption (B). Suppose that 2 is an accumulation point of a sequence {xk}
produced by the model algorithm. If 2 is a regular vector, then 2 solves the nonlinear
complementarity problem (25).

Proof. Let {xk: k K} be a subsequence converging to 2. Let {dk: k K} be a
corresponding sequence of directions generated by the algorithm. By carefully examin-
ing the proof of Theorem 1, it suffices to consider the case where the sequence
{dk: k K} converges to zero: the absence of the assumptions (A2) and (A4) does not
affect the rest of the argument in that proof.

Since 2 is regular, the iterate xk is regular for all k K sufficiently large. Thus,
for each of these large enough k K, there exists a unique vector D

k satisfying

G(xg, v)+H(x)=O.

Then, for all scalar A > O, we have

O(xg, hv) -hH(x TH(xk).

Moreover, since the sequence {H(x): k e K} converges, the sequence {v: k K} is
bounded (by the Lipschitzian property of the inverse of the mapping Gk(. as noted
above). Without loss of generality, we may assume that the latter sequence converges.

Since d is a globally optimal solution of the subproblem (7), we have for all k
sufficiently large and all h > 0,

1 h 2

q,(x, d)+ (d)d _-< (x, v) +5- (v)v
12

_AH(xk) rH(xk +_f(Vk) rBkv k.

Passing to the limit as {k-c, k K}, the first sum tends to zero as in the proof of
Theorem 1, and the third sum converges to

-AH(2)rH(2) +-- /.
Now, dividing by A and passing to the limit as A $ 0, we immediately obtain H(2)= 0,
which implies that 2 is a desired solution of the problem (25). [3

We should point out that although the two conditions (A2) and (A4) are not
explicitly used in the above proof, they are implied by the regularity assumption at 2.
The reason for this is that under the regularity assumption, we know that 2 is a solution
of the nonlinear complementarity problem (25). Using this latter fact, we can easily
show that (A2) and (A4) must hold at 2. The details are omitted.

74 J.-S. PANG, S.-P. HAN, AND N. RANGARAJ

3.5. The generalized feasibility problem. Another important instance of a com-
posite convex minimization problem is the generalized feasibility problem. The latter
problem is to find a vector x R" such that

(27) g(x)K

where K is a closed convex set in R" and g:R --> R" is continuously differentiable.
The recent paper [3] discusses a special case of this problem with K being a cone.

In order to cast the problem (27) in the form of a composite convex minimization
problem, define the distance function p R --> R by

p(y) := dist (elK) min {llz-yll2:z K}

where I1" 112 is the Euclidean norm on R". Notice that p is well defined because any
vector in R" has a projection onto a closed convex set. Let 0" R" --> R be the composite
function

O(x)=pog(x).

Clearly, 0 is a nonnegative function. Moreover, the problem of finding a vector x such
that g(x)e K can be solved by computing a global minimum point 2 of O(x) (if it
exists) and by checking if 0(2)- 0. In turn, the problem of minimizing the function 0
is a composite convex minimization problem because p is a convex function.

Now the theory of composite convex minimization described in 3.2 can be
applied. In particular, by defining the iteration function q to be

d/(x, d) p(g(x) + Vg(x)d) p(g(x)),

we obtain a descent algorithm for computing a stationary point of the composite
function O(x) p(g(x)).

In [3], Burke and Han used a slightly different subproblem to find a search
direction d k. Instead of the positive-definite matrix Bk, they employed what amounts
to the selection of a minimum-norm solution of their subproblem. Because of the
positive definiteness of the matrix Bk and the convexity of the function q(x, d) in the
variable d, our subproblem (7) has a unique optimal solution. The linesearch routine
used in the cited reference is very similar in spirit to the one used here.

4. Mathematical programs with equilibrium constraints. We now come to the final
application of our general theory, which concerns a mathematical program with
equilibrium constraints. This problem appears in various forms and in many applica-
tions. Our terminology follows the one used in the paper [16].

In its most general form, a mathematical program with equilibrium constraints
can be defined as follows. Let Y: R" R" be a given multifunction; i.e., for each
x R, Y(x) is a nonempty subset of R. Let y denote the graph of Y, i.e.,

qy {(x, y) R" x R’: y Y(x)}.

Let f" R" x R" -* R be a given continuously diiterentiable function. The mathematical
program with equilibrium constraints is:

minimize f(x, y)
(28)

subject to (x, y) v, x X

where X is a closed convex set in R". The reason why the term "equilibrium constraints"
is attached to this problem is that in many of its applications, Y(x) represents the
solution set of a (parametric) equilibrium programming problem which is used to model

MINIMIZATION OF LOCALLY LIPSCHITZIAN FUNCTIONS 75

certain equilibrium (or optimality) conditions. For example, in the traffic network
design problem [21], [11], Y(x) denotes the set of user equilibrium flows, x represents
the design variable of arc capacities, and the objective function f(x, y) represents the
system design cost; in the Stackelberg leader-follower game problem [33], Y(x) is the
response function of the followers who act as the players in a classical Cournot-Nash
equilibrium game, x is the decision variable of the leader, and f(x, y) is the overall
objective function that the leader wishes to minimize. In both these applications, Y(x)
is the solution set of a variational inequality problem parametrized by the primary
variable x. Another important special case of (28) has Y(x) equal to the optimal
solution set of a nonlinear program dependent on the parameter x; this latter problem
is commonly known as the bilevel program 1].

4.1. The implicit programming problem. The general mathematical programming
problem with equilibrium constraints is very difficult: the multivalued nature of the
mapping Y is a major factor. In the sequel, we consider the special case of (28) in
which X R and Y(x) is a singleton for each x, say, Y(x):= {y(x)}. Specifically, we
study the (unconstrained) implicit programming problem:

(29) minimize 0(x) := f(x, y(x))

where y" R - R" is a given single-valued function andf" R x R R is continuously
differentiable. The implicit nature of the problem (29) is due to the fact that the function
y(x) is known only implicitly. Our goal is to apply the model algorithm to compute
a stationary point of the problem (29).

In order to somewhat simplify the notation and the discussion, we assume that
for each x R, y(x) is the unique solution ofthe parametric nonlinear complementarity
problem:

(30) y >- O, F(x, y) >= O, yT"F(x, y)=0
where F" R" x R R" is continuously differentiable. Our results can be easily exten-
ded to the case where y(x) is the solution of a variational inequality problem or a
nonlinear program parametrized by x.

Under a regularity assumption, the solution function y(x) is actually B-ditterenti-
able, thus, so is the objective function O(x). It would be useful for us to summarize
the differentiability properties of y(x). For this purpose, we introduce three basic index
sets associated with a solution of the nonlinear complementarity problem (30):

a(x) {i y(x) > O= F(x, y(x))},

(x) { i: yi(x) =0= Fi(x, y(x))},

y(x) {i y,(x) =0< F(x, y(x))}.

The following result describes the local behavior of a solution y() of the problem
(30) at a given vector under the assumption of regularity. The proof of this result
can be found in [29] and [24].

PROPOSITION 3. Let F: RxRm R" be continuously differentiable. Let be a
solution of the problem (30) corresponding to ,. Suppose that is regular, i.e.,

(a) The matrix VyF(,, fi) is nonsingular; and
(b) The Schur complement

VyFt3(X fi)-VyF(X, 37)(VyF, (g, 37))-VyF, (g, 37)
is a P-matrix. (The dependence on the vector is omitted from the index sets a() and
() in the above two and the subsequent conditions.)

76 J.-S. PANG, S.-P. HAN, AND N. RANGARAJ

Then, there exist neighborhoods U of and V of and a Lipschitzian function y: U V
such that y() and

(i) For each x U, y(x) is the unique solution of the problem (30) in V;
(ii) The function y(. is directionally differentiable at ; the directional derivative

y’(, d) (for d Rn) is the unique solution v R ofthefollowing mixed linear complemen-
tarity system:

(31)

or

VxF (, y())d + VyF. (if, y())v +VyF. (if, y())v =0,

VxF (if, y())d +VyF(, y())v + VyF(, y())v >- O,

v unrestricted, vv O, vt3 >- O,

(v)r[VFt (:, y())d + VyFt (: y())v + VyFt (: y(ff))vt =0;

(iii) Thefunction y(is strongly F-differentiable at Y ifand only if either ()

V,Ft (: y(:))- VyFt (: y(Y))(VyF(, y()))-lVxF(y())=0;

(iv) If Vy() exists, then it is given by

Vy())= -(VyF(, y())))-lVxF () y())), VyCuv() =0.

As a consequence of part (iii) in the above result, we note that if strict complemen-
tarity holds throughout the complementarity problem (30), that is, ify(x) + F(x, y(x)) >
0 for all x, then the solution function y(x) is continuously differentiable on R n, and
the problem (29) becomes a smooth optimization problem. In essence, this strict
complementarity property is what is assumed in many heuristic methods for solving
the problem (30), see, e.g., [11]. By using the directional derivative y’(x, d), we can
therefore considerably relax this rather restrictive F-differentiability assumption of the
solution function y(x).

We should point out that as a function in the direction d, the directional derivative
y’(x, d) is piecewise linear (for fixed x). This follows from the observation that the
system (31) is a parametric mixed linear complementarity problem with d as the
parameter.

4.2. Direction finding step. With the directional derivative y’(x, d) of the solution
function y(x) given in Proposition 3, we define the iteration function q,(x, d) to be
the directional derivative of 0. By the chain rule for the directional derivative, we obtain

q,(x, d) O’(x, d) Vxf(x, y(x))d + Vyf(X, y(x))y’(x, d),

which shows, among other things, that q,(x, d) remains a piecewise linear function
in d.

With the iteration function q,(x, d) given as above, the direction-finding subprob-
lem (7) can be stated in the following form: (by letting yk= y(xk))

minimize Txf(xk, yk)d d-Tyf(xk, yk)v +1/2d TBkd
(32)

subject to v y’(x k, d).

This is a problem of minimizing a convex quadratic function subject to linear contraints
and possibly some linear complementarity conditions. If the index set (xk) is empty
(in which case, the solution function y(x) is F-differentiable at xk), (32) reduces to
an unconstrained strictly convex quadratic program in the variable d only. If the
cardinality of the index set (xk) is small, ((xk) consists of the degenerate indices),
then the number of complementarity constraints present in (32) is correspondingly

MINIMIZATION OF LOCALLY LIPSCHITZIAN FUNCTIONS 77

small; in this case, the problem (32) could be solved effectively by either complete
enumeration or a branch-and-bound scheme (see, e.g., [13]). In general, the direction-
finding problem (32) is potentially much simpler to solve than the original problem
(29) and seems to be a reasonable subproblem on which to base an iterative procedure.

4.3. Convergence and some computational results. The convergence of the resulting
algorithm for solving the problem (29) follows directly from Corollary 1. The strong
F-ditterentiability assumption of 0 at the vector 2 (which is required in the corollary)
is satisfied if the solution function y(x) has a strong F-derivative at 2; according to
Proposition 3, this in turn is true if strict complementarity holds at the solution y(2).
The noteworthy point here is that such a strong differentiability assumption is needed
only at the limit vector 2.

We have obtained some preliminary computational results with the above iterative
scheme for solving some network design problems discussed in [11] and some bilevel
programs from [7]. The results suggest that the scheme is quite effective and requires
very few iterations. During the solution process, we encounter some nondifferentiable
points which are handled as described. More details of the implementation and the
results are documented in the thesis [28].

5. Nonmonotone linesearch. In this and the next section, we discuss two
modifications of the basic algorithm presented in 2. The first involves a nonmonotone
linesearch technique which extends the basic Armijo condition (11). The second
modification deals with a constrained version of the basic problem (1).

Grippo, Lampariello, and Lucidi [12] have discussed a nonmonotone linesearch
technique for Newton’s method to solve smooth unconstrained optimization problems.
Recently, Ferris, Grippo, and Lucidi [8] have applied this technique to solve the
nonlinear complementarity problem formulated as a system of nonlinear equations.
The nonmonotone linesearch idea needs only some slight modification to remain valid
in the present context of nonsmooth problems. In what follows, we describe the
modified algorithm and establish its convergence. Subsequently, the significance and
usefulness of this technique will be briefly discussed.

5.1. The modified algorithm and its convergence. We consider the unconstrained
problem (1). The algorithm essentially works in the same way as before except that
the Armijo rule (11) is modified. More specifically, given the iterate xk, the direction-
finding step still relies on the availability of the iteration function q,, and consists of
solving the same subproblem (7). If the computed direction is d k, the linesearch step
is modified as follows.

Choose tr and p (0, 1) and a nonnegative integer M. For each k, let m(k) be
chosen such that

m(0)=0, O<- m(k) <-_min [m(k-1)+ l, M] fork_->l.

Now, let

xk+ xk + zgd

where ’k p"k with mk being the first nonnegative integer rn such that

(33) max [0(x-)] <-(x + P’cl)
o==,. --j (cl ncl

The modified Armijo condition (33) says that we should maintain sufficient
decrease in the objective function, not necessarily with respect to the most recent value

78 J.-S. PANG, S.-P. HAN, AND N. RANGARAJ

0(xk), but with respect to the largest of the previous m(k)+ 1 values. A simple choice
of m(k) is to let re(k)= k, for k_-< M and to let m(k)= M thereafter. Typical values
for M are between 5 and 10.

We can now state the convergence result for the model algorithm with non-
monotone linesearch. The proof will only be sketched. A similar result was proved
recently in [8].

THEOREM 2. Suppose that the level set (13) is bounded. Then, Theorem 1 remains
valid with the above modified linesearch routine.

Proof. For each k, let l(k) be such that

k-m(k)<-_l(k)<-_k and O(xI(k)) max [O(xk-J)].
Oj--m(k)

Since m(k) is bounded, it follows that l(k)oe as k does. We have (see [12])

O(x"/) <__ O(x").
Since 0 is bounded below, it follows that the sequence {0(x(k))} converges. From the
linesearch rule (33), we have, for k > M,

O" /(k)-I l(kO(xl(k))_ O(xl(l(k)-l))

__
.rl(k)_(d TBkd)--1

Since the sequence O(xl(k)) has a limit and assumption (B) is in force, we deduce

lim ’l’l(k)_l dl(k)-I O.
k-oo

As in [12], it can be shown by induction that if

r(k):=l(k+M+2)

then, for any given j _-> 1

(34) lim ’l,(k)_jd l’k)-=O and lim O(xl’k-) lira O(xlk)).
k- k kc

For any k, the following identity holds"

l’(k)-(k+l)

X
k+l -I" E Oll’(k)-j dl’(k)-j xl’(k)"

j=l

By the fact that l’(k) k- 1 l(k + M + 2) k- 1 -< M + 1 and by (34), we get

(35) lira (xk+l x l’(k) O.

Since the level set (13) is bounded and contains the entire sequence of iterates {xk},
and since 0 is continuous, it follows that 0 is uniformly continuous on that level set.
Hence, the entire sequence { O(xk)} converges because the subsequence { O(xI(k))} does.
This yields, by (33),

lim ’kd k O.

From this point on, the proof of Theorem 1 applies. We need only to observe that the
condition (18) continues to hold because O(xk) O(xl(k)). [’]

5.2. Computational significance. A potential computational advantage of the non-
monotone linesearch technique is that it permits larger steps to be taken at intermediate
stages of the minimization process. This is accomplished by allowing the objective

MINIMIZATION OF LOCALLY LIPSCHITZIAN FUNCTIONS 79

value O(Xk+l) to increase from the most recent one 0(xk), but still ensuring a sufficient
decrease from some previous value O(xI(k)). The end effect of this technique is that it
could reduce the number of function evaluations at each linesearch step (but in general,
not necessarily the number of total linesearches) while maintaining the overall global
convergence of the method.

The computational results reported in 12] suggest that in the context of Newton’s
method for solving smooth unconstrained problems, the numbers of linesearches and
function evaluations are both considerably smaller with the nonmonotone linesearch
technique included, than those with the usual Armijo rule. It is hoped that the same
improvement can be achieved for nonsmooth problems. Computational testing is
presently being carried out and the results will be reported in [28].

The reduction in the number of function evaluations is especially useful when the
function itself is complicated and expensive to evaluate. This is the case, for example,
in the implicit programming problem (29) where each evaluation of the function y(x)
typically requires the solution of a nonlinear program, a nonlinear complementarity,
or a variational inequality problem.

6. Constrained problems. In this final section, we briefly discuss the extension of
the model algorithm to deal with the following linearly constrained nonsmooth optimi-
zation problem:

(36) minimize O(x)" x l)

where f is a polyhedron in R n. As before, the function 0" Rn R is assumed to be
locally Lipschitzian. We say that a feasible vector f is a Dini stationary point of
the problem (36) if

0(2, y-if)->0 for all yl.

In essence, the algorithm described below is a feasible-point descant method for finding
a Dini stationary point of (36). Since this is a feasible-point method, all iterates
generated will be feasible to the problem (36). For computational reasons, we require
the feasible region 11 to be polyhedral in order for the direction-finding problem (see
below) to be practically implementable. As far as the convergence theory is concerned,
it is enough for f to be a closed convex set in R n.

The algorithm still consists of a direction-finding step followed by a linesearch
step (incorporating the nonmonotone linesearch technique of the previous section is
certainly possible but is not adopted in the sequel). We continue to depend on an
appropriately chosen iteration function O(x, d), and we shall impose a modified set
of assumptions on O(x, d) which takes into account the presence of the feasible region
f. The following is a detailed description of the modified algorithm for computing a
Dini stationary point of (36).

The Model Algorithm for constrained problem. Let
be arbitrary. Set k 0. In general, given xk fl, let yk be an (arbitrary) globally optimal
solution of the following problem:

(37) minimize $(xk, y-xk)+1/2(y-xk)7"Bk(y-xk)

Terminate if the optimum objective value of (37) is zero; in this case, xk is a desired
constrained Dini stationary point of 0 (see Theorem 3 below). Otherwise, let dk=
yk_ X

k be the search direction and let xk/l be generated as in the model algorithm of
2. Test xk+l for convergence. Repeat the general step with k+ 1 replacing k if xk/l

fails the convergence test.

80 J.-S. PANG, S.-P. HAN, AND N. RANGARAJ

There are two new elements in the above algorithm; both are included as a result
of the presence of the constraint set . One is the requirement that the initial iterate
x be a feasible vector of the problem (36); the other is the subproblem (37) which is
now constrained by the set 1..Note that the next iterate xk+l is ensured feasible to
(36) because xk+ lies on the line segment joining the two feasible vectors xk and yk.

The convergence ofthe above modified algorithm--including the finite termination
situation--can be established by an argument similar to that in the unconstrained case.
Three of the assumptions may be relaxed to hold only for the "feasible vectors."
Specifically, the modification of (A1) is as follows.

(AI’) For each fixed vector x fl, the function q,(x, d) is continuous in the variable
d, and q,(x, 0) 0. Moreover, for all (x, y)

(x,y-x)>-O(x,y-x).

The modification of assumptions (A2) and (A4) also concerns the limit point
whose stationarity is the issue at hand.

(A2’) For every

lim inf
g’(:’ A (y :))

__< oD(Y).
A0+ /

(A4’) There exists a scalar e > 0 such that for every vector y e 12 satisfying IlY 11 -<- e
and every sequence {zk} converging to if,

lim inf O(z, y- X) <- th(X, y- X).

Under the above modified assumptions, we state the principal convergence result
for the modified descent algorithm for computing a Dini stationary point of the
problem (36).

THEOREM 3. Let f be a polyhedron in R" and O R" - R be a locally Lipschitzian
function that is bounded below on f. Let d/ R x R - R and {Bk} also be given. Suppose
that assumptions (AI’) and (B) hold. Then, if is an accumulation point of a sequence
{xk} produced by the above modified algorithm, and if the assumptions (A2’), (A3), and
(A4’) holds at , then is a Dini stationary point of the constrained problem (36).

Proof Since the proof is very similar to the unconstrained case, we only establish
the stated conclusion in the finite termination situation. Specifically, we demonstrate
that if the modified direction-finding subproblem (37) has a zero optimum objective
value, then the current iterate k is a Dini stationary point of (36), provided that xk

satisfies the assumption (A2’), i.e., if for all y

(38) lim inf
q’(xk’ A (y xk))

< OD(xk, Y xk
A -->04-

(cf. Proposition 2). So, suppose that (37) has a zero objective value. Let y 1 and
A e (0, 1) be arbitrary. Then the vector xk+ , (y--Xk) . Hence, we have

2
0 <= 6(xk, A (y xk)) +--f (y Xk) rBk(y xk).

Dividing by A, passing to the limit A $0, and using the assumed inequality (38), we

MINIMIZATION OF LOCALLY LIPSCHITZIAN FUNCTIONS 81

conclude that for all y D,

o OD(xI, y--xk)

as desired.

REFERENCES

J. BARD, An algorithm for solving the general bi-level programming problem, Math. Oper. Res., 8 (1983),
pp. 260-272.

[2] J.V. BURKE, Descent methodsfor composite nondifferentiable optimization problems, Math. Programming,
33 (1985), pp. 260-279.

[-3] J.V. BURKE AND S. P. HAN, A Gauss-Newton approach to solving generalized inequalities, Math. Oper.
Res., 11 (1986), pp. 632-643.

[4] F. H. CLARKE, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983.
[5] V. F. DEM’YANOV AND L. C. W. DIXON, EDS., Quasidifferentiable calculus, Math. Programming Stud.,

29 (1986), pp. 20-43.
[6] V. F. DEM’YANOV AND L. W. VASIL’EV, Nondifferentiable Optimization, Optimization Software, Inc.,

New York, 1985.
[7] A. H. DESILVA, Sensitivity formulas for nonlinear factorable programming and their applications to the

solution ofan implicitly defined optimization model of United States crude oil production, Ph.D. thesis,
Department of Operations Research, The George Washington University, Washington, DC, 1978.

[8] M. C. FERRIS, L. GRIPPO, AND S. LUCIDI, Globally convergent methodsfor nonlinear complementarity
problems, paper presented at the Joint Operations Research Society of America/Institute of Manage-
ment Sciences National Meeting, Las Vegas, NV, May 7-9, 1990.

[9] R. FLETCHER, A model algorithm for composite nondifferentiable optimization problems, Math. Program-
ming Stud., 17 (1982), pp. 67-76.

[10] , Practical Methods of Optimization, Second Edition, John Wiley, New York, 1987.
11 T. L. FRIESZ, R. L. TOBIN, H. J. CHO, AND N. J. MEHTA, Sensitivity analysis-based heuristic algorithms

for mathematical programs with variational inequality constraints, Math. Programming, B, to appear.
[12] L. GRIPPO, F. LAMPARIELLO, AND S. LUCIDI, A nonmonotone line search technique for Newton’s

method, SIAM J. Numer. Anal., 23 (1986), pp. 707-716.
[13] W. P. HALLMAN, Complementarity in mathematicalprogramming, Ph.D. thesis, Department of Industrial

Engineering, University of Wisconsin, Madison, WI, 1979.
14] S. P. HAN, Variable metric methodsfor minimizing a class ofnon-differentiablefunctions, Math. Program-

ming, 20 (1981), pp. 1-13.
[15] S. P. HAN, J. S. PANG, AND N. RANGARAJ, Globally convergent newton methods for nonsmooth

equations, Math. Oper. Res., to appear.
[16] P.T. HARKER AND J. S. PANG, Existence ofoptimal solutions to mathematicalprograms with equilibrium

constraints, Oper. Res. Lett., 7 (1988), pp. 61-64.
17] K. C. KIWIEL, Methods of descent for nondifferentiable optimization, Lecture Notes in Mathematics

1133, Springer-Verlag, Berlin, 1985.
[18] C. LEMARECHAL, Nonsmooth optimization and descent methods, Res. Report RR-78-4, International

Institute for Applied Systems Analysis, Laxenburg, Austria, 1978.
[19] Bundle methods in nonsmooth optimization, in Nonsmooth Optimization, C. Lemarechal and

R. Mifflin, eds., Pergamon Press, Oxford, 1978.
[20] C. LEMARECHAL AND R. MIFFLIN, EDS., Nonsmooth Optimization, Pergamon Press, Oxford, 1978.
[21] P. MARCOTTE, Network design problem with congestion effects: A case of bilevel programming, Math.

Programming, 34 (1986), pp. 142-162.
[22] R. MIFFLIN, An algorithm for constrained optimization with semismooth functions, Math. Oper. Res., 2

(1977), pp. 191-207.
[23] ., A modification and an extension of Lemarechal’s algorithm for nonsmooth minimization, Math.

Programming Stud., 17 (1982), pp. 77-90.
[24] J.S. PANG, Two characterization theorems in complementarity theory, Oper. Res. Lett., 7 (1988), pp. 27-31.
[25] , Newton’s method for B-differentiable equations, Math. Oper. Res., 15 (1990), pp. 311-341.
[26] A B-differentiable equation based, globally and locally quadratically convergent algorithm for

nonlinear programs, complementarity and variational inequality problems, Math. Programming, to
appear.

82 J.-S. PANG, S.-P. HAN, AND N. RANGARAJ

[27] B. N. PSHENICHNY AND Y. M. DANILIN, Numerical Methods in Extremal Problems, MIR, Moscow,
1978. (English translation.)

[28] N. RANGARAJ, Nonsmooth optimization: Algorithms and applications, Ph.D. thesis, Department of
Mathematical Sciences, The Johns Hopkins University, Baltimore, MD, 1990.

[29] S. M. ROBINSON, Strongly regular generalized equations, Math. Oper. Res., 5 (1980), pp. 43-62.
[30] , Local structure offeasible sets in nonlinearprogramming, Part III: Stability and sensitivity, Math.

Programming Stud., 30 (1987), pp. 45-66.
[31] R. T. ROCKAFELLAR, Computational schemes for large-scale problems in extended linear-quadratic

programming, Math. Programming, B, to appear.
[32] R. T. ROCKAFELLAR AND J. SUN, A simplex-active-set algorithm for piecewise quadratic programming,

Tech. Report 86-10, Department of Industrial Engineering and Management Sciences, North-
western University, Evanston, IL, 1986.

[33] H. D. SHERALI, A. L. SOYSTER, AND F. H. MURPHY, Stackelberg-Nash-Cournot equilibria: Charac-
terization and computation, Oper. Res., 31 (1983), pp. 253-276.

[34] J. SUN, Basic theories and selected applications of monotropic piecewise quadratic programming, Tech.
Report 86-09, Department of Industrial Engineering and Mangement Sciences, Northwestern
University, Evanston, IL, 1986.

[35] N. Z. SHOR, Minimization Methods for Nondifferentiable Functions, Springer-Verlag, Berlin, 1985.
(English translation.)

[36] Y. YUAN, Conditions for convergence of trust region algorithms for nonsmooth optimization, Math.
Programming, 31 (1985), pp. 220-228.

SIAM J. OPTIMIZATION
Vol. 1, No. 1, pp. 83-92, February 1991

1991 Society for Industrial and Applied Mathematics
007

A POLYNOMIAL-TIME PREDICTOR-CORRECTOR
ALGORITHM FOR A CLASS OF LINEAR

COMPLEMENTARITY PROBLEMS*

JIU DING’$ AND TIEN-YIEN LI"

Abstract. A polynomial-time algorithm for a class of linear complementarity problems with positive
semidefinite matrices is presented. The method is based on a one-step Euler’s prediction and one-step
Newton’s correction procedure to follow the homotopy path defined as the set {(x,y)R:xiYi=ix,

1,. ., n, Ix > O, y Mx + q}, and solves the problem in O(n3SL) arithmetic operations. Moreover, after
one iteration the value xTy decreases with the ratio at least (1- (2/5x/-ff)).

Key words, linear complementarity problem, polynomial-time algorithm, predictor-corrector method

AMS(MOS) subject classifications. 90, 49

1. Introduction. Let MR be an nn real matrix and qRn be an n-
dimensional real vector. Here n has the usual Euclidean spectral norm andn has
the corresponding operator norm. Consider the linear complementarity problem:
finding (x, y) 2, satisfying

(LCP) y Mx + q, (x, y) >= O, xTy O.

A traditional approach to this problem is the pivoting method developed by Lemke
and others 15]. Like the simplex method for linear programming, this method searches
the solution point along the boundary of some polyhedral. In the worst case, an
exponential number of pivoting operations is required. With the appearance of Kar-
markar’s pioneering work [8], the path-following interior point methods have attracted
tremendous attentions in the field of mathematical programming. See [6], [7], [11],
[13], [14], [16], [18], [19], and the references therein. For the (LCP), Megiddo [12]
set up a theoretical framework for the path-following approaches. Kojima, Mizuno,
and Yoshise [9] first gave a practical polynomial-time interior point algorithm for a
class of linear complementarity problems. In their algorithms, a one-step Newton’s
iteration is used at each cycle with a new updated parameter value to follow the
homotopy path guaranteed by the classic implicit function theorem. In their O(n35L)
algorithm, it is proved that the decreasing rate at each iteration is at least (1- (1/8x/-ff))
with O(n3) arithmetic operations.

Currently, most of the path-following interior point methods in convex program-
ming have the same feature: for an appropriate mapping F"" R+ " and an initial
point x, recursively calculate

i-t-1)--1X
i+l

Xi- Fx(x, F(x i, i+1

for some sequence { i} monotonically approaching zero 17]. Thus the path is followed
in a zigzag way to achieve a polynomial-time complexity. In terms of general predictor-
corrector homotopy continuation path-following algorithms 1], this feature amounts
to a zero-order prediction and one-step Newton correction. In this paper, we follow

* Received by the editors May 7, 1990; accepted for publication (in revised form) August 21, 1990.
This research was supported in part by National Science Foundation grant DMS-8902663.

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824.
$ Present address, Department of Mathematics, University of Southern Mississippi, Hattiesburg, Mis-

sissippi 39406-5045.

83

84 JIU DING AND TIEN-YIEN LI

the path by using Euler’s method as first-order "predictor" followed by one-step
Newton’s method as "corrector." Although we need to solve two systems of linear
equations with 2n arithmetic operations at each cycle, the rate of decrease of xry,
which characterizes the extent of complementarity of x and y obtained after each
cycle, is at least (1- (2/5v/-)), 1.6 times as large as that of Kojima, Mizuno, and
Yoshise’s O(n3SL) algorithm for the coefficient before 1/x/ after two cycles.

The paper is organized as follows. The algorithm is described in 2. The conver-
gence theorem as well as the bounds of complexity of our algorithm are presented in

3. Some further comments are given in 4.

2. A lretlictor-eorrector algorithm. Throughout this paper, we assume that the
matrix M Nnn in (LCP) is positive semidefinite (not necessarily symmetric) with no
zero rows and n-> 3. Denote by N and N2+ the nonnegative orthant {x e Nn’x_-> 0}
of Nn and the positive orthant {x N"’x > 0} of N", respectively. Let

s={(x,y)".
+ y=Mx+q},

Sin {(X, y) 2n++ y=Mx+q}.

We assume that Sin . Define H .N2,+ xN+ N2" by

(2.1) H(x, y, l)= [XYe-txe]y-Mx-q

where X=diag(xl,...,x,)N for x=(xl,’",xn)r" and e=(1,...,1) r

Note that the problem (LCP) is equivalent to the system of equations

H(x,y,O)=O.

The mapping H in (2.1) is connected to the following optimization problem with
the logarithmic barrier function and x > 0:

minimize x ry _/x In (xiyi),
i=1

(2.2)
subject to y=Mx+q, x>O, y>O.

Since the objective function in (2.2) is strictly convex, (2.2) is equivalent to the
Karush-Kuhn-Tucker conditions

y-lxX- e+Mru=O,
(2.3) x-txY- e-u=O,

y=Mx+q.

Multiplying the first equation by X and substracting the second one multiplied by Y,
we have

X(Mr + X-1Y)u =0,

which implies u =0 since x > 0, y > 0, and M is positive semidefinite. Thus (2.3) is
equivalent to

(2.4) H(x, y, tx O.

From the simple fact that for fixed /x > 0, ’-/x Insr + ee when " +oe we deduce
that for each/x > 0 there exists a unique solution (x(/x), y(/x)) to (2.2). Hence equation
(2.4) has a unique solution (x(/x), y(/x)) for any >0.

A POLYNOMIAL-TIME ALGORITHM FOR LCPs 85

The Fr6chet partial derivative of H with respect to (x, y) is

H(x’y)(X’ Y’ tZ)= -M

Since

MY-1 I -M 0 I + My-1x

the matrix H,.y)(X, y, tx) is nonsingular for all (x, y)R2"++ and /x > 0. By using the
implicit function theorem repeatedly, we have the following proposition.

PROPOSITION 2.1. The solution path (x(/x), y(tx)) of (2.4) is smooth for/x > O.
The algorithm presented here will follow the homotopy curve defined by (2.4)

numerically. We use Euler’s method as a predictor and follow it by a one-step Newton’s
iteration. We first introduce a quantity to measure how far away a given point is from
the path. For any (x, y) > 0, the orthogonal projection of the vector XYe to the straight
line {/xe:/x E} is given by (x/n) e. Therefore a point (x, y) in Sin is on the solution
path if and only if XYe-(x/n) e 0. This leads to the definition of a tube neighbor-
hood S(O) of the path

(2.6) S(0)= (x,y)eSt" XYe-e 0
n

Ao. We assume that an initial point (x, y) e S(1/8) with (x) N2(

is known in advance, where L is the size of the problem (LCP).
Step O. Let (1/2) and e 2-. Let k 1.
Step 1. If (x) < e, then stop. Otherwise go to Step 2.
Step 2. Let ((x))/n. Let (x,y) (x,). Compute the Euler direction

(Ax, Ay) by

(2.7) YAx+XAy=6e and Ay=MAx

and let

Y=x-Ax and fi=y-Ay.

Step 3. Let (1- 6). Compute the Newton direction (AY, Aft) from

(2.8) AY+Afi=e-e and Aft= MAY
and let

=Y-AY and =fi-Aft.
Step 4. Let (xk+l, yk+l)= (,) and k:= k+ 1. Go to Step 1.
Remark 1. Step 2 is the application of one-step Euler’s method to the ordinary

differential equations associated with the homotopy equation (2.4), starting from (xk, y k,
((xk)k)/n) with step-size A=--6(((xk)k)/n). TO see this, we differentiate the
identity H(x(), y(),) 0 with respect to to obtain

[()] + H,(x(), y())=0.(2.9) H(,(x(), y(),
[p()

By substituting (2.5) and H(x, y,)= (-e, 0) into (2.9), we have

-M ()

86 JIU DING AND TIEN-YIEN LI

Hence

3)(IX) -M

Now, let AIX =-ix with Ix ((xk)ryk)/n and one Euler’s step from (xk, yk) gives

yk Ay

with (Ax, Ay) satisfying (2.7).
Remark 2. Step 3 is just the one-step Newton’s iteration for (2.4) with Ix

starting from (5,)7) obtained in Step 2.
Remark 3. For our algorithm, an initial point (x 1, yl)e S() is needed in advance.

We may use the device given in [9] to construct an artificial linear complementarity
problem, having a trivial initial point satisfying all the conditions for our purpose.

3. Convergence theorem of the algorithm. In this section, we give a detailed
discussion of our algorithm.

First of all, notice that, when (x, y)e Sint, the new point (, 33) obtained from
one-step Euler’s prediction followed by one-step Newton’s iteration always satisfies
33 M: + q. This can be verified easily from (2.7) and (2.8).

Now let 0, (0, 1) be two fixed positive numbers and (x, y)S(O). Let IX
(xTy)/n. Consider the following equations:

(3.1) YAx + XAy ixe and Ay MAx.

Suppose (Ax, Ay) is the unique solution. Let Y x-Ax and)7 y-Ay. The following
lemma is quite useful in our analysis.

LEMMA 3.1 [9]. Ifp, r, and u in R satisfy

p+r=u, pTr>--O,
then

(i) max {11 pll, Ilrll} -< Ilull,
(ii) p rll -< u 11/2.
Proof. (i) is from the fact that

u p + r p + r + 2pr >-- P + r I1,
and (ii) is true since

Ilpll Ilrll--< (llpll + rll)/2 u I1/.
LEMMA 3.2. Let I (1 t lx. Then

n6](3.2) IIe-ell<_- 0+2(1_ (1-fi)-l.

Proofi Multiply both sides of the first equation in (3.1) by (XY)-1/: and denote
(XY-1) 1/: by D; we have

D-lAx + DAy tIx(XY)-1/: e.

A POLYNOMIAL-TIME ALGORITHM FOR LCPs 87

Let u=ttz(XY)-1/2 e. Since (x,y)S(O), we have

(1-O)tx<-_xiyi<-(l+O)lx, i=l,...,n.

So, from the definition of the spectral norm of a matrix,

II(xg)-/=ll max Ix,y,I-/ <- (1 0)-/ -1/2

Thus,

Ilull II(xr)-/ ell-<-(1-o)-/" -/" x/-ff

(1 0)-1/2/zl/26.

Since M is positive semidefinite, we have

(D-lAx) r(DAy) Axray AxrMAx >- O.

By Lemma 3.1, IID-xll _-< Ilull, IIDAyll--< [lull, and IID-Axll IIDAyll _--< IlullV2. Hence,

IIAXaYll- IID-’AXDAyll <--IID-’AXII IIDAyll

n/x62-< IIO-Axll IIDAyll--< Ilul1=/2----<2(1-0)"
Now

XYe (X AX)(Y- A y) e

XYe YAx +XAy) + AXAy

XYe 8tz e + AXAy.

Let/2 1)/x. Then

XYe e xYe e tze + AXay

<= IIXYe- tz ell + IIAXayll

--<O/z+2(1-O)- 0+--2(

0+2(1_0 (1-6)-1/2.

Let =[0+(n62/2(1-0))](1-6)-1. We have the following proposition
PROPOSITION 3.3. If 0 < 1, then (,) > O.
Proof Since lipide-/2 ell N < , we have for i= 1,. ., n,]Y < , so

Yy >0. If for some i, Y <0 and <0, then 0<x <Ax and 0<y <Aye. Hence,
0<xy <AxAyN]]AXAyl] n62/2(1-0). On the other hand, xy (1- 0) since
(x, y) e S(O). Thus, (1-0)<n6/2(1-0), i.e., 1<0+(n6/2(1-0)). But 0+
(n62/2(1-O))<(O/(1-6))+(n6/2(1-O)(1-6))=<l. This is a contradiction.
Therefore

Now we turn to the following equations for Newton’s iteration"

(3.3) Y+x2=XYe- e, =M,

88 JIU DING AND TIEN-YIEN LI

and define =-AY and fi=f-A37, where (Ay, Aft) is the unique solution of (3.3)
when ff < 1. Let/2 (7"33)/n.

LEMMA 3.4. Let/ =/2/2(1 -/). If < 1, then
(i) I]"e-/2 ell _-< ,
(ii) 12 <=(1-6)(l +(O/x/-))tx.
Proof Multiply both sides of the first equation in (3.3) by (.)-1/2 and denote

(17"-1) 1/2 by/, we have

/-IA+/A)7 (17")-1/2(e e) 5.

Since e g e o’, we have (1)/ -< i;i (1 +)/2 for 1, , n. Hence,

max

Thus,

Furthermore, from (L)-IAY)T(L)A)7)=AYrMAY_>--0 and Lemma 3.1, we obtain
[[/-IAY[[_-< []5[[, [[/Afi[[_<-[[5[[, and [[/-IAY[[/A); -< 115[[/2. Thus,

Now

Hence,

2(1-0)

’e (" A)(’- A I5) e

’e IT"AY + Aft] +

e-(e-/2 e)+ AA)7

fi e + 52Aft.

(3.4) II"e -/2 ell IIApA3711 <--2(1 ff---
Put/2 =(27)3)/n, then fie is the orthogonal projection of the vector e to the

diagonal {Ae: e}. This means that IIe- eli =mina IIe-A ell
IlXe- ell. On the other hand, we calculate the inner product

(3.5) fie e + e AA
nfi +Av

Since AYvAf AYVMAY 0, we have 2 nfi and hence fi ft. The relation fi
fi means that the Euler step gives a "too large" decrease of , that we are relatively
far from the trajectory, and that the Newton step corrects this drawback. Substituting
into (3.4), we have

112e- ell 2(1- 0) 0.

A POLYNOMIAL-TIME ALGORITHM FOR LCPs 89

This proves (i). Again, from (3.5), we obtain

xy +-- A2A __< +
n 2x/-ff (1 if)

l+2v/-ff(l_ff) /=(1-6) 1+

then the new point (,) (- AY, -A) (x Ax AY, y Ay A) with (Ax, Ay)
and (AY, Aft) satisfying the equations (3.1) and (3.3), respectively, belongs to S(O), and

satisfies

(3.6) _-<(1-) l+nn x

__.1In particular, if we let 0 and 1/2x/-ff, then the corresponding (:,) S(O) and

Proof It should be noted that 0 <_- 0 implies S(0)c S(0), and formulas (3.6) and
(3.7) hold for/2 as well. We only need to check the last statement. If 0 1/2 and 1/2x/,
then

0-- 0+--- (1--t)-1--
2(+8. (1-) 2-

which is (ii).
PROPOSITION 3.5. If <- 2 -x/, then
(i) [[’Ie-/2 ell-<_ ff,
(ii) i <=(1-6)(l +(O/n))tz,
(iii) (, fi) s() with 0 (3 2)/(- 1).
Proof Since 2-< 1, from Lemma 3.4 only > 0, > 0 is to be proved. Suppose

ff2-. From Proposition 3.3, (Y,)>0. Thus (,
ff/2(1-ff) is an increasing function of ff(0,1), ff2- implies that
(2-)2/[2(1 2 +)] (3 2)/(- 1) < 1. It follows from (i) that]e e[] <. Thus ii > 0 for 1, , n. If for some both i < 0 and fii < 0, then 0 < i <i
and 0 < i < i. This leads to

So (1)2 < 2/2, i.e.,

ff2- 2if+ 1 <0,

which implies that if> 2-. Therefore (, ;)>0 and thus by (i), (,) S().
As an easy consequence of the above preliminary results, we come to the following

theorem.
THEOREM 3.6. Suppose (x,y)6S(O). Let =[0+(n2/2(1-0))](1-6)

2/2(1 if). g we choose the parameters 0 > 0 and 6 > 0 such that

2- and

90 JIU DING AND TIEN-YIEN LI

Taking account of our assumption that n->_ 3, we get

0--
2(1-0)

15 1=(8)2/[2(1 28(2_l/x/’-ff))(2 nn)2]
=225/[2.28(41 ---n)(2-n)]
=< 3. 225/[56. (41x/- 28)(2x/-- 1)]

1

<0.114<= 0;

and finally

<(1-6) 1+ xy 1-6+(1-6)0 7-
x),’

x y

< 1- x

Theorem 3.6 constitutes the basis for our algorithm in 2. From a known initial
point (x, y) e S(), and choosing 1/2, the sequence {(x, y)} generated by the
algorithm lies in the -neighborhood S() of the homotopy path (x(), y()) and the
values (x)ry decrease at least linearly with the global convergence ratio (1 -(2/5))
along the sequence. More specifically, for each k, we have

and thus we can prove the following convergence result.
CooA 3.7. In [(ln 2)" t] steps the algorithm finds a feasible point (x, y)e

St such that
Txy

where [a denotes the smallest integer greater than or equal to a.

Proo From (3.8), we need to solve the inequality

1 <2-k

The solution is

Since -In (1 (2/5x/-ff)) > 2/5x/-, the assertion is achieved.

k>_--t/log2 1 n In 2. -In 1
2

A POLYNOMIAL-TIME ALGORITHM FOR LCPs 91

It is obvious from the above corollary that if the initial point (x l, yl) satisfies
(xl)y=<2L), then after O(rff L) iterations, the algorithm finds an approximate
solution (:, 33)= (x k, yk) of the problem (LCP) satisfying

(,fi)S and ’Tfi<2-Zt.
Here L is the size of the problem.

At each iteration cycle, our algorithm solves two linear equations (2.7) and (2.8)
successively. Thus, it requires around 2n3 arithmetic operations. The O(n3SL) algorithm
presented by Kojima, Mizuno, and Yoshise has decreasing rate (1- (1/8v/-ff)) with n
arithmetic operations at each iteration. Then, after every two iterations in their
method, the value x Ty will decrease at the rate of at least (1-(1/8/-ff)):=
1 (1 /4/-) + 1/64n)) with 2n arithmetic operations, while for our method the value
xy will decrease at the rate at least (1 (2/5V-ff)) with the same number of arithmetic
operations.

4. Conclusions. In this paper, we presented a polynomial-time predictor-corrector
algorithm for the (LCP). With Euler’s method as first-order predictor followed by
one-step Newton’s method as corrector, this method is shown to be an improvement
in the efficiency of the basic algorithm in [9] with zero-order predictor. This different
type of approach seems more natural from both the general viewpoint of the homotopy
continuation method and the special form of the homotopy equation (2.1), which is
actually a quadratic polynomial system. Our preliminary numerical experiments show
that this approach appears quite efficient for the (LCP).

As an alternative, we may use the linear interpolation technique in place of the
Euler’s scheme in our algorithm to avoid solving linear equation (2.7), and thus only
about half of the numerical work is needed.

A common shortage of the current interior point methods is the requirement of
an interior point Xo> 0 and yo> 0 satisfying (2.6). As a partial solution to this problem,
the "weighted" homotopy path may be followed from any initial strictly feasible point,
as is described in [3]. The elimination of the "Phase 1" problem as well as the numerical
efficiency investigation of the homotopy method for the (LCP) are still major research
focuses in this area.

REFERENCES

[1] E. L. ALLGOWER AND K. GEORG, Predictor-corrector and simplicial methods for approximating fixed
points and zero points of nonlinear mappings, in Mathematical Programming: The State of the Art,
A. Bacham, M. Grotschel, and B. Korte, eds., Springer-Verlag, New York, 1983.

[2] M. BEN DAYA AND C. M. SHETTY, Polynomial barrier function algorithms for convex quadratic
programming, Res. Report No. J 88-5, School of Industrial and Systems Engineering, Georgia
Institute of Technology, Atlanta, GA, 1988.

[3] J. DING AND T. Y. LI, An algorithm based on weighted logarithmic barrierfunctionsfor linear complemen-
tarity problems, to appear in the Theme Issue Optimization: Theory and Engineering Applications,
Arabian J. Sciences and Engineering, 15, 4(B) (1990), pp. 679-685.

[4] A. FIACCO AND G. McCORMICK, Nonlinear Programming: Sequential Unconstrained Minimization
Techniques, John Wiley, New York, 1968.

[5] K. R. FRISH, The logarithmic potential method of convex programming, Memorandum, University
Institute of Economics, Oslo, Norway, 1955.

[6] C. C. GONZAGA, Large-steps path-following methods for linear programming: Barrier function method,
Report ES-2/0/89, Department of Systems Engineering and Computer Sciences, COPPE-Federal
University of Rio de Janeiro, Rio de Janeiro, Brazil, 1989.

[7] ., Large-steps path-following methods for linear programming: Potential reduction method, Report
ES-211/89, Department of Systems Engineering and Computer Sciences, COPPE-Federal Univer-
sity of Rio de Janeiro, Rio de Janeiro, Brazil, 1989.

92 JIU DING AND TIEN-YIEN LI

[8] N. KARMARKAR, A new polynomial-time algorithm for linear programming, Combinatorica, 4 (1984),
pp. 373-395.

[9] M. KOJIMA, S. MIZUNO, AND A. YOSHISE, A polynomial-time algorithmfor a class oflinear complemen-
tarity problems, Math. Programming, 44 (1989), pp. 1-26.

10] ., An O(x/ L) potential reduction algorithm for linear complementarity problems, Res. Report,
Department of Information Sciences, Tokyo Institute of Technology, Tokyo, Japan, 1987.

11 ., A primal-dual interior point methodfor linear programming, Res. Report B-188, Department of
Information Sciences, Tokyo Institute of Technology, Tokyo, Japan, 1987.

12] N. MEGIDDO, Pathways to the optimal set in linearprogramming, in Proc. 6th Mathematical Programming
Symposium of Japan, Nagoya, Japan, 1986, pp. 1-35.

13] R.C. MONTEIRO AND I. ADLER, Interiorpath-following primal-dual algorithms, Part I: Linearprogram-
ming, Math. Programming, 44 (1989), pp. 27-41.

14], Interior path-following primal-dual algorithms, Part II: Convex quadratic programming, Math.
Programming, 44 (1989), pp. 43-66.

15] K.G. MURTY, Linear Complementarity, Linear and Nonlinear Programming, Heldermann-Verlag, Berlin,
1988.

[16] J. RENEGAR, A polynomial-time algorithm based on Newton’s method for linear programming, Math.
Programming, 40 (1988), pp. 59-94.

17] J. RENEGAR AND M. SHUB, Simplified complexity analysis for Newton LP methods, Tech. Report 807,
School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY, 1988.

18] Y. YE, Interior algorithmsfor linear, quadratic and linearly constrained convex programming, Ph.D. thesis,
Department of Engineering-Economic Systems, Stanford University, Stanford, CA, 1987.

[19] , Further development on the interior algorithms for convex quadratic programming, preprint,
Department of Engineering-Economic Systems, Stanford University, Stanford, CA, 1987.

SIAM J. OPTIMIZATION
Vol. 1, No. 1, pp. 93-113, February 1991 008

ON THE SOLUTION OF LARGE QUADRATIC PROGRAMMING
PROBLEMS WITH BOUND CONSTRAINTS*

JORGE J. MORIt AND GERARDO TORALDO$

Abstract. An algorithm is proposed that uses the conjugate gradient method to explore the
face of the feasible region defined by the current iterate, and the gradient projection method to move
to a different face. It is proved that for strictly convex problems the algorithm converges to the
solution, and that if the solution is nondegenerate, then the algorithm terminates at the solution in
a finite number of steps. Numerical results are presented for the obstacle problem, the elastic-plastic
torsion problem, and the journal bearing problems. On a selection of these problems with dimensions
ranging from 5000 to 15,000, the algorithm determines the solution in fewer than 15 iterations, and
with a small number of function-gradient evaluations and Hessian-vector products per iteration.

Key words, quadratic programming, large-scale, conjugate gradients, gradient projection

AMS(MOS) subject classifications. 65K10, 90C20

1. Introduction. Given a quadratic function q" n __. , and vectors and u
that specify bounds on the variables, the bound constrained quadratic programming
problem is to find a vector x that solves the problem

min{q(x)" _< x _< u}.

Our concern in this paper is with the solution of this problem when the quadratic q
is strictly convex and the number of variables n is large.

The large-scale bound constrained quadratic programming problem has attracted
much attention. Recent works on this problem include Cottle, Golub, and Sacher
[12]; Cottle and Goheen [11]; O’Leary [24]; Dembo and Tulowitzki [13]; Lin and Cryer
[19]; Lin and Pang [20]; Coleman and Hulbert [9]; Bjbrck [3]; Vang and Tolle [27]; and
Jddice and Pires [17], [18].

Applications which lead to bound constrained quadratic programming problems
include contact and friction problems in rigid body mechanics (Lbtstedt [21]), journal
bearing lubrication (Cimatti [8], Lin and Cryer [19]), flow through a porous medium

(Lin and Cryer [19]), and elastic-plastic torsion problems (Glowinski [16, pp. 158-
162]). We use finite element approximations to the elastic-plastic torsion problem and
the journal bearing lubrication problem for our numerical results.

Standard algorithms for the solution of (1.1) usually generate a sequence {xk } that
terminates at a solution of (1.1) in a finite number of iterations. Finite termination
is typically achieved by solving a sequence of subproblems of the form

min{q(xk + d) di O, E Wk)

for some index set Wk, and by restricting the change in Wk by only dropping or

adding one constraint at each iteration. In the standard algorithms the constraints in
the set Wk are a subset of the active constraints chosen so that the solution of (1.2)
is a feasible direction.

Received by the editors September 5, 1989; accepted for publication (in revised form) May 22,
1990. This work was supported by the Applied Mathematical Sciences subprogram of the Office of
Energy Research, U.S. Department of Energy, contract W-31-109-Eng-38.

Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois
60439.

Dipartimento di Matematica, Universit della Basilicata, Via N. Sauro 85, 85100, Potenza, italy.

93

94 J.J. MORI AND G. TORALDO

There are two disadvantages to this type of algorithm when applied to large
problems. One of the disadvantages is that the solution of subproblem (1.2) requires
the solution of a system of linear equations of size mk where mk is the number of
constraints not in]4;k. This can be expensive if mk is large relative to n. Another
disadvantage is that by only dropping or adding one constraint from YYk at each iter-
ation, we impose a lower bound on the number of iterations required for convergence.
In particular, if there are k0 constraints active at the initial]4;0, but ks constraints
active at the solution, then at least Iks k01 iterations are required for convergence.
This can be a serious disadvantage in large problems.

The need for an algorithm that accepts approximate solutions of (1.2) has been
recognized for quite a while. For example, O’Leary [24] developed an algorithm,
based on the work of Polyak [25], which uses the conjugate gradient method for the
solution of subproblem (1.2). In the algorithm analyzed by O’Leary the conjugate
gradient method was used to solve (1.2) until either a constraint was violated or
(1.2) was solved. If a constraint was violated, it was added to YYk, and the process
was repeated. Although the theory required the accurate solution of (1.2), O’Leary
noted that this requirement essentially doubled the number of iterations, and thus
the numerical results were obtained with an algorithm in which the accuracy required
of the conjugate gradient method was refined during the course of the iteration. A
related algorithm was proposed by Mittlemann [22] for the solution of optimization
problems that arise as discretizations of elliptic variational inequalities with bound
constraints.

Dembo and Tulowitzki [13] were the first to propose algorithms that do not re-
quire the accurate solution of subproblem (1.2), and are able to drop and add many
constraints from]4;k at each iteration. Unfortunately, their convergence results were
incomplete.

Yang and Tolle [27] followed the ideas of Dembo and Tulowitzki by proposing
algorithms that are able to drop and add many constraints at each iteration. An
advantage of the algorithms of Yang and Tolle is that they can be shown to terminate
at the solution in a finite number of steps, even for degenerate problems. On the
other hand, their algorithms are partially based on the work of Polyak [25], and are
thus likely to suffer from the same disadvantages.

Wright [26] proposed a modification of the CGP algorithm of Dembo and Tu-
lowitzki [13], and established convergence results for the modified algorithm. In this
type of algorithm the gradient projection method is used until a suitable set)4; is
identified, and then the conjugate gradient method is used to obtain an approximate
solution to (1.2). Our experience has been that this strategy can be inefficient because
for starting points far from the solution, the gradient projection method can require
a large number of iterations before identifying a suitable YYk. A preferable strategy
is to use the conjugate gradient method once the gradient projection method fails to
make reasonable progress.

The algorithm that we propose in 3 for the solution of problem (1.1) uses the
gradient projection method until either a suitable Yk is identified, or the gradient
projection method fails to make reasonable progress. The conjugate gradient method
is used to obtain an approximate solution of (1.2) on the current

The analysis in 5 shows that for strictly convex problems the algorithm converges
to the solution of (1.1), and that if the problem is nondegenerate, then the algorithm
terminates in a finite number of steps.

Section 6 describes three model problems which arise in applications: the ob-

LARGE QUADRATIC PROGRAMMING PROBLEMS 95

stacle problem, the elastic-plastic torsion problem, and the journal bearing problem.
Section 7 contains results obtained on these model problems with dimensions ranging
from 5000 to 15,000. The salient feature of our numerical results is that on these prob-
lems the algorithm determines the solution in fewer than 15 iterations. This number
is of interest because it represents the number of sets]+Yk that are searched before the
optimal set is found. The total amount of work required by the algorithm is measured
by the number of function-gradient evaluations and Hessian-vector products. In our
numerical results the number of function-gradient evaluations per iteration is between
3.8 and 5.1, and the number of Hessian-vector products per iteration is between 10.0
and 41.5.

2. Preliminaries. Problem (1.1) has a unique solution x* whenever q" R -+]R

is strictly convex on the feasible region

{x e < x < u}.

This classical result holds for unbounded , and thus we allow the components of the
vectors and u to be infinite. The solution x* can be characterized as the solution of
the variational inequality

(2.2) (Vq(x*),x- x*) >_ O, x E gt,

where (., .) is an inner product and Vq is the gradient of q with respect to the in-
ner product. Unless otherwise stated, we assume that (., .) is the standard 12 inner
product.

If [2 is the bound constrained set (2.1), any solution of the variational inequality
(2.2) satisfies the Kuhn-Tucker conditions

O/q(x) 0 if x e (1/, u/)
O/q(x) >_ O ifx/=l/
O/q(x) <_ O ifx/=u/

for a minimizer of problem (1.1). Approximate solutions to problem (1.1) can be
defined in terms of the projected gradient defined by

O/q(x)

}}
if x

(2.3) [Vaq(x)]/= min{O/q(x), if x/=
max{O/q(x), ifx/=

This definition of a projected gradient is appropriate for the bound constrained set
(2.1). This projected gradient is the negative of the projected gradient defined by
Calamai and Mor(! [5] for a general closed convex set f.

Given x0 f and a tolerance - in (0, 1), we define an approximate solution of
problem (1.1) as any vector x f such that

IlVaq(x)ll TliVq(xo)ll.

The definition (2.3) of the projected gradient shows that Vaq(x*) 0 whenever x* is
a solution of problem (1.1). Also note that (2.4) holds whenever x is sufficiently close
to x* and in the face of f that contains x*. The concept of a face of a convex set is
standard in convex analysis; for the convex set (2.1), the face of ft that contains x is

{y f" yi x/if x/E {l/,u/}}.

96 J.J. MORt AND G. TORALDO

An alternate definition of an approximate minimizer is to require that

liP (x Vq(x)) 11 _< -IlVq(o)ll

where P is the projection into the feasible region (2.1), that is, P(x) is the closest
point in to x. The use of liP (x- Vq(x)) xll as a measure of optimality is fairly
common. See, for example, Conn, Gould, and Toint [10]. An advantage of (2.4) over
(2.5) is that if we replace q by aq for some a > 0, then only (2.4) is invariant under
this change of scale. Indeed, if we replace q by aq in (2.5) and is bounded, then
(2.5) is satisfied by any x E if a is sufficiently large.

The projection P into the feasible set (2.1) plays an important role in the algo-
rithms for problem (1.1). We close this section by noting that for the feasible set (2.1)
the projection can be computed in order n operations by letting

(2.6) P(x) mid(l, u, x),

where mid(l, u, x) is the vector whose ith component is the median of the set {li, ui, xi}.
3. A bound constrained quadratic programming algorithm. We propose

an algorithm for the bound constrained problem (1.1) which uses the conjugate gra-
dient method to explore the face of the feasible region defined by the current iterate
and uses the gradient projection method to move to a different face. We first describe
the use of the conjugate gradient method.

The face of the feasible set which contains the current iterate can be defined in
terms of the active set, where the active set 4(x) is defined by

A(x) {i x l or x u}.

The variables with indices in 4(x) are the active or bound variables, while those with
indices outside of A(x) are the free variables. Given the current iterate xk and the
active set 4(xk), the conjugate gradient method is used to compute an approximate
minimizer of the subproblem

(3.1) min{q(xk + d): di 0, e A(xk)}.

This is an unconstrained quadratic programming problem in the free variables. Note
that if xk lies in the same face as the solution of (1.1) and dk solves (3.1), then xk A-dk
is the solution of (1.1).

The conjugate gradient algorithm for the solution of subproblem (3.1) is imple-
mented by expressing this subproblem in terms of an equivalent subproblem in the
free variables. If il,..., imk are the indices of the free variables, and the matrix Zk is
defined as the matrix in lRnxmk whose jth column is the ijth column of the identity
matrix in lnxn, then subproblem (3.1) is equivalent to the unconstrained subproblem

(3.2) min{qk(w) w e’},

where

qk(w) =-- q(xk + Zkw) q(xk) 1/2wTAkw + r[w.
The matrix Ak and the vector rk are, respectively, the reduced Hessian matrix of q
and reduced gradient of q at xk with respect to the free variables. If A is the Hessian
matrix of the quadratic q then

(3.3) Ak ZAZk, rk ZVq(xk).

LARGE QUADRATIC PROGRAMMING PROBLEMS 97

Also note that Ak is the matrix obtained from A by taking those rows and columns
whose indices correspond to free variables; similarly, rk is obtained from Vq(xk) by
taking the components whose indices correspond to free variables.

Given a starting point w0 E pmk, the conjugate gradient algorithm generates a
sequence of iterates w0, wl,.., that terminates at a solution of subproblem (3.2) in
at most mk iterations. We use the conjugate gradient algorithm until it generates wj
such that

qk(wj-) qk(wj) <_ max(qk(w_) --qk(w)" 1 <_ < j}

for some fixed constant r > 0. The approximate solution of subproblem (3.1) is then
dk Zkwjk, where jk is the first index j that satisfies (3.4).

Test (3.4) detects when the conjugate gradient method is not making sufficient
progress. One of the advantages of this test is that it is scale invariant, that is, the
test is unchanged if it is applied to the function aq for any a > 0. Another advantage
is that this test is eventually satisfied provided the sequence {qk(wj)} is monotone
decreasing and qk is bounded below. We could have used other tests, but test (3.4)
seems to be appropriate for the conjugate gradient method. For example, the test

IIVqk(wj)ll g rllVqk(0)l

is often used instead of (3.4). This test is scale invariant. Moreover, this test is
eventually satisfied because wj solves subproblem (3.2) for some j g m. On the
other hand, the behavior of the residual norm IIVqk(wj)ll is often erratic.

In general we do not set xk+ xk / dk because this may produce an infeasible

xk+. Standard algorithms set xk+ xk / (kdk where ak is the minimizer of
q(xk + adk) in the interval [0, #k] and

(3.5) #k max{a >_ O <_ Xk + ad <_ u}.

However, in this strategy only one constraint is usually added at each iteration, and as
noted in the introduction, this can lead to an inefficient algorithm. We use a projected
search to define ak, and then set

(3.6) xk+ P(Xk + acd)

where P is the projection (2.6) into the feasible region (2.1). The projected search is
described in detail in the next section. For the moment it is only necessary to note
that the projected search chooses an ak > 0 such that q(xk+) < q(xk), and that
more than one constraint may be added to the active set whenever ak > #k.

If the iterate xk+ generated by the conjugate gradient method appears to be in
the face which contains the solution, then this face is explored further. The decision
to continue the conjugate gradient method is based on the observation that if x is on
the face that contains the solution, then the binding set

B(x) {i xi li and Oiq(x) >_ O, or xi ui and Oiq(x) g 0}

agrees with the active set A(x). Thus, if the conjugate gradient method produces
an iterate x+ such that B(xk+) A(xk+), then we continue exploring this face
with the conjugate gradient method. The condition B(xk+) A(xk+) does not
guarantee that xk+ is in the face which contains the solution. If the current iterate
is not in the face which contains the solution then the finite termination properties

98 J.J. MORt AND G. TORALDO

of the conjugate gradient method guarantee that it eventually generates an iterate
which violates the condition B(xt:+l) Jt(xk+).

We can continue exploring the current face by saving the last iterate wj and the
search direction sj generated by the conjugate gradient method. Setting the starting
point to wj and the starting direction to sj preserves previous information, and thus,
the finite termination properties of the conjugate gradient method.

Once the conjugate gradient algorithm has explored a face, standard algorithms
use multiplier estimates to choose a different face. However, there are theoretical and
numerical reasons for using the gradient projection method.

For the quadratic programming problem (1.1), the gradient projection method
generates a sequence {y } by setting

Yj+I P[Y:i cuVq(Yj)]

where P is the projection (2.6) into 2 and aj > 0 is chosen by a projected search so
that q(y+) < q(yj). The gradient projection method is used to select a new face
as follows: Given xk, we generate iterates by the gradient projection method with

Yo x. If for some fixed constant 72 > 0 either of the two tests

(3.7) A(u)
q(Yj-) q(Yj) <_ Y2 max{q(yt_l) q(yt) 1 <_ < j}

is satisfied, then we explore the face of the feasible set that contains Yk, where j is
the first index j that satisfies (3.7) or (3.8).

The justification of test (3.7) is based on the convergence properties of the gradient
projection method as discussed by Bertsekas [1], Dunn [14], Calamai and Mor [5],
and Burke and Mor [4]. These results show that for nondegenerate problems there
is a neighborhood of the solution such that (3.7) holds whenever xk belongs to this
neighborhood. Since on nondegenerate problems the active set is only guaranteed to
settle down in a neighborhood of the solution, there is a need for test (3.8) which
detects when the gradient projection method is not making sufficient progress.

The use of the gradient projection method to choose a face of the feasible set
has appeared in several optimization algorithms. For example, More! and Toraldo
[23] use (3.7), but replace (3.8) with a fixed limit on the number of consecutive
gradient projection iterations. The use of (3.8) is natural and leads to a more efficient
algorithm. Wright [26] eliminates (3.8) and replaces (3.7) with B(y) B(yj_). As
noted in the introduction, eliminating (3.8) completely can be inefficient.

We have described how the conjugate gradient method explores the face of the
feasible region defined by the current iterate and how the gradient projection method
chooses a different face. The following algorithm summarizes the discussion.

Algorithm GPCG.

For k 0,... until convergence.
Generate gradient projection iterates y0, y,"" with yo xk. Set xk yk,
where jk is the first index j that satisfies (3.7) or (3.8).
Generate conjugate gradient iterates w0, w,.., with w0 0. Set dk Zkwj:,
where jk is the first index j that satisfies (3.4). Use a projected search to
define xk+ by (3.6). If B(xk+) A(xk+), continue the conjugate gradient
method.

LARGE QUADRATIC PROGRAMMING PROBLEMS 99

Each iteration of algorithm GPCG consists of choosing a face by the gradient
projection algorithm and exploring that face by the conjugate gradient algorithm.
We claim that each iteration of algorithm GPCG can be done in a finite number of
steps. The gradient projection algorithm determines a suitable yj in a finite number
of steps because (3.8) is eventually satisfied provided q is bounded below on the
feasible set. Also note that if the conjugate gradient method does not terminate, then
it eventually generates an iterate such that B(xk+i) A(xk+l).

We also claim that if algorithm GPCG terminates in a finite number of steps
then it produces the answer to problem (1.1). This claim is a standard result for the
gradient projection method. For the conjugate gradient method note that termination
can only occur if the conjugate gradient method produces an iterate with rk 0 and
A(xk) B(xk). These two conditions imply that xk is the solution of problem (1.1).

4. Projected searches. The projected search in algorithm GPCG requires an

ak > 0, which produces a sufficient decrease in the function Ck :]R defined by

Ck(c) q (P [xk / dk])

where P is the projection (2.6) into the bound constrained set (2.1), and dk is the
search direction. The su]ficient decrease condition requires that ck > 0 satisfy

Ck(ck) _< Ck(0) / #(Vq(xk),P [xk / kdk]

for some constant # E (0, 1/2). In this section we show that the sufficient decrease
condition can be satisfied for the two choices of dk in algorithm GPCG. Recall that
for the gradient projection method dk --Vq(xk), while for the conjugate gradient
method dk Zkwj where wj is produced by the conjugate gradient method for
problem (3.2).

Note that Ck is a continuous, piecewise quadratic function because P [xk / odk]
is a linear function of c on any interval on which the active set of P [xk / odk] is
unchanged. Since q is strictly convex, Ck is piecewise strictly convex. Breakpoints for
Ck can be defined by computing

0-0 <i <"" <tip <p+l-

so that Jt(P[xk + adk]) is constant on the intervals (i,i+l) for 0,...,p. We
allow infinite values for either li or ui, and thus we may have p 0 in the definition
of breakpoints.

When dk Zkwj, the choice of Zk guarantees that xk + odk is feasible for a in
[0,/l], and thus (4.1) can be satisfied for all a > 0 sufficiently small if (0) < 0.
Note that for this choice of dk, the first breakpoint l coincides with #k as defined
by (3.5). Hence, if rk is the reduced gradient defined by (3.3), then

(0) Vq(xk)Tdk rwj.

Since wi is a descent direction in the conjugate gradient method, this shows that
(0) < 0 unless rk O.

The proof that (4.1) can be satisfied if dk --Vq(xk) is similar. The main
observation needed in this case is that if rk is the projected gradient (2.3) so that

rk Vaq(xk),

100 J.J. MOR AND G. TORALDO

then P(xk -aVq(xk)) xk -ark for a in [0,/1], and

q(x e [o,

Thus (4.1) can be satisfied for all ak > 0 sufficiently small if Vq(xk)Trk > O. Since

Vq(xk)Trk]rk] 2,

this shows that Vq(xk)Trk > 0 unless xk is the solution of problem (1.1). Note that
for this choice of dk the path xk + adk may not be feasible for any a > 0. Indeed,
A(P [xk + dk])is the binding set B(xk) for in (0,).

The projected search algorithm generates a decreasing sequence)} of positive
trial values such that

(+))] <k E [a) 0 < < 1.

We choose an 0) bounded away from ero and set to the first trial value that
satisfies the sucient decrease condition. One of the advantages of this procedure is
that it produces an acceptable with a finite number of evaluations of q.

The initial rial value of is he minimizer of the quadratic function that rep-
resents @ in [0, 1]. Thus the initial trial value of is

An expression for the initial trial value of is obtained by noting that + d is
feasible for in [0, 1] when d Zw, and thus he conjugacy properties of the
conjugate gradient algorithm imply that

Trw 1

for this choice of d. or d -VV() i is only necessary to note that (4.2) implies
hat

rAkr
For either choice of dk, if o) < 1 then the initial trial value satisfies the sufficient
decrease condition (2.4) with N , and thus becomes the chosen k.

Given an initial trial value we compute the minimizer of the quadratic that
interpolates Ck(0), (0), Ck(k), and we use the maximum of 1 and

(4.5) mid(

as the new estimate, where mid(.,.,.) has been defined in connection with (2.6)..
This procedure is repeated until the sufficient decrease condition holds. Termination
in a finite number of steps is guaranteed because 1 satisfies the sufficient decrease
condition (4.1) with, N whenever a0) < .

The projected search described above is based on the work of Dembo and -lowitzki [13] and Mor and Toraldo [2a]. Th of (4.5) to update the trial values
of k is a standard quadratic interpolation scheme with saNguards to avoid large

LARGE QUADRATIC PROGRAMMING PROBLEMS 101

corrections to ak. Other authors use simpler schemes (for example, always use 1/2ak
as the new trial value), but (4.5) is likely to be better.

Many optimization algorithms use projected searches, but the precise choice of
ak usually depends on the algorithm. For example, Corm, Gould, and Toint [10] use
a projected search but choose ak as the first local minimizer of Ck. A disadvantage
of this choice is that it may require the evaluation of the function at every break-
point. Since function evaluations tend to be expensive, this is not desirable. From a
theoretical viewpoint, this choice has only been shown to be satisfactory for bound
constrained problems. In contrast, there are convergence results for a wide class of
algorithms with the projected search described in this section. See, for example,
Bertsekas [1], Dunn [14], Calamai and Mor [5], and Burke and Mor [4].

5. Convergence results. The main theoretical results for algorithm GPCG are
that GPCG converges for strictly convex problems, and that if the problem is nonde-
generate, GPCG terminates in a finite number of iterations.

THEOREM 5.1. Let q :JRn]R be a strictly convex quadratic. If {xk} is the
sequence generated by algorithm GPCG for problem (1.1), then either {xk} terminates
at the solution x* of problem (1.1) in a finite number of steps, or {xk} converges to
X*.

Proof. We have already noted that if GPCG terminates in a finite number of steps,
then it must terminate at a stationary point of problem (2.1). Since q is strictly convex
the only stationary point of problem (2.1) is the solution x*.

We now consider the case in which algorithm GPCG generates an infinite sequence
{xk }. Since q is a strictly convex quadratic and {q(xk)} is a nonincreasing sequence,
{xk) is bounded. In particular, if]GP is the set of iterates generated by the gradient
projection method,)GP is infinite and {xk k E Evp} is bounded. Theorem 5.2
of Calamai and More! [5] guarantees that every limit point of {x k e ErR} is a
stationary point of problem (1.1). This result implies that there is a subsequence
of {xk} that converges to x*, and thus {q(xk)} converges to q(x*). Now note that
inequality (2.2) holds because x* is a stationary point, and thus

(T
X* 2q(xk) q(x*) (Vq(x*),Xk x*) / 1/2(V2q(x*)(Xk X*),Xk X*) > - llxk II

where a is a lower bound for the eigenvalues of the Hessian. Since (q(xk)} converges
to q(x*), this inequality shows that (xk) converges to x*, as desired. []

Theorem 5.1 does not make strong use of the properties of the conjugate gradient
method. Convergence of GPCG depends on the convergence properties of the gradient
projection method, and on the result that the conjugate gradient method produces
iterates such that q(x,+) <_ q(xt:).

We now show that finite termination of GPCG depends on the finite termination
properties of the conjugate gradient method on subproblems, and on the identification
properties of the gradient projection method. These identification properties have
been explored by Bertsekas [1], [2], Dunn [14], [15], Calamai and Mor [5], and Burke
and Mord [4]. In the following theorem we use the results as formulated by Calamai
and Mor.

THEOREM 5.2. Let q Rn be a strictly convex quadratic. If the solution x*
of problem (1.1) is nondegenerate in the sense that

Oqi(x*) O, A(x*),

then algorithm GPCG terminates at the solution x* in a finite number of steps.

102 J.J. MOR AND G. TORALDO

Proof. We claim that if the conjugate gradient method in algorithm GPCG is
given an xk with Jt(xk) jr(x*) and sufficiently close to x*, then the conjugate
gradient method produces the solution x* in a finite number of steps. We establish
this claim by first noting that since the conjugate gradient method does not violate
any active constraints,

A(x) c

Since A(x) c A(x*) for any feasible x sufficiently close to x*, we have shown that
A(xk+l) A(x*). Now consider any feasible x sufficiently close to x*. The continuity
of Vq and the nondegeneracy assumption imply that Oqi(x) 0 for E A(x*). Thus,
A(x) 4(x*) implies that B(x) ,4(x*) A(x). In particular, since we have shown
that .A(xk+) .A(x*), we obtain that B(xk+) 4(Xk+l). This implies that the
conjugate gradient method continues to explore the current face, and thus produces
the solution x* in a finite number of steps.

We complete the proof by appealing to Theorems 4.1 and 5.2 of Calamai and Mor
[5]. These results show that if]CGP is the set of iterates generated by the gradient
projection method, then .A(yjk .A(x*) whenever xk is sufficiently close to x* and
k E /Cvp. Thus the conjugate gradient method in algorithm GPCG is eventually
given an xk with A(xk) .A(x*) and sufficiently close to x*. V1

6. Test problems. We consider three model problems: the obstacle problem,
the elastic-plastic torsion problem, and the journal bearing problem. These problems
can be formulated as minimization problems of the form

(6.1) min{q(v) v

where q K]R is a quadratic over a closed convex set K in a Hilbert space. In
this section we describe the continuous version of these minimization problems and
the finite element approximations which lead to finite dimensional problems.

The continuous version of these problems is described in terms of a bounded
open set 73 in ,d with a reasonably smooth boundary 073, and the space H(73) of all
functions with compact support in 73 such that v and [[Vv[[2 belong to 52(). Note
that v 0 on 073 for any v H0(73).

In the obstacle problem we are given obstacles vt and vu such that vt _< 0 and
vu _> 0 on 073, and a function f L2(:D). The obstacle problem is of the form (6.1)
with

(6.2) q(v) 1/2/73 IIVvl12d73 -/73 fvd73

and

K {v e H(73): v _< v _< vu on 73}.

Although the force function f can be nonlinear, in our test problems we assume that
f c for some constant c. The obstacle problem and its physical interpretation
are discussed, for example, in Ciarlet [7, pp. 287-296]. An interesting aspect of the
obstacle problem is that the solution is not usually twice continuously differentiable
even if v, Vu, and f are infinitely differentiable. This aspect of the obstacle problem
is shared by the other two problems in this section.

LARGE QUADRATIC PROGRAMMING PROBLEMS 103

The elastic-plastic torsion problem can be formulated as a minimization problem
of the form (6.1) where q is defined by (6.2) with f c for some constant c, and

g {v e H(7))’lv(x)l <_ dist(x, 07)), x e

with dist(., 07:)) the distance function to the boundary of :D. This formulation and the
physical interpretation of the torsion problem are discussed, for example, in Glowinski
[, . S-].

The obstacle problem and the torsion problems have been formulated for any
reasonable open set in l:td, although applications are restricted to the case d < 3. In
the journal bearing problem we are concerned with a particular set in R2. For this
problem 7:) is the rectangle

(6.3) v {(o, u)" o < o < o < u <
The journal bearing problem is of the form (6.1), where

(6.4) q(v) 1/2 f:D(1 + ecosO)3]lVvl]2dT) -e fD sinOvdT),

and

K {v e H(D)’v >_ 0 on :D}.

The parameter e E (0, 1) is the eccentricity of the journal bearing. In the interest
of simplicity, we have followed Lin and Cryer [19] in neglecting the periodicity con-
ditions in the journal bearing problem as formulated by Cimatti [8]. The physical
interpretation of the journal bearing problem is discussed by Capriz and Cimatti [6].

We now describe finite element approximations to the above problems. These
approximations are standard, but we need to be explicit in order to define the test
problem.

The general approach is to triangulate 7) and to replace the minimization of q
over H(7)) by the minimization of q over the set of piecewise linear functions that
satisfy the constraints specified by K. The finite element approximations thus give
rise to a finite dimensional minimization problem whose variables are the values of
the piecewise linear function at the vertices of the triangulation.

Let 7) be a rectangle in R2 and set 7) (dl, d2) x (d3, da). Vertices zi,j E R2 for
a triangulation of 7) are obtained by choosing grid spacings hx and hu and defining
grid points

(6.5) zi,j (dl + ihx, d3 + jhy), 0 <_ < n + 1, 0 < j <_ ny + 1

such that Zn+,n+ (d2, da). The triangulation consists of triangular elements Tu
with vertices at

Zi,j Zi+l,j Zi,j+l

and triangular elements TL with vertices at

Zi,j Zi-- 1,j Zi,j-- 1.

Consider the piecewise linear function v with values vi,j at zi,j. Since Vv is constant
over any element, a computation shows that

2
Vi,j+ Vi,j]lVvl]2dT) hhu vi+, vi, +

v 2 h hy

104 J.J. MORt AND G. TORALDO

and that

IIVvjl2dT h.hu vi-,j vi, + vi,j-
2 h hy

where vi, 0 if zi, 0. Similarly, since v is linear over any element,

/TVd= hhy{v+,+v,++v5}, TVd= hh

Thus, assembling all the contributions yields

hxhy vi,.E
The above computations show that if q is defined by (6.2) with f c for some constant
c and v is the piecewise linear function with values vi,j at zi,j then

1
q(v)

where

{(()qi,j(v) hhy vi+l,j vi,j + vi,+l v,
hx hy

vi_, vi,j+ h ()2}vi,j- vi,j+ hy

When h hy h we can express the quadratic q in matrix notation by noting that if
we identify the piecewise linear function v with the vector in]Rnn with components
vi, in the standard row-wise ordering, then

q(v) 1/2vTAv bTv,

where b is the vector with bi,j ch2, and A is the usual block tridiagonal matrix
(with diagonal entries of 4 and off-diagonal entries of-1) arising from a difference
approximation to the Laplacian operator.

We have defined finite dimensional approximations to the obstacle problem with
f c and the torsion problem. In both cases the finite element approximation leads
to a minimization problem of the form

(6.7) min{q(v) v e gl},

where q is the quadratic defined by (6.6) and is a convex set defined by bounds.
For the obstacle problem

(6.8)

where li, and ui,j are, respectively, the values of vg and vu at zi,. For the torsion
problem

(6.9)

LARGE QUADRATIC PROGRAMMING PROBLEMS 105

where d,j is the value of dist(., 0:D) at z,j.
A finite element approximationto the journal bearing problem is obtained by an

extension of the above considerations to deal with integrals of the form

where Wq R and wt R are functions defined on the rectangle . If v is
the piecewise linear function with values vi,j at zi, then

ViT l,j Vi,j + Vi,jT1 Vi,j

where the constant i,j is the integral of the function q over Tu. In the journal
bearing problem, Wq(l,2) (I + ecosl)3, and thus it is possible to obtain an
exact expression for i,i. In our test problem, however, we use the trapezoidal rule
to approximate the integral, and this leads to

+ +.=

Similarly,

where

T

Vi-- l,j Vi,j
__

Vi,j-- Vi,j

hhy(6.11) Ai,j ’=
6

{Wq(Zi,i) + Wq(Zi-15) + Wq(Zi,j-1)}.

The integral of wtv over any element can be evaluated exactly for the journal bearing
problem because wt(l, 2) sinai and v is linear on any element. In our test problem
we approximate this integral with the trapezoidal rule, and thus

:D
WlVd:D hxhy wl(zi,j)vi,j.

The above approximations can be used, in particular, on the journal bearing functional
defined by (6.4). We obtain a minimization problem of the form (6.7) with the set
of v with v > 0 and with

1
(6.12) q(v) qi,i(v) hhu wt(zi,i)vi,i,

where wt(l, 2) sinai, and the quadratic qi,i is defined by

qi,i(v) i,i
Vi+l,i vi,i + vi,+l

h hu

} Ai,j Vi-- l,j Vi,i _}_ Vi,i-- Vi,j

h hu

Recall that the constants #i,i and A,i are defined by (6.10) and (6.11), and that
Wq(l, 2) (1 + e cos 1)3.

106 J.J. MORt AND G. TORALDO

7. Numerical results. We consider the three problems described in 6 and
examine the performance of algorithm GPCG on these problems. Our main concern
is with the performance of the algorithm on problems with a large number of variables.

We study the behavior of the GPCG algorithm in terms of the number of iterations
required to satisfy the convergence criterion. This number is of interest because it
represents the number of faces that are searched before the face which contains the
solution is found. Our results show that even for large problems, the number of
iterations is small; in all cases fewer than 15.

Although the number of iterations is of interest, the total amount of work is a
crucial ingredient in the performance evaluation of GPCG. A reasonable measure of
the amount of work required by GPCG is the number of function-gradient evaluations
and Hessian-vector products needed to solve the problem. In some papers only the
number of iterations is mentioned, and this does not provide a reasonable measure of
the amount of work.

In the numerical results nf is the number of function-gradient evaluations and nh
is the number of Hessian-vector products. We provide the averages of nf and nh per
iteration. We have attempted to simplify the performance evaluation of GPCG by
just providing the total number of function-gradient evaluations and Hessian-vector
products. Note, however, that the cost of a Hessian-vector product depends on the
number of free variables because the number of nonzero components in the vector
involved in the Hessian-vector product is at most the number of free variables during
the current iteration. Thus, the faster algorithm is not necessarily the algorithm
with the least number of function-gradient evaluations and Hessian-vector products.
This point should be kept in mind during the evaluation of the numerical results of
algorithm GPCG.

In addition to the averages of n, and nh, there are other statistics which could be
of interest. In some cases, bounds for these statistics can be obtained from n] and nh.
Consider, for example, the number of gradient projection iterations and the number
of conjugate gradient iterations. Since an iteration of either the gradient projection
method or the conjugate gradient method requires a Hessian-vector product,

?CG -b ?GP nh,

where ncv is the number of conjugate gradient iterations, and nGp is the number of
gradient projection iterations. Moreover, since the projected search of the conjugate
gradient method requires at least one function-gradient evaluation,

where niser is the number of iterations. In our numerical results we will find that nI
is smaller than nh (usually by at least a factor of 3), so the above relationships give
us an indication of the relative values of nov and nGp. For example, if on a problem
we obtain niter 10, nf 45, and nh 157, then nGP 35 and ncv 122.

Most of the ingredients of algorithm GPCG are described in 3 and 4. The
results in this section were obtained with the following parameter settings:

1 0.1, if2 0.25, p 0.1, r 10-5.

Recall that y appears in the sufficient progress test (3.4) of the conjugate gradient
method, y2 in the sufficient progress test (3.8) of the gradient projection method, in
the sufficient decrease condition (4.1) of the projected search, and T in the convergence
criterion (2.4) of algorithm GPCG.

LARGE QUADRATIC PROGRAMMING PROBLEMS 107

The test problems have been described in 6. Since we are interested in large-scale
problems, we have chosen problems with 5000 to 15,000 variables. This was done by
choosing n ny in the triangulation (6.5) from the set (75,100,125}. This leads to
problems with dimension n nny.

The numerical results were done in double precision (16 decimal places) on the
Alliant FX/8 at the Advanced Computing Research Facility of Argonne National
Laboratory.

7.1. The obstacle problem. The discrete obstacle problem is of the form (6.7)
where q is the quadratic (6.6) and gt is the set (6.8) with l,j and u,j being, respec-
tively, the values of vl and v at the grid points of the triangulation of :D. In our
problem T (0, 1) (0, 1). The only remaining ingredients are the specification of
the obstacles vl and v,, the constant c, and the starting point x0.

We have chosen two of the obstacle problems from Dembo and Tulowitzki [13].
For obstacle problem A the obstacles v and vu are

v(l, 2) sin(3.2l)sin(3.32), vu (1, 2) 2000,

while for obstacle problem B, they are

vt(l, 2) (sin(9.2l)sin(9.32))3 vu(l, 2) (sin(9.2l) sin(9.32))2 0.02.

Obstacle problem B has nontrivial lower and upper bounds in the sense that both
lower and upper bounds are active at the solution. Obstacle problem A only has
nontrivial lower bounds. Results obtained with these two problems are typical for the
other obstacle problems in Dembo and Tulowitzki [13]. In both problems c- 1 is the
force constant.

The starting point of problem A is either the vector specified by vt or the vector
e with all components set to unity. These choices test the algorithm with a starting
point with all constraints active, and with a starting point in the interior of the feasible
region. For similar reasons, the starting points for obstacle problem B are the lower
bound vector l, the upper bound vector u, and the vector 1/2(1 / u).

The results for the obstacle problem appear in Tables 7.1 and 7.2. These results
show that algorithm GPCG satisfies the convergence criteria in a few iterations (fewer
than 15), and with a reasonable number of function-gradient evaluations and Hessian-
vector products per iteration. As noted above, the number of iterations is of interest
because it represents the number of faces that are searched before the face which
contains the solution is found. We also note that the number of iterations would not
have changed if we had used a tighter convergence criterion; the only difference would
have been an increase in the averages for nf and nh.

If we only consider the number of iterations or the number of function-gradient
evaluations and Hessian-vector products, the performance of algorithm GPCG with
respect to the starting point does not seem to be predictable; for problem A the
algorithm prefers a starting point with all constraints active, while for problem B
better behavior is obtained when x0 is on the interior. However, if we consider the
computing time, then our implementation of GPCG always requires the least amount
of time when the starting point is a vertex of the feasible region. We can explain
this observation by noting that when the starting point is on the interior, it is quite
likely that the conjugate gradient method will be used to explore the interior of the
feasible set. Since the cost of a Hessian-vector product depends on the number of
free variables, the cost of exploring the interior of the feasible set is high, and tends

108 J.J. MORI AND G. TORALDO

n
5625
5625
10000
10000
15626
15626

n nee
5625 4171
5625 4171
5625 4171
10000 7588
10000 7588
10000 7588
15626 11990
15626 11990
15625 11990

TABLE 7.1
Obstacle problem A.

nee x0
2122
2122 e
3843
3843 e
6108
6108 e

Iterations
9
11
10
12
11
14

5.6
4.5
4.1
4.3
3.8

nh/iter
13.2
13.3
15.7
17.6
17.1
17.0

TABLE 7.2
Obstacle problem B.

+ u)

u
+
u

(l+u)

iterations
9
8
5
8
10
7

.12
11
8

nl/iter
4.2
4.2
4.8
4.3
4.5
4.2
3.9
4.4
4.2

nh/iter
14.5
15.0
18.0
21.7
16.8
18.2
19.5
19.6
22.1

to offset any gains made in reducing the number of function-gradient evaluations and
Hessian-vector products.

7.2. The elastic-plastic torsion problem. The elastic-plastic torsion problem
is of the form (6.7) where q is the quadratic (6.6) and f is the set (6.9). In our
specification of the torsion problem we follow many of the suggestions of O’Leary
[24]. In particular, :D- (0, 1) (0, 1).

The starting point x0 is either the origin, or the vector u of upper bounds. The
vector of lower bounds is not a reasonable starting point because it can be shown
that if x is the solution of the torsion problem for a given c, then

lim xc u.

The convergence of x to u can be seen clearly by comparing the plot of the solution
* for c 5 in Fig. 7.1 with that for c 20 in Fig. 7.2.xc

Numerical results for the torsion problem appear in Tables 7.3-7.5. The results
for c 5 are similar to those obtained for the obstacle problem A. In particular, note
that algorithm GPCG satisfies the convergence criteria for the torsion problem with
less than 15 iterations, and with a small number of function-gradient evaluations and
Hessian-vector products per iteration.

The numerical results for the torsion problem improve with increasing c. This
is to be expected because as c increases, the linear term in the function tends to
dominate. This also explains the decrease in the percentage of free variables at the
solution as c increases; the solution of a linear problem is always at ,a vertex.

In terms of iterations or number of function-gradient evaluations and Hessian-
vector products, the behavior of algorithm GPCG with respect to the starting point

LARGE QUADRATIC PROGRAMMING PROBLEMS 109

FI(. 7.1. Torsion problem with c- 5.

Fro. 7.2. Torsion problem with c 20.

changes with c. For c 5 the algorithm prefers x0 0, while for larger values of c
the starting point x0 u gives better results. Just as in the obstacle problems, the
computing time for our implementation of GPCG is always in favor of x0 u as a
starting point.

Note that for c- 5, 10 and any starting point, the number of iterations increase
slightly as the dimension n increases, while for c 20, the number of iterations does
not change as the dimension increases. This is an important aspect of the numerical
results because it suggeSts that larger problems can be solved with little additional
computational effort.

7.3. The journal bearing problem. The journal bearing problem is of the
form (6.7) where q is the quadratic (6.12) and is the set of v with v _> 0. From
a numerical point of view, this problem is of interest because good numerical results

110 J.J. MORI AND G. TORALDO

can only be obtained if the conjugate gradient method is used with a preconditioner.
The numerical results for the journal bearing problem were obtained by considering
the equivalent problem

min((v) v >_ 0, (v) q(D-lv),

where D is the diagonal matrix chosen so that the the Hessian matrix of has unit
entries on the diagonal, and q is the quadratic (6.12).

TABLE 7.3
Elastic-plastic torsion problem with c 5.

n nee x0 Iterations
5625 3953 0 9
5625 3953 u 11
10000 7016 0 11
10000 7016 u 14
15625 10961 0 12
15625 10961 u 14

4.5
4.9
4.5
5.0
5.0

nh/iter
27.1
20.1
27.9
23.3
33.5
27.5

TABLE 7.4
Elastic-plastic torsion problem with c-- 10.

n nee x0 Iterations
5625 2073 0 8
5625 2073 u 7
10000 3632 0 8
10000 3632 u 7
15625 5789 0 10
15625 5789 u 9

nf/iter
4.2
4.4
4.5
4.7
4.5
4.4

nh/iter
17.5
15.8
21.8
19.8
21.7
18.5

TABLE 7.5
Elastic-plastic torsion problem with c- 20.

n nee xo Iterations
5625 1025 0 6
5625 1025 u 5
10000 1768 0 6
10000 1768 u 5
15625 9248 0 6
15625 9248 u 5

nl/iter
3.8
4.0
4.0
4.2
4.5
4.8

na/iter
11.1
10.0
13.6
11.8
18.8
14.6

We varied the eccentricity e, and used e 0.1, 0.5 because they are typical values
for the eccentricity. A plot of the solution for eccentricity e 0.1 appears in Fig. 8.1.
The main difference between the solution for e 0.1 and e 0.5 is that the number
of active variables increases; otherwise the two solutions are quite similar.

We also varied the dimensions of the journal bearing by setting b 1, 10,100 in
(6.3). In Tables 8.1 and 8.2 we only present the results for b 10 because they are
representative of results obtained for other values of b.

In the numerical results we used x0 0 as the starting point. The results obtained
with this starting point are similar to those obtained in the obstacle and torsion
problems in the sense that algorithm GPCG satisfies the convergence criteria in a
few iterations and with a small number of function-gradient evaluations and Hessian-
vector products per iteration.

LARGE QUADRATIC PROGRAMMING PROBLEMS 111

FI(. 8.1. Journal bearing problem with e 0.1.

Note that as the eccentricity e increases the number of free variables at the solution
and the number of iterations required for convergence decreases. Thus the eccentricity
e plays a similar role to that of c in the torsion problem.

8. Final remarks. The numerical results for algorithm GPCG are quite inter-
esting and merit further investigation. It would be interesting, for example, to extend
these ideas to general nonlinear minimization problems subject to bound constraints.

A key issue that we have not addressed is the numerical comparison of our results
with other algorithms in the literature. Numerical comparisons are difficult because
most papers for problem (1.1) use different test problems. Moreover, even if the same
problems are used, the results are stated in terms of iterations and not function-
gradient evaluations.

We have only been able to make a rough comparison of our results with those of
Dembo and Tulowitzki [13]. This required changing the termination criterion from
(2.4) to

IIVq(x)ll _< T,

and setting T 10-a. In their numerical results, Dembo and Tulowitzki considered
four algorithms and concluded that algorithm CGP was the best overall method. On
obstacle problem A with n 10,000 algorithm CGP required 310 iterations when
x0 and 681 iterations for x0 e. Each iteration of CGP requires a projected
search, and each projected search requires one Hessian-vector product and at least
one function-gradient evaluation. In contrast, algorithm GPCG requires 45 function-
gradient evaluations and 157 Hessian-vector products for x0 l, and 56 function-
gradient evaluations and 246 Hessian-vector products for x0 e.

Results obtained on the other problems from Dembo and Tulowitzki show similar
improvements. Note that the small number of function-gradient evaluations required
by GPCG is of significance because each evaluation of the function depends on the
number of variables, while a Hessian-vector product depends on the number of free
variables in the current iteration.

We hope that GPCG will be compared with other algorithms in the literature, and
that the detailed description of the problems in 6 will encourage other researchers in
this area to use these problems as tests for their algorithms.

112 J.J. MORI AND G. TORALDO

TABLE 8.1
Journal bearing problem with 0.1.

n nfree
5625 3808
10000 6768
15625 10564

Iterations
9
10
10

nl/iter
’4.3
4.6
5.2

TABLE 8.2
Journal bearing problem with e 0.5.

nh/iter
28:2
33.3
41.5

n nfree Iterations
5625 3359 5
10000 6040 7
15625 9426 7

nl/iter
5.0
4.7
5.1

nh/iter
31.6
31.0
40.2

Acknowledgment. This work benefited from discussions with Andreas Griewank,
Jim Northrup, and Steve Wright.

REFERENCES

[1] D. P. BERTSEKAS, On the Goldstein-Levitin-Polyak gradient projection method, IEEE Trans.
Automat. Control, 21 (1976), pp. 174-184.

[2] ., Projected Newton methods .for optimization problems with simple constraints, SIAM J.
Control Optim., 20 (1982), pp. 221-246.

[3] A. BJRCK, A direct method for sparse least squares problems with lower and upper bounds,
Numer. Math., 54 (1988), pp. 19-32.

[4] J. V. BURKE AND J. J. MOR, On the identification of active constraints, SIAM J. Numer.
Anal., 25 (1988), pp. 1197-1211.

[5] P. H. CALAMAI AND J. J. MORI, Projected gradient methods for linearly constrained problems,
Math. Programming, 39 (1987), pp. 93-116.

[6] G. CAPRIZ AND G. CIMATTI, Free boundary problems in the theory of hydrodynamic lubrica-
tion A survey, in Free Boundary Problems: Theory and Applications, A. Fasano and
M. Primicerio, eds., Pitman, Boston, 1983.

[7] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam,
1978.

[8] G. CIMATTI, On a problem of the theory of lubrication governed by a variational inequality,
Appl. Math. Optim., 3 (1977), pp. 227-242.

[9] T. F. COLEMAN AND L. A. HULBERT, A direct active set algorithm for large sparse quadratic
programs with simple bounds, Math. Programming, 45 (1989), pp. 373-406.

[10] A. R. CONN, N. I. M. GOULD, AND P. L. TOINT, Testing a class of methods for solving
minimization problems with simple bounds on the variables, Math. Comp., 50 .(1988),
pp. 399-430.

[11] R. W. COTTLE AND M. S. GOHEEN, A special class o] large quadratic programs, in Nonlinear
Programming 3, O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, eds., Academic
Press, New York, 1978.

[12] R. W. COTTLE, G. H. GOLUB, AND R. S. SACHER, On the solution of large, structured linear
complementarity problems: The block partitioned case, Appl. Math. Optim., 4 (1978),
pp. 347-363.

[13] R. S. DEMBO AND U. TULOWITZKI, On the minimization of quadratic functions subject to box
constraints, Working Paper 71, School of Organization and Management, Yale University,
New Haven, CT, 1983.

[14] J. C. DUNN, Global and asymptotic convergence rate estimates for a class of projected gradient
processes, SIAM J. Control Optim., 19 (1981), pp. 368-400.

[15] , On the convergence of projected gradient processes to singular critical points, J. Optim.
Theory Appl., 55 (1987), pp. 203-216.

[16] R. GLOWINSKI, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag,
Berlin, New York, 1984.

LARGE QUADRATIC PROGRAMMING PROBLEMS 113

[17] J. J. JODICE AND F. M. PIRES, Bard-type methods for the linear complementarity problem with
symmetric positive definite matrices, IMA J. Math. Appl. Business and Industry, 2 (1989),
pp. 51-68.

[18] ., Direct methods for convex quadratic programs subject to box constraints, preprint, Uni-
versidada de Coimbra, Coimbra, Portugal, 1989.

[19] Y. LIN AND C. W. CIYER, An alternating direction implicit algorithm for the solution of linear
complementarity problems arising from free boundary problems, Appl. Math. Optim., 13
(S), . -7.

[20] Y. Y. LIN AND J. S. PANG, Iterative methods for large convex quadratic programs: A survey,
SIAM J. Control Optim., 25 (1987), pp. 383-411.

[21] P. L)TSTEDT, Numerical simulation of time-dependent contact and friction problems in rigid
body mechanics, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 370-393.

[22] H. D. MITTELMANN, On the ejficient solution of nonlinear finite element equations II, Numer.
Math., 36 (1981), pp. 375-387.

[23] J. J. MoP AND G. TORALDO, Algorithms .for bound constrained quadratic programming prob-
lems, Numer. Math., 55 (1989), pp. 377-400.

[24] D. P. O’LEARY, A generalized conjugate gradient algorithm for solving a class of quadratic
programming problems, Linear Algebra Appl., 34 (1980), pp. 371-399.

[25] B. T. POLYAK, The conjugate gradient method in extremal problems, USSR Comput. Math.
and Math. Phys., 9 (1969), pp. 94-112.

[26] S. J. WRIGHT, Implementing proximal point methods .for linear programming, Report MCS-
P45-0189, Argonne National Laboratory, Argonne, IL, 1989.

[27] E. K. YANG AND J. W. TOLLE, A class of methods .for solving large convex quadratic programs
subject to box constraints, preprint, Department of Operations Research, University of
North Carolina, Chapel Hill, NC, 1988.

SIAM J. OPTIMIZATION
Vol. 1, No. 1, pp. 114-122, February 1991

()1991 Society for Industrial and Applied Mathematics
0O9

CONVERGENCE OF ITERATES OF AN INEXACT MATRIX
SPLITTING ALGORITHM FOR THE SYMMETRIC MONOTONE

LINEAR COMPLEMENTARITY PROBLEM*

O. L. MANGASARIAN

Abstract. Convergence of iterates is established for a symmetric regular matrix splitting al-
gorithm for the solution of the symmetric monotone linear complementarity problem where the sub-
problems are solved inexactly. The notable iterate convergence recently established by Luo and Tseng
for exact subproblem solution is extended here to inexact subproblem solution for a symmetric matrix
splitting. A principal application of the present result is to iterate convergence for the inexact block
Jacobi method for which Pang and Yang established convergence of a subsequence of the iterates.

Key words, iterative matrix splitting, linear complementarity problems

AMS(MOS) subject classifications. 90C20, 15A39

1. Introduction. We consider the classical symmetric linear complementarity
problem (LCP) of finding an x in the n-dimensional real space Rn such that

(1.1) Mx + q >_ O, x >_ O, x(Mx + q) O,

where M is a given n n real symmetric positive semidefinite (spsd) matrix and q is
a given vector in Rn. This problem is equivalent to

1(1.2) min f(x): min xMx + qx
xO xO -Many iterative methods for solving this problem [1], [3], [5], [9]-[11], [13] can be

modeled as follows. Split the matrix M [10] as follows:

(1.3) M B+C

and consider the sequence of (simpler) LCPs

(1.4) Bx+l + Cx + q >_ O, x+1>_0, x+(Bx+ + Cx + q) O i=0,1,....

Convergence of a subsequence of the iterates {x} for a variety of iterative
methods [1], [3], [4], [5], [9]-[11], [13] can be established under the simple assumption
of a regular splitting, that is,

M B / C, B- C positive definite.

Recently Luo and Tseng [4] were the first to establish that the whole sequence {x}
generated by (1.4) converges for a regular splitting (1.5) for a spsd M when f(x) is
bounded below on the nonnegative orthant R. Their proof is rather complex and

*Received by the editors April 16, 1990; accepted for publication (in revised form) August 9,
1990. This material is based on research supported by National Science Foundation grants DCR-
8521228 and CCR-8723091 and Air Force Office of Scientific Research grant AFOSR 89-0410.

fComputer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madi-
son, Wisconsin 53706 (olvics.wisc.edu).

114

CONVERGENCE OF ITERATES OF INEXACT MATRIX SPLITTING 115

requires that the subproblems (1.4) be solved exactly. By contrast, our Algorithm
2.1 below requires only the approximate solution of (1.4) in a precisely defined and
implementable way. However, our proof, which is considerably shorter, requires that
B be symmetric. It is unclear whether the symmetry of B is the inevitable price one
has to pay in order to allow inexactness in the solution of the subproblems (1.4). This
was also the case in [13], where convergence is established for a subsequence of the
iterates of a two-stage procedure for solving the symmetric LCP and where the inner
iteration constituted an approximate solution of (1.4), with a symmetric B. An open
question therefore remains: Can the symmetry assumption on B be removed from
our principal result, Theorem 2.4, while maintaining inexactness of the subproblem
solution?

We discuss our notation now. For a vector x in the n-dimensional real space Rn,
x+ will denote the vector in R’ with components (x+):- max{x, 0}, 1,..., n.
A symmetric positive definite n n real matrix induces an elliptic norm I1" liB on
R’, defined by (xBx)l/2 for x in R’. When B I, we have the Euclidean or 2-norm
(xx)l/2, which we denote simply as I1" II. The one-norm of x, in__ Ixil will be denoted
by I1" II1. For an m n real matrix A signified by A E Rren, A denotes the ith row,
while A denotes the transpose. A vector of ones in a real space of any dimension
will be denoted by e without a superscript. The identity matrix of any order will be
denoted by I. The nonnegative orthant in Rn will be denoted by R. The projection
of a point x in Rn on a closed convex S set in Rn employing the norm I1" liB is defined

arg min (p- x)B(p x)
pES

and is denoted by p(x).

2. Iterate convergence of a symmetric matrix splitting. Before stating
our algorithm, it is useful to note that the linear complementarity problem (1.1) with
any matrix M is equivalent to

(2.1) x (x (Mx + q))+.
This equivalence can be easily checked componentwise. Hence the subproblems (1.4)
are equivalent to

(2.2) xi+1 (xi+1 (Bx+1 + Cx + q))+.
We shall assume that the associated quadratic function f is bounded below and hence
the LCP (1.1) is solvable. Let X* denote its closed convex solution set. Let X*NX, where for a positive number c,

(.3) X: {xlx e R, < }.

We are now ready to state our algorithm.
ALGORITHM 2.1. Given x determine xi+1 such that for some "error" sequence

{hi} C R’ satisfying i=1 II hi]1 < oc"

(2.4a) x+1= (hi+l + xi+l (Bxi+l + Cx + q))+, O, 1,...,

where B + C is a regular splitting of M with B B and

116 O. L. MANGASARIAN

and pi.-- p(xi) is the projection of x on X* Xa using the norm I1" lIB.
Note first that (2.4a), which is equivalent to the LCP

(2.4b) Bxi+1 +Cxi/q-hi+ >_ 0, xi+ _> 0, xi+(Bxi+ +Cxi/q- h+) 0,

is solvable for all values of x and hi+1 in Rn because B is positive definite, which is
in the class of matrices Q for which the linear complementarity problem is solvable
for all values of problem data.

Before establishing the convergence of the iterates generated by Algorithm 2.1
we make a few remarks. The assumption that X* Xa : does not imply the
boundedness of X* but merely that its intersection with the simplex Xa is nonempty.
The positive number a is some upper bound on the 1-norm of a solution to the LCP
(1.1) with least 1-norm. In general a is unknown, but is chosen sufficiently large to
insure that X* Xa = . If a is not chosen large enough and nonconvergence of the
iterates {xi} to a solution of the LCP (1.1) occurs, then this is easily detected and a
can be increased. Note also that if there exists an 2 > 0 which is not a solution of the
LCP such that M2 + q > 0, then [6, Thm. 2.2] X* is indeed bounded and a may be
taken as:

(2.6) a Y(MY + q) rain (MkYc +)./l<k<n qk

However, we do not assume the existence of such an 2. The size of a enters Algorithm
2.1 only in ensuring that condition (2.5a) is satisfied. This is discussed further in
Remark 2.5 below. Lemma 2.6 below gives a precise way for implementing (2.5a).
The plausibility of (2.5a) can be demonstrated as follows. Since B is positive definite,
the subproblem (2.4a) is solvable for all values of hi+. Denote the explicit dependence
of x+ on h+ by writing x+(hi+). By [7, Thm. 3.3], xi+(hi+) is Lipschitzian in
hi+ with a Lipschitz constant u depending on B only. Hence

which ensures the smallness of the first term of (2.5a) by picking Ilhi+[I sufficiently
small. The existence of an upper bound on IIx -pill in terms of x [8, Thm. 2.11]
ensures the smallness of the second term of (2.5a). See Remark 2.5 and Lemma 2.6
for details.

We shall need the following simple but useful two lemmas, the first due to Cheng
[1], which is a special case of a more general lemma [14, Lem. 2, p. 44].

LEMMA 2.2. [1, Lem. 2.1]. Let {e} and {ei} be two sequences of nonnegative
real numbers with i=o ei < and O < ei+ < e + e for 0,1,.... Then the
sequence {ei} converges.

LEMMA 2.3. [5, Lem. 2.2]. For points x E R’ and y R_ it follows that
(x < o.

We are ready now to state and prove our principal convergence result. We remark
that our proof is motivated by Polyak’s convergence proof of the gradient projection
algorithm [14, pp. 207-208]. However, a number of new ideas were needed such as
introducing the inexactness hi+ and the manner in which it is introduced and de-
creased, introducing the truncation Xa and projecting on its intersection with the
solution set, and the use of the matrix B in the projection norm.

THEOREM 2.4. Let the LCP (1.1) be solvable for some symmetric positive semidef-
inite M. Then the iterates {xi} of Algorithm 2.1 converge to a solution x* of the LCP
(1.1).

CONVERGENCE OF ITERATES OF INEXACT MATRIX SPLITTING 117

Proof. By (2.4a) xi+1 is a projection on R and hence it follows by Lemma 2.3
above that

+ + < o.
Since (pi xi+)(Mp / q) <_ 0 it follows that

(pi xi+l)(B(x xi+) M(x -pi)) <_ hi+(xi+ pi).

From the identity

and the symmetry of B we have

2(X xi+l)B(pi xi+l) -[Ix Pill2B + I[x xi+l[[+ [Ixi+1 pi[[2B.

From the symmetry and positive semidefiniteness of M we have for a, b E Rn

aMa + bMa >_ -bMb/4.

Hence

(2.9)
(xi+l pi)M(x pi) (xi+l xi)M(x pi) + (x pi)M(x pi)

>_ -(xi+ xi)M(xi+ xi)/4.

Using (2.8) and (2.9) in inequality (2.7) multiplied by 2, and invoking the positive
definiteness of B C gives

Ilxi+l pill2 <_ IIx pill2 + 2hi+l(xi+1 pi);

or equivalently (adding and subtracting pi+l within the first term)

(2.11)
I]xi+l pi+ll + 2(xi+l pi+l)B(pi+l

-}- lipi+l pill2B (__ IIX piII2B - 2hi+l(xi+l pi).

Since

pi+l arg min (p xi+I)
B

x’x, -(p- xi+I)’

it follows by the Minimum Principle that

(p pi+l)B(pi+ xi+1) >_ 0 Vp e X* n Xa.

Hence the second term in (2.11) is nonnegative and can be dropped. Dropping also
the third term in (2.11), which is also nonnegative, gives

It follows from (2.5a) of Algorithm2.1 and Cheng’s lemma that the sequence
{llx -pills } converges, and so does {llx -pill } converge to , say. Then for any
5 > 0 we have

-6 <_ llx -pill 3 <_ 6 Vi >_ i(6)

118 O. L. MANGASARIAN

and hence

I[x[I

_
[[pi[[+ + Vi _> i(5).

Since (pi} C X,, it follows that (pi) is bounded and so is (xi}. Now

(by Lemma 2.3, because xi+ is the projection onR of the term in the square bracket)

(where is the smallest eigenvalue of ___C_c).

Hence

(2.12)

LetEX* then

By (2.5a) we have that Ei%o [Ihi+ll I]xi+ -xil] < x and {llhi+ll. Ilx+-xll) --+ 0.
Hence, again by Cheng’s lemma, the sequence {f(xi) f(2)} converges, and so does
the sequence {f(xi)}. It follows from (2.12) that

0 lim (f(xi) f(xi/) + Ilh’/ll. IIx’/ xll) > lira IIxi+ xill 2 > O.
i.-+o i.--* oc

Hence limi.--} IIxi+1 _x 0. Now, since B is positive definite, the single-valued map
xi+ T(xi, hi+) defined by (2.4a) or equivalently by (2.4b) is Lipschitzian [7, Thm.
3.3], with Lipschitz constant dependent on B only. Thus limi- IIT(xi, hi+)-xill
0. Since {hTM } --. 0 and T is continuous, it follows that for an accumulation point
x* of the bounded sequence {xi}, that {xi } --} x* and T(x*, O) x*. The condition
T(x*, O) x* is equivalent to x* E X*.

We now repeat the argument which begins this proof until we reach (2.10) but
with x* replacing pi. Thus replacing pi by x* in (2.10) gives

Now employing the Lipschitz continuity of the projection operator p with Lips-
chitz constant # and the fact that pi+ is in Xa we have that

(2.14)
I[xi+l X* xi+l X pi+ + pi + x pi + pi+ x*

< (+ ,)IIx+ II + I1 II + + I1* II.

CONVERGENCE OF ITERATES OF INEXACT MATRIX SPLITTING 119

We note that # may be taken as the ratio of the largest to the smallest eigenvalues of
B. It follows then from (2.5a), from i0 Ilhi+lll < c, and (2.14) that

(2.15) E Ilhi+lll" Ilxi+ x*ll < oc.
i--0

Hence by (2.13), (2.15), and Cheng’s lemma we have that the sequence {llx -x*ll }
converges. We claim now that if {llx -x* II} converges to a positive number 5, say, a
contradiction ensues. For- > llx x*ll 5 > -- Vi >_ for some i.

But since {xi } -, x*

> lxi-x*l for some i .
The last two inequalities are contradictory. Hence]x -x*] 0 and limi x
x* X*.

We discuss now how the inexactness condition (2.5a) of Algorithm 2.1 can be
implemented precisely.

Remark 2.5. Since M is positive semidefinite we can, by a slight modification of
[8, Thm. 2.7] replace IIx -piI] in (2.5a) of Algorithm 2.1 by a computable error bound
multiplied by a constant (M, B, q, a) as follows"

x-p (M, S, q, a) [(xi(Mx + q), -Mx q, ex

+ ((+)++ 1(- +1

where () is defined by he erm in the square bracket. Condition (2.a) is then
implied by

We give now a precise way of implementing (2.5b).
LEMMA 2.6. Inequality (2.5b) and hence (2.5a) hold by taking Ilhi+ll equal to

the largest element of {llhill/2, Ilhill/4 ...} such that

Proof. All we need to show is that (2.5c) holds for Ilhi+ll sufficiently small. Since
B is positive definite we have that x+ xi+(h+) is Lipschitzian [7, Thm. 3.3]
with constant depending on B only. Hence

Hence (2.5c) is implied by

IIh’+ll(llh’+ll + IIx+X(O) x’ll + (x’)) < IIh,,!l, (llx’- ’-11 + (x-))2

120 O. L. MANGASARIAN

that is,

(2.5d) ,llh’+ ll +llh’+ ll [llh’ll 0.

Defining the terms in the first and second square brackets in (2.5d) by u and #i
respectively, we have that (2.5d) is satisfied, and hence also (2.5a), if we take Ilhi+lll E
[0, pi+I], where

-u + V/u2 + 4v#
2u

Remark 2.7. We note here that the sequence {xi} was determined as a function of
the error sequence {hi} by solving the subproblems (2.4a) of Algorithm 2.1. This en-
tails, then, an exact solution of the equivalent linear complementarity problem (2.4b)
with a prescribed error term hi+l, and in a certain sense that is at cross purposes to
solving the original subproblems (1.4) inexactly. To avoid this we outline here a proce-
dure that does not require exact subproblem solution. Let {yi } be a sequence of points
in Rn which are obtained in any way as approximate solutions to the subproblems
(1.4) with y replacing x in (1.4). We show now how the error sequence {hi} satisfying
(2.4a) is computed from {yi}. For this purpose we first define the computable error
bound in satisfying (1.4) as follows. Let

(2.16a) ei+l ei+l(yi+l)’= min {yi+l, Byi+l + Cyi + q},

or equivalently,

(2.16b) ei+l.-- yi+l (yi+l (Byi+l + Cyi + q))+.
By [12, Lem. 2], the error [ly+ -yi+l(0)ll, where yi+l(0) is the unique solution of
(1.4) with y replacing x, is bounded by the computable ei+1 as follows"

(2.17) Ily y + (o)ll X(B)Ile + II,

where

(2.18) A(B):- 1 + a := min eigenvalue (B) > 0.

Note that ei+1 is easily computable from (2.16a) and hence can be used as a simple
measure of how exactly yi+l satisfies (1.4). We now relate hi+1 to ei+1. From (2.16b)
we have that yi+l solves the linear complementarity problem

(2.19a) wi+i Byi+l+Cyi+q-ei+l > O, yi+l-ei+l > O, (yi+i-ei+l)wi+l O,

or equivalently,

(2.19b)
w+1 B(yi+l e+1) + C(y e) + q + (B- I)ei+l + Ce >_ O,

yi+i ei+l

_
0, (yi+i ei+i)wi+i --. O.

By defining

xi+i.=yi+i_ei+i, x yi e hi+i’= (I B)ei+i-Cei,

CONVERGENCE OF ITERATES OF INEXACT MATRIX SPLITTING 121

the subproblem (2.19b) reduces to (2.4b), and the error term h+1 can be computed
from the relation h+ (I- B)e+ -Ce in (2.20). Thus the smallness condition
(2.55) on the sequence {llhll} can be translated, through the relations (2.20), (2.165)
and the nonexpansiveness of the plus function (.)+, into a smallness condition on the
sequence { lie } as follows:

(2.21)

3. Conclusions. We have established convergence of the iterates for a symmet-
ric regular splitting algorithm for the symmetric monotone linear complementarity
problem. The principal application is probably to an inexact block Jacobi method for
solving the symmetric LCP. In particular, if we let

(3.1) M L + D + L,
where D is some block diagonal of M and L + L’ is the remaining part of M, then
we can take

(3.2) B II + D, C -II + L + L’, B C 2(AI + D) M.

This splitting is regular for

(3.3) A > max eigenvalue (-2 -D).
The splitting (3.2) is useful in the parallel solution of linear programs where the
constraints of the problem are distributed among the processors and the objective
function is appropriately modified for each processor by Lagrangian and proximal
terms. This will be discussed in a forthcoming paper [2].

REFERENCES

[1] Y. C. CHENG, On the gradient-projection method for solving the nonsymmetric linear comple-
mentarity problem, J. Optim. Theory Appl.,43 (1984), pp. 527-541.

[2] M. C. FErtrtIS AND 0. L. MANGASARIAN, Parallel constraint distribution, Tech. Report 971,
Computer Sciences Department, University of Wisconsin, Madison, WI, 1990.

[3] Y. Y. LIN AND J.-S. PANG, Iterative methods for large convex quadratic programs: A survey,
SIAM J. Control Optim., 25 (1987), pp. 383-411.

[4] Z.-Q. Luo AND P. TSENG, On the convergence of a matrix splitting algorithm.for the symmetric
linear complementarity problem, SIAM J. Control Optim., 29(1991), to appear.

[5] 0. L. MANGASARIAN, Solution o] symmetric linear complementarity problems by iterative meth-
ods, J. Optim. Theory Appl., 22 (1977), pp. 465-485.

[6] , Simple computable founds for solutions of linear complementarity problems and linear
programs, Math. Programming Stud., 25 (1985), pp. 1-12.

[7] 0. L. MANGASARIAN AND T.H. SHIAU, Lipschitz continuity of solutions of linear inequalities,
programs, and complementarity problems, SIAM J. Control Optim., 25 (1987), pp. 583-595.

[8] , Error bounds for monotone linear complementarity problems, Math. Programming, 36
(gs), . s-sg.

[9] J.-S. PAIG, On the convergence of a basic iterative method for the implicit complementarity
problem, J. Optim. Theory Appl., 37 (1982), pp. 149-162.., Necessary and sufficient conditions .for the convergence of iterative methods for the
linear complementarity problem, J. Optim. Theory Appl., 42 (1984), pp. 1-17.

122 O. L. MANGASARIAN

[ii] J.-S. PANG, More results on the convergence o] iterative methods for the symmetric linear
complementarity problems, J. Optim. Theory Appl., 49 (1986), pp. 107-134.

[12] ., Inexact Newton methods for the nonlinear complementarity problem, Math. Program-
ming, 36 (1986), pp. 54-71.

[13] J.-S. PANG AND J.-M. YANG, Two-stage parallel iterative methods for the symmetric linear
complementarity problem, Ann. Oper. Res., 14 (1988), pp. 61-75.

[14] B. T. POLYAK, Introduction to Optimization, Optimization Software, Inc., New York, 1987.

SIAM J. OPTIMIZATION
Vol. 1, No. 1, pp. 123-145, February 1991

() 1991 Society for Industrial and Applied Mathematics
010

ON THE CONVERGENCE OF THE MULTIDIRECTIONAL SEARCH
ALGORITHM*

VIRGINIA TORCZON?

Abstract. This paper presents the convergence analysis for the multidirectional search algo-
rithm, a direct search method for unconstrained minimization. The analysis follows the classic lines
of proofs of convergence for gradient-related methods. The novelty of the argument lies in the fact
that explicit calculation of the gradient is unnecessary, although it is assumed that the function is
continuously differentiable over some subset of the domain. The proof can be extended to treat most
nonsmooth cases of interest; the argument breaks down only at points where the derivative exists
but is not continuous. Finally, it is shown how a general convergence theory can be developed for an
entire class of direct search methods--which includes such methods as the factorial design algorithm
and the pattern search algorithm--that share a key feature of the multidirectional search algorithm.

Key words, unconstrained optimization, convergence analysis, direct search methods, parallel
optimization, multidirectional search, Nelder-Mead simplex algorithm

AMS(MOS) subject classifications. 49D30, 65K05

1. Introduction. In this paper we shall give the convergence analysis for the
multidirectional search algorithm [13]. The multidirectional search algorithm is a
direct search method designed to solve the unconstrained minimization problem:

rnin f(x)
XE/Rn

where f lRn 1R.
Direct search algorithms presume little of the function--typically only that the

function is continuous--since they do not require, or even directly estimate, gradient
information. It has long been recognized that these methods are gradient-related, but
the convergence analysis for a large class of these algorithms has been incomplete, as
we shall discuss in the next section.

Our proof of convergence for the multidirectional search algorithm will follow
the classic lines of proofs for gradient-related methods. First we will show that the
multidirectional search algorithm is a descent method. Then we will show that the
search directions do not deteriorate. Finally we will show that the algorithm satisfies
a notion of sufficient decrease in the value of the objective function for the size of the
step taken. While we assume that the function is continuously differentiable over some
subset of the domain, we never explicitly compute the gradient. The novelty in this
argument lies in the fact that the algorithm provides enough structure to make explicit
information about the gradient unnecessary. The multidirectional search algorithm
will be introduced in 3. The convergence analysis for the differentiable case will be
developed in 4, 5, and 6.

The result for the smooth case can also be extended to handle most nonsmooth
cases of interest. This extension will be given in 7. Finally, we will close by reviewing
both what the convergence analysis tells us about how the multidirectional search
algorithm works and what it also suggests about a more general convergence theory for
an entire class of direct search algorithms, which is a subject of our current research.

Received by the editors March 19, 1990; accepted for publication (in revised form) June 12, 1990.
This research was sponsored by SDIO/IST/ARO and the Air Force Office of Scientific Research grant
89-0363. A portion of this work is contained in the author’s doctoral thesis under the supervision
of J. E. Dennis, Jr. in the Department of Mathematical Sciences, Rice University, Houston, Texas
77251-1892.

Department of Mathematical Sciences, Rice University, Houston, Texas 77251-1892.

123

124 VIRGINIA TORCZON

2. Direct search methods. Direct search methods are characterized by the
fact that they do not use derivatives. They forgo this very useful information for very
practical reasons. Often, particularly in experimental settings, analytic derivatives
are simply unavailable. Finite-difference approximations to the gradient could be
used, but the cost of computing the function values on a sequential machine may
make this option prohibitively expensive. Furthermore, in an experimental setting
it is not at all unusual to have function values that can only be trusted to a few
significant digits so that finite-difference approximations to the gradient may prove
unreliable. Another possibility is that the experimental apparatus itself may make
finite-difference approximations to the gradient difficult, if not impossible.

Having relinquished explicit derivative information, the direct search methods
typically consider a natural alternative: at every iteration they explore each direction
in a linearly independent set of n search directions. As we shall see, if this set of search
directions has the right structure, it is possible to derive convergence results for these
algorithms. Our interest in direct search methods arose from the observation that at
every iteration the algorithms typically perform searches in each of n directions.

Thus, it certainly seems reasonable to assume that in most, if not all, of these
algorithms the n searches required for a single iteration can be conducted indepen-
dently. This, in tlurn, suggests a natural way to develop new optimization algorithms
for parallel machines [5], [13].

The direct search algorithms are distinguished both by the way in which the set
of n search directions is chosen and maintained and by the way "exploratory" steps
are taken in each of the n directions. The most important distinction, for theoretical
purposes, is between those methods for which the set of search directions is modified
at the end of each iteration and those methods for which the set of search directions
remains fixed across all iterations. Examples of algorithms in the first class include
aosenbrock’s method [11], Powell’s method [10], and Zangwill’s method [16]. In the
second class of direct search methods one finds such examples as the factorial design
algorithm of Box [2], the pattern search algorithm of Hooke and Jeeves [7], and the
simplex algorithm of Spendley, Hext, and Himsworth [12] (the method upon which
the simplex algorithm of Nelder and Mead is based).

The Nelder-Mead simplex algorithm [8], perhaps the most popular of the direct
search methods, does not search in each of n linearly independent search directions
at every iteration. It is worth noting that while we know of several attempts to prove
convergence of the Nelder-Mead simplex algorithm, none of these has met with suc-
cess. Furthermore, the experimental evidence gathered while testing and comparing
the multidirectional search algorithm with the Nelder-Mead simplex algorithm sug-
gests that a convergence result for the Nelder-Mead simplex algorithm may not be
possible [13]. The fact that the Nelder-Mead simplex algorithm only searches in a
single direction at each iteration removes it from the domain of this analysis--an ob-
servation which first suggested how the Nelder-Mead simplex algorithm might fail.
However, as yet we can offer no satisfactory explanation of why this failure occurs.
(For a further discussion of the experimental results, see [13].)

The methods which modify the set of search directions at the end of each iteration
use the result of the exploratory searches along each of n linearly independent search
directions to compute a new search directionmthat defined by the point used to start
the iteration and the point found at the conclusion of the n exploratory steps. The
methods are distinguished by the way in which the new set of search directions is then
determined. As Zangwill [16] points out, care must be taken to ensure that the set

ON THE CONVERGENCE OF MULTIDII:tECTIONAL SEARCH 125

of search directions remains linearly independent. However, once proper precautions
are observed, several nice results can be derived, as shown by both Powell [10] and
Zangwill [16] in their original papers, as well as those found in later works. (See [1],

The direct search methods for which the search directions remain fixed across all
iterations have been analyzed with varying degrees of success. One of the best known
algorithms of this sort is the pattern search algorithm of Hooke and Jeeves. Ca [3]
gives a concise proof of convergence that uses few of the features of the pattern
search algorithm. His analysis does, however, rely on the fact that the algorithm
requires the step sizes to be monotonically decreasing. The multidirectional search
algorithm allows the steps to increase in size if there is a corresponding decrease in
the value of the objective function. Thus, Ca’s result cannot be extended to the
multidirectional search algorithm. Until recently, this has been the only convergence
result of which we were aware for this class of direct search methods. We have since
discovered a more ambitious convergence analysis undertaken by Yu Wen-ci [14], [15].
He, too, noted that the pattern search algorithm of Hooke and Jeeves and the original
simplex algorithm of Spendley, Hext, and Himsworth share the features of fixed search
directions and fixed rescaling factors. Using these observations, and the notion of a
positive basis, he derived a general convergence result for modified versions of both
these algorithms.

Our analysis differs from that of Yu Wen-ci in two important respects. First,
Yu Wen-ci, like Ca, must assume that the step sizes are monotonically decreasing.
Again, this means that his analysis cannot be extended to cover the multidirectionl
search algorithm. Our analysis allows the step sizes to increase if decreases are seen
in the corresponding objective function values.

Second, to show that these algorithms cannot take steps that are too long rela-
tive to the amount of decrease in the value of the objective function in other words,
that there is su]ficient decrease in the value of the objective function for the size of
the step takenYu Wen-ci introduces the notion of an "error-controlling" sequence.
Unfortunately, it is not clear how such a sequence can be constructed and maintained
in practice. In fact, one of the difficulties in applying the classical analysis for descent
methods to these algorithms is that an explicit calculation of the initial descent slope
is used to enforce the Armijo-Goldstein-Wolfe conditions for sufficient decrease (see
[4], [9]). Direct search methods, by definition, do not compute such information. Our
result places no such burden on the multidirectional search algorithm. We can guar-
antee that the algorithm cannot take steps that are too long, relative to the amount of
decrease in the object function value, without enforcing the Armijo-Goldstein-Wolfe
conditions or introducing any other such measure of sufficient decrease. The key
feature of the multidirectional search algorithm which makes this analysis possible
is that both the search directions and the scaling factors which determine the step
sizes are fixed across all iterations of the algorithm. This feature can also be found
in several of the traditional sequential direct search methods, so one of the goals of
our current research is to extend the results presented here for the multidirectional
search algorithm to these other direct search methods. The only limitation we must
impose is that the scaling factors used to determine the size of the steps taken must
be rational. This mild restriction is easily satisfied by all the algorithms in this class;
the values typically recommended for the scaling factors are 1/2 and 2.

We are now ready to introduce the multidirectional search algorithm.

126 VIRGINIA TORCZON

3. Algorithm. A formal statement of the multidirectional search algorithm is
given on the next page. We proceed with a brief description of the algorithm.

In order to understand the algorithm, consider the sequence of "best" vertices
(v0k }, where by "best" we mean that for all k,

f(Vok) <_ f(v/k) for i=l,...,n.

At each iteration of the inner repeat loop a search is conducted from the current
best vertex v0

k in each of the n directions determined by the n edges adjacent to v0k.
The goal of the search is to replace v0k, i.e., to find a new vertex with a function value
that is strictly less than the function value at v0k.

There are three possible trial steps: the rotation1 step, the expansion step, and
the contraction step, which are illustrated in Fig. 1. Note that the algorithm always
computes the rotation step and then tests to see if a new best vertex has been found.
If a new best vertex has been identified, an expansion step is computed. Otherwise,
the algorithm computes, and automatically accepts, the contraction step.

The algorithm can thus be viewed in terms of its two primary loops: the outer
while loop, which determines a new set of search directions by considering a new
best vertex, and the inner repeat loop, which determines the length of the steps to
be taken.

The "rotation" step is analogous to the "reflection" step found in the simplex algorithm of
Nelder and Mead [8]. We choose to depart from the terminology used by Nelder and Mead since
"rotation" more accurately describes the effect of the step on the position of the simplex.

ON THE CONVERGENCE OF MULTIDIRECTIONAL SEARCH 127

THE MULTIDIRECTIONAL SEARCH ALGORITHM

Given an initial simplex So with vertices (Vo, v, vn/, choose #, 8 e Q such that
/* expansion factor */
(1, +oc), and
/* contraction factor */
0 e (0,1).

for 0,...,n
calculate f(vk)

end
k,--0
while (stopping criterion is not satisfied) do

/* find a new best vertex */
j - arg min {f. (v/k) 0,..., n}
swap v and v
repeat

Check the stopping criterion.
/* rotation step */
for l,. ,n- o (-o)

calculate f(rk)
end
replaced (min { f(r/k)" 1,..., n} < f(v0k))
if replaced then

/* expansion step */
for/- 1,...,n

ek - Vok # (vk Vok)
calculate f(e)

end

/*** initialization loop **/

/*** outer while loop **/

/* inner repeat loop*/

if (min {/(e/k): 1,... n} < min {S(rk) 1,...,n}) then
/* accept expansion /
vk ek for/= 1,...,n

else
/* accept rotation */
v.k rk for 1,...,n

endi
else

/* contraction step */
for/- l...n- vo + (v vo)

calculate f(c)
end
replaced (min (f(c)" 1,..., n} < f(VOW))
/* accept contraction */
v.k - ck for 1,...,n

endi
until replaced /* end repeat loop */
k.--k+l

end /**** end while loop ***/

128 VIRGINIA TORCZON

The expansion factor # and the contraction factor determine the lengths, rel-
ative to the original edges in the simplex, of the steps to be considered. In our
implementation, # is set equal to 2 and is set equal to 1/2, as in the example shown
in Fig. 1. Further discussion of the choice of scaling factors, as well as additional
implementation details, can be found in [13].

4. Key lemmas. Two important results follow directly from the description of
the multidirectional search algorithm. First, the multidirectional search algorithm is
a descent method since

f(vok+l) < f(Vok).
For this to be true we need only show that if the best vertex Vok is at a point where the
function is differentiable, and Vf(Vok) is not equal to zero, then the inner repeat loop
terminates in a finite number of iterations. Second, the search directions determined
by the multidirectional search algorithm are uniformly linearly independent. This
means that there exists a constant 7 > 0 such that for all k >_ 0 and x # O,

max
Ilxll IIv voll

This follows from the observation that while the algorithm may translate and rotate
the simplex, or change its scale, the angles in the original simplex So are preserved
across all iterations of the algorithm. Both results are given in the next two lemmas.
We begin by introducing the following notation.

Let v be the best vertex of the simplex S used to start the kth iteration of the
algorithm. Define the level set of f at v to be

(v) (./() x/(v)).
Given y =, let the contour C(y) be

C(y) (x ./(x)=/(y)).

Let X, be the set of stationary points of the function f in L(v).
We will assume, for now, that f is continuously differentiable on L(v); however,

as we will discuss in 7, if we redefine X,, this assumption can be weakened. We next
show that the multidirectional search algorithm is a descent method.

LMMA 4.1. Suppose that f is continuously differentiable on L(v). If the mul-
tidirectional search algorithm finds an iterate v+, then

/(v+) </(v).

zl l(v) # o, ztiitioaZ saa aZaoit wiZZ a +.
ProoI. The multidirectional search algorithm will accept a new iterate v+ only

if f(v+) < f(v), so the first conclusion in the lemma is tautologically true. The
more interesting point is the second: if v is not a critical point--in particular, if
Vf(v) # 0--then the algorithm will find an acceptable v+ in a finite number
of iterations of its inner repeat loop. This should not be too surprising since the
algorithm is performing line searches along the n directions determined by the n
edges adjacent to v.

We will assume that v X, and show that the inner repeat loop terminates in
a finite number of iterations.

ON THE CONVERGENCE OF MULTIDIRECTIONAL SEARCH 129

The set of edges adjacent to any vertex in a simplex is linearly independent. Thus,
the set of n edges adjacent to the current best vertex v0k,

{(o). ,...,},
spans/Rn.

If Vok X,, then Vf(Vok) is nonzero. Consequently, there exists at least one i, for
1,...,n, such that

v](o)() 0.

There are then two cases to consider.
c . v]()(-) > 0.
Note that since (v v) -(r v),

vs()() < 0.

Consider the right-hand directional derivative of f t v in the direction (r -v)"

-v)= lim
f(v+h(r-v))-f(v)

<0.S’()*(
h0+ h

Thus, there exists an hk > 0 such that for 0 < t hk

S (v + t(r v)) < S(v).
c . vs()() < 0.
Consider the right-hand directional derivative of f at v in the direction (v-v)"

f’(v)T(v v) lira f (v + h (v v)) f(v)
< 0

h0+ h

Thus, there exists an k (0, hk] such that for 0 < t k
s (+ t()) < s().

Conclusion. The vertices of the contracted simplex are defined to be

+ ()
for 1,..., n, where (0, 1) is the fixed contraction factor. If the contracted step
is accepted at the current iteration of the inner repeat loop, and a new best vertex
has not been found, then at the next iteration of the inner loop, the rotated step can
be defined in terms of the contracted vertices as

= (c-)r

((+ ()))
().

Therefore, for any k, if v X,, then there exists a positive integer p, such that
Pk < k and so the inner repeat loop terminates in a finite number of iterations as
required.

LEMMA 4.2. The search directions determined by the multidirectional search
algorithm are uniformly linearly independent.

Proo]. Consider each of the three possible steps the multidirectional search algo-
rithm may take.

130 VIRGINIA TORCZON

1. The rotation step rotates the given initial simplex about the best vertex. This
could be viewed as first translating the given initial simplex by -Vo, applying
the transformation -I, and then translating the simplex by v0k. Since -I is
an orthogonal transformation, the Euclidean inner product is preserved. Thus,
neither the translations nor the rotation affect the angles in the given
initial simplex.

2. The expansion step rescales the rotated simplex by a factor of #, which again
leaves the angles of the given initial simplex unchanged.

3. The contraction simplex is formed by first translating the rotated simplex by
-v0k, applying the orthogonal transformation -I, and then translating the
simplex by v0, which simply restores the initial simplex. The simplex is then
rescaled by a factor of . Thus, the angles of the given initial simplex are
unchanged.

Since none of the three possible steps affect the angles in the initial simplex,
the angles of the simplex used to start the algorithm So remain constant across all
iterations of the multidirectional search algorithm. Therefore, there exists a / > 0,
which does not depend on k, such that

(1) max
Ilxll live- vll’

for all x n, x 0, as required.

5. The smooth case. We are now ready for a formal statement of the theorem.
THEOREM 5.1. Assume that L(v) is compact and that f is continuously differ-

entiable on/(v). Then some subsequence of (v} converges to a point x, X,.
Furthermore, {v} converges to C, C(x,) in the sense that

lim inf Iv-xll] =0.
k XC,

COROLLARY 5.2. Assume that f is continuously diferentiable, L(vo) is compact,
and f is strictly convex on L(v). Then

lim v0
k x,,

where x, is the unique minimizer of f in L(v0).
We will show that if the conclusion of Theorem 5.1 were not true, then there

would be a lower bound on the lengths of the edges of the simplices generated by the
algorithm. This, in turn, would imply that the algorithm can generate at most a finite
number of iterates, which would contradict the fact that away from X, the algorithm
produces a sequence of points with strictly monotonically decreasing function values,
as we showed in Lemma 4.1.

The proof of Theorem 5.1 will be given in 6. The rest of this section is devoted
to results needed for the proof.

5.1. Enforcing step length control. Together, Lemmas 4.1 and 4.2 guarantee
that if f is continuously differentiable on L(vo), then the multidirectional search
algorithm generates at least one direction of descent that is uniformly bounded away
from orthogonality with the gradient. However, we still need to ensur,e that the steps

ON THE CONVERGENCE OF MULTIDIRECTIONAL SEARCH 131

the algorithm takes are neither too long nor too short relative to the amount of
decrease seen in the value of the objective function. In most other descent methods,
step length control is guaranteed by enforcing the Armijo-Goldstein-Wolfe conditions.
The multidirectional search algorithm cannot enforce the Armijo-Goldstein-Wolfe
conditions because it does not have explicit knowledge of the gradient. There is
enough structure in the algorithm, however, to enforce step length control without
enforcing the Armijo-Goldstein-Wolfe conditions.

We begin by proving the existence of an upper bound on the lengths of the edges
of the simplex.

PROPOSITION 5.3. Assume that L(vo) is compact and that f is continuously
differentiable on L(v). Then there exists a constant M > 0 such that

Ilvik Vo _< M V i, k

Proof. Assume that Vo X,. If so, in the proof of Lemma 4.1 we showed that the
multidirectional search algorithm will produce a new best vertex in a finite number
of iterations of the inner repeat loop. Since L(vo) is compact, for all k _> 1 there

kk such that the vertices Vok vi e L(v0). Since L(vo)exists at least one vertex vi
is bounded, this implies a bound on the length of the edge (v -v0). Since the
rescaling factors # and are constant across all edges of the simplex for all iterations
of the multidirectional search algorithm, the relative lengths of all edges in the simplex
remain the same across all iterations of the algorithm. This implies the existence of
M > 0 as required.

If Vo E X,, we can no longer argue that the inner repeat loop will produce a new
best vertex in a finite number of iterations. There are then two possibilities. The first
is that the multidirectional search algorithm produces a new best vertex. If so, the
argument given above still holds. The other possibility is that the multidirectional
search algorithm does not find a new best vertex, i.e., the inner repeat loop does not
terminate. If so, then the contraction step has been accepted, because the rotation
step and the expansion step are accepted only when they produce a new best vertex.
Since the contraction factor is strictly less than one, this means that the length of
every edge in the simplex is strictly monotonically decreasing. Thus, the maximum
length across all edges in the initial simplex So provides an upper bound on the length
of all edges in all subsequent simplices, as required.

The existence of an upper bound on the lengths of the edges of the simplex implies
the existence of a compact set, which we shall call A/I, that contains L(v) and all
the simplices generated by the multidirectional search algorithm from a given initial
simplex So.

We next posit the following null hypothesis: the sequence of best vertices Vok stays
uniformly bounded away from X,. We will show that under this hypothesis a lower
bound on the lengths of the edges in the simplex exists and that once the edges in the
simplex become small enough, the rotation step will always be acceptable. Note that
this does not necessarily mean that the rotation step will be accepted. If the rotation
step is acceptable, the multidirectional search algorithm automatically considers the
expansion step; however, we are guaranteed that the contraction step will not be
considered. Since the lengths of the edges in the simplex are reduced only when the
simplex is contracted, this argument ensures no further reduction in the size of the
simplex.

PROPOSITION 5.4. Assume that L(v0) is compact and f is continuously differ-
entiable on L(v0). Suppose that the best vertices stay uniformly bounded away from

132 VIRGINIA TORCZON

X,; i.e., for a fixed e > O, independent of k,

Ilvo-x.II _> vx, e x,, Vk>0.

Then there exists a constant m > 0 such that for all k > 1

Proof. Define the set X, as follows"

z, x e L(v0)" IIx- x, II < fo some x, e X,

Consider its complement 12 in L(v0)

f L(v) \ X,.

Note that f is compact. Furthermore, f is continuously differentiable on f, so

1. IIVfll achieves a minimum a > 0 on f, and
2. Vf is uniformly continuous on f.

This leads to two observations. First, for all k,

IlvS(vo)ll >_ > o,

and a does not depend on k. Second, the uniform linear independence of the set of
search directions at each iteration gives us the constant 7 > 0 seen in (1). From the
uniform continuity of Vf on f there exists a > 0, depending only on a, 7, and f,
such that

IIVf(x)- Vf(v0)]l < a’/2 whenever IIx- v0ll < (and x E f).

Now we will show that once the edges of the simplex become "small enough," the
rotation step is always acceptable so that the simplex will not contract; hence the
simplex cannot become any smaller.

"Small enough" will mean that the simplex and its rotation are contained in f
and IIv- Vok II < di for any choice of j 1,..., n. These conditions will determine our
choice of m.

We need first some measure of the relative lengths of the edges in the simplex.
We define r/as follows:

where

kek min IIv]-v,ll n E mx IIvO(_j,l_n, jl O<j,l<_n,

Thus, for any 1 < j, _< n,

voll _< E I ek < 1IIv IIv,-voll

ON THE CONVERGENCE OF MULTIDIRECTIONAL SEARCH 133

Note that ? is independent of k since, as we demonstrated in Lemma 4.2, the relative
lengths of the edges in the simplex remain fixed across all iterations of the algorithm.
Finally, observe that 0 < y _< 1.

We also define d to be the distance between the contour defined by v and the
level set defined by v:

d dist (L(v), C(vo)).
Note that Lemma 4.1, together with the assumption that the best vertices are uni-
formly bounded away from X,, assures us that d > 0. Finally, we use Sk to denote
the simplex defined by the vertices (Vo, vk, v). We now make the following two
claims.

CLAIM 1. Suppose k >_ 1. If, .for some i- 1,...,n, IIv- Vkoll <_ d, then
S C L(vo).

Proof. The triangle inequality gives us

dist (v, L(v)) _< dist (v, L(vo)) + dist (L(vo), L(v))
dist (v, L(vok))

_< IIv
1

<d,

for any choice of j 1,..., n. Therefore, Sk e L(v) as required. [3

CLAIM 2. If, for some 1,..., n, IIv/k Vokl] g , then none of the vertices in
the rotated simplex are contained in 2d,, i.e., r X, for any j 1,..., n.

Proof. Recall that]lr -Voll IIv- Voll for any j 1,..., n.
Let x, E X,. We appeal to the "reverse" form of the triangle inequality to obtain

kI1 x, il _> Ilr Vo I!- IJVo x, ILl > .
We define a as follows:

We are now assured that if

a=ymin d,,5

max IIv-voll <aj=l,...,n

then Sk and its rotation are contained in n and that IIVf(v)- Vf(Vo)ll < a-/2 for
all j 1,..., n. We are ready to argue that if, at any iteration k, (2) is satisfied, then
the rotation step will always be acceptable. Again, we have two cases to consider.

Case 1. Vf(Vo)T(v Vo) > O.
Choose a vertex v, O, which satisfies

IlvS(vo)ll IIv, - vo ll
Lemma 4.2 guarantees the existence of at least one such vertex.

134 VII:tGINIA TOI:tCZON

By definition,

VoI"

Our choice of a guarantees that the edge (r/k Vok) is contained in 2. We can
then invoke the Mean Value Theorem to obtain

/()- (o) v/()()
for some e (r- v), whence

(3) f(r) f(v) k T k_Vf(vo) (ri v)+ (Vf()- Vf(v))T (r v).
Consider the first term on the right-hand side of (3), Vf(v)T(r- v). O

choice of v gives us

lvfCv)v vl e lvfCvll llv,
Since Vf(v)(v v) > 0 we ve

VfCvv-v llVfCvll ll- vll.
construction, vll llv vll. u,

Vf v> -vll.CVo Cv,- _lVfCvlt
Since v v -(v), we otin

VfCvr v - IlVfCvl vll.
Now consider the second term on the right-hand side of (3). The Cauchy-Schwarz

inequality gives us

(vf- vfCv) (r v)] IlVf- VfCvll-Combine (4) and (5) to rewrite (3) as

vll + llvf- vfCvll lit,f fCv < - llVfCvll ,
Since Vf is uniformly continuous on n and]]- v]]]r -v]]]tv -v]] a,
the following holds:

fCr- fCv (-VfCvl[+lvf- VfCvl)lJr vl[., < >o

<-<0
<0

Thus,

f(r/k) f(vok) < 0 === f(r/k) < f(Vok),

ON THE CONVERGENCE OF MULTIDIRECTIONAL SEARCH 135

whenever maxj=l,...,n IIv v0kll _< a. We can then conclude that the vertex r can

replace the best vertex v0k. Therefore, the simplex will not contract.
Case 2. Vf(Vok)T (v/k Vok) < 0.
The proof for Case 2 follows that given for Case 1. The conclusion, however, is

quite different. Since Vf(V0k)T(vk --V0) < 0, we get, as in (4),. yoginvo _< IlvS(vo)II IIv,
without substituting -(r/k -v0) for v/k -v0k. We continue the argument as in (5) but
with vk rather than with rk. Finishing the reductions, we are left with

S(vk) < S(Vok)
whenever maxj=l,...,n IIv - vo ll < a. But this leads to a contradiction! We have
chosen vk so that 0 and the multidirectional search algorithm requires that

S(vok)
_

f(v/k) V i-- 1,...,n.

Therefore, Case 2 cannot happen.
Conclusion. We have now established that once every edge of the simplex has

length less than a, then the rotation step will always be acceptable. Since the algo-
rithm reduces the lengths of the edges of the simplex by at most at any iteration of
the inner repeat loop, it follows that the length of every edge of the simplex will be
between yta and a. Thus we choose m ta. []

We emphasize that the existence of a lower bound for the lengths of the edges in
the simplex is guaranteed only under the null hypothesis that the best vertices are
uniformly bounded away from X,. However, now that we have established both lower
and upper bounds for the lengths of the edges in the simplex, we are ready to show
that, given these lower and upper bounds, the multidirectional search algorithm can
only visit a finite number of points. Again, let us stress that this is not what occurs,
but is rather a consequence of the hypothesis that the best vertices are uniformly
bounded away from X,.

To see how the argument works, we begin by considering how the algorithm
decides which points to visit. In Fig. 1 we are given an initial simplex with a designated
"best" vertex. The algorithm automatically generates the rotated simplex. The result
of the acceptance test then dictates whether the expanded or the contracted simplex
will be constructed. In either event, given an initial simplex and the best vertex in
that simplex, we can determine, in advance, all the simplices that can be generated
during the first iteration of the inner repeat loop. This means we can enumerate,
a priori, all the points that can possibly be visited during the first iteration through
the repeat loop.

Now assume that we are given an initial simplex, but do not know any information
about the function values at any of the vertices in the simplex. This means that
we have no way of identifying the "best" vertex in the simplex. Even without this
information, we can still determine all the simplices that might be generated during
the first iteration of the inner repeat loop and we can still enumerate all the points
that might be visited during this iteration. To do this, we simply allow each of the
vertices in the original simplex to be "best" and consider all the possibilities, as shown
in Fig. 2.

We now extend this speculation further. After one pass through the inner repeat
loop there are two possibilities: either the best vertex has been replaced, and we go to
the next iteration of the outer while loop, or the best vertex has not been replaced and

136 VIRGINIA TORCZON

FIG. 2. Enumerating the vertices when the best vertex is not known.

ON THE CONVEI:tGENCE OF MULTIDIPECTIONAL SEAPCH 137

we pass once more through the inner repeat loop. Again, we assume no knowledge
of the function value at any of the vertices. We can still consider, a priori, all the
possibilities by allowing each vertex, including the original best vertex, in each of the
trial simplices generated at the previous iteration to be "best" and generate all possible
new simplices. For our example, seen in Fig. 3, we begin to enforce a lower bound on
the lengths of the edges in any of the simplices. Furthermore, we require our simplices
to be contained in a compact set. Both of these restrictions are important because
they eliminate several of the simplices that might otherwise have been considered.

Consider yet another iteration of either the outer while loop or the inner repeat
loop. Again, we allow each vertex in each of the trial simplices generated at the
previous iteration to be "best," but again we apply our restrictions to eliminate even
more simplices. The result can be seen in Fig. 4.

Finally, if we remove all the edges, we see in Fig. 5 that the multidirectional
search algorithm is, in fact, generating a grid. Since the grid must be contained in a
compact set, and since its mesh size is fixed, this means that there are only a finite
number of points that the algorithm can visit. We require the lower bound on the
lengths of the edges in the simplex to fix the mesh size of the grid. We require the
upper bound on the lengths of the edges in the simplex to give us a compact set over
which to search. However, once we accept these two restrictions, this means that
we can compute--without any knowledge of function information--all the points the
algorithm can possibly visit from any given initial simplex.

Now we will prove that, given any initial simplex, if we assume that the best
vertices are uniformly bounded away from the set X,, then the multidirectional search
algorithm can visit only a finite number of points.

PIOPOSITION 5.5. Assume that L(v0) is compact and that f is continuously
diflferentiable on L(v0). Further, suppose that the best vertices stay uniformly bounded
away from X,, i.e.,]or a fixed e > O, independent of k,

I1,,o x, II-> v x, e x,, v >_ o.
Then the multidirectional search algorithm can visit only a finite number of points.

Proof. The proof is by construction.
Rescale the initial simplex So, using the contraction factor , until every edge in

the simplex satisfies the condition

a,

for all 0 _< j, _< n, j # l, where r and a are as defined in Proposition 5.4.
Find the least common denominator for the scale factors and #. This makes

sense since and # are restricted to the set of rational numbers.
Divide the least common denominator by the reduction factor . Reduce the

simplex one last time by this factor.
Designate any one of the vertices in the rescaled simplex as "best." (There is no

need to consider function information.) Take the set of edges adjacent to the best
vertex

,n}
as a basis for the grid. Now take all integer multiples of the basis that generate points
inside the compact set A/[. (Recall that Proposition 5.3 implies the existence of a com-
pact set A/[which contains all the simplices generated from So by the multidirectional
search algorithm.)

138 VIRGINIA TORCZON

FIG. 3. Enumerating the vertices after one additional iteration.

ON THE CONVERGENCE OF MULTIDIRECTIONAL SEARCH 139

FIG. 4. Enumerating the vertices after two additional iterations.

140 VIRGINIA TORCZON

FIG. 5. Enumerating the vertices after removing all the edges.

ON THE CONVERGENCE OF MULTIDIRECTIONAL SEARCH 141

This will give a grid with fixed mesh size inside a compact set. Thus the number of
points in the grid will be finite. Furthermore, every possible simplex, given the initial
simplex So, will be mapped onto the grid since all possible step sizes are integer
multiples of the mesh size.

Therefore, the multidirectional search algorithm can visit only a finite number of
points. D

5.2. Technical results. We now introduce one last technical result before giving
the proof of Theorem 5.1.

Lemma 4.1 shows that the multidirectional search algorithm is a descent method
with a strictly monotonically decreasing sequence of function values at the best ver-
tices. The following proposition and its corollary demonstrate that this sequence
of function values converges and that the sequence of best vertices converges to the
corresponding level set.

PROPOSITION 5.6. Assume that {xk} is a sequence contained in a compact set ,,
that f is continuous, and that {f(xk)} is a monotone nonincreasing sequence. Then
there is some] such that

lim f(xk)].

Furthermore, assume that f is any limit point of {xk}. Then f(f)] and {xk}
converges to C(f) in the sense that

lim [inf

Proof. The proof of the first statement is immediate:] exists because {/(xk)} is
a monotone nonincreasing sequence that is bounded below.

To prove the second statement, consider the following: since 8 is compact, {xk}
contains a convergent subsequence. We will denote this convergent subsequence by
{xk’ } and say that xk’ . By continuity, f(f) limi--,o f(xk’)].

Define

k= inf][xk--y]].
yec()

But limi_o k 0, which implies that

lim inf k 0.
k---o

Next, suppose that {k,} is any convergent subsequence of {k}. There is a
corresponding sequence of {xk’ }. This sequence has a convergent subsequence which
we denote also by {xk’ } and say that xk’ --+ 3. Again,]() lim._,o f(xk’)], so
E C(). Thus, k, 0. Hence, the only possible accumulation points of {k} are 0

and oc. Note that since , is compact, {} is bounded, i.e., there exists a b _> 0 such
that 0 < k < b. Thus,

lim sup k 0.
k--oo

Since lim infk--,oo k limsuPko 0,

lim k 0
k--*o

142 VIRGINIA TOICZON

as required, fl

COROLLARY 5.7’. Assume that L(v0) is compact and that f is continuously dif-
ferentiable on L(v0). Then .for the sequence of best vertices Vko generated by the
multidirectional search algorithm there is some] such that

lim f(v0k)].

Furthermore, assume that is any limit point of (VOW}.
converges to C() in the sense that

]

k--,

Proof. Lemma 4.1 established that (f(v0k)} is a monotone decreasing sequence.
We appeal to Proposition 5.6 to complete the proof. El

6. Proof of convergence. We have established that the multidirectional search
algorithm is a descent method. In addition, we can guarantee first, that the search di-
rections will not deteriorate, and second, that the steps taken by the algorithm cannot
become too long or too short. Finally, we have shown that the sequence of function
values at the best vertices converges and the sequence of best vertices converges to
the corresponding level set. Thus, we are now ready to prove Theorem 5.1.

Proof. The proof is by contradiction.
Suppose that for all but finitely many k there exists a fixed constant e > 0, which

does not depend on k, such that

II,,o x, II v x, e x,.

Then, taken together, the upper and lower bounds on the lengths of the edges in
the simplex (Propositions 5.3 and 5.4) imply that the algorithm can visit only a finite
number of points (Proposition 5.5). But this contradicts Lemma 4.1, which guarantees
strict decrease in the function values at the best vertex in a finite number of iterations.
Thus, the hypothesis cannot hold, which means that

liminf llVo x, II O.

Then there exists some subsequence of the best vertices {Vok} that converges to a
point x, E X,.

We invoke Corollary 5.7 to complete the proof. El

7. The nonsmooth case. To extend Theorem 5.1 to handle most cases when
the function f is nondifferentiable, we need only modify the set X,.

Let X, include the set of stationary points of the function f in L(v), the set
of all points in L(vo) where f is nondifferentiable, and the set of all points in L(v)
where the derivative of f exists but is not continuous. Our construction of the set 12
in the proof of Proposition 5.4 then guarantees that f is continuously differentiable
on 12. We can now replace the assumption that f is continuously differentiable on
L(vo) with the assumption that f is continuous on L(vo). Since the proofs given in
the previous sections were constructed to require only that Vf be continuous on
the results can be extended, without modification, to cover this new characterization
of X,.

ON THE CONVERGENCE OF MULTIDIRECTIONAL SEARCH 143

We can state the result as follows.
THEOREM 7.1. Assume that L(v0) is compact and that f is continuous on L(v0).

Then some subsequence of (v0k} converges to a point x, e X,. Furthermore,
converges to C, C(x,) in the sense that

lim [inf [[Vok-x[[j =0.
k--*o XEC,

Proof. The proof follows directly from the proof of Theorem 5.1. D
This is not a general result for the nonsmooth case; rather, it is an extension

of the result for the smooth case. The proof of Proposition 5.4 requires that the
derivative be continuous wherever it exists to give us the uniform continuity of Vf
on the set . The constant we derive from the uniform continuity of Vf on plays a
key part in deriving a lower bound on the lengths of the edges in the simplex. Thus
X, must include the set of all points in L(v) where the derivative of f exists but is
not continuous.

While this restriction is unfortunate, it does not prevent us from considering
most nonsmooth cases of practical interest. For instance, it means that our theory
can handle the following example constructed by Dennis and Woods [6]. Consider the
strictly convex function f(x) 1/2 max ([Ix-c[[2, [IX-- C2[[2}, whose level sets are
shown in Fig. 6, where c (0, 32)T and c2 (0,-32)T.

FIG. 6. Level sets for the Dennis-Woods function.

Our numerical experience has shown that, given any initial simplex, the multi-
directional search algorithm converges unfailingly to a point of the form (a, 0)T but
not necessarily to the minimizer (0, 0)T. Theorem 7.1 confirms that convergence to a
critical point (i.e., either a point where the function is nondifferentiable or where the
gradient is equal to zero) is the best that can be expected for this example.

8. Conclusions. The convergence analysis for the multidirectional search algo-
rithm actually explains howmand why--the algorithm works. As we have seen, the
fixed search directions and fixed rescaling factors used to determine the step sizes
allow us to construct a grid underlying the progress of the algorithm. We should
note, however, that once we remove the null hypothesis, which required the sequence
of best vertices to be uniformly bounded away from the set X,, we no longer have a
lower bound on the lengths of the edges in the simplex. Thus, the algorithm allows
for further and further grid refinement until a satisfactory solution is obtained.

Furthermore, once we add function information, we eliminate many of the points
the algorithm might otherwise visit. This means that while there is an implicit grid
structure underlying the search, the algorithm by no means visits every point on the
grid. Rather, it uses function information to prune the number of grid points that
are considered--and to dictate when the grid must be refined further.

144 VII:tGINIA TOItCZON

The simplex that is used to start the multidirectional search algorithm determines
the shape of the grid underlying the search. However, we could just as easily have used
another fixed "shape," or "pattern," to determine the shape of the underlying grid.
For example, the factorial design algorithm of Box [2], in its simplest form, constructs
a hypercube centered at the current iterate and then computes the function values
at the vertices in an effort to find a new iterate with a function value that is strictly
less than the function value at the current iterate. If a new best point is found, the
hypercube is then centered on the new best iterate and the search is restarted. If
not, the size of the hypercube is reduced by halving the lengths of the edges. Again
we have a pattern for the grid underlying the search. We also have all the necessary
ingredients to argue for convergence of the method: fixed search directions, a fixed
rescaling factor, and strict decrease in the function value at the sequence of best
points.

We should be able to use the arguments presented here to analyze any algorithm
that maintains this sort of underlying grid structure. This is the subject of our
current research. There is, however, one additional caveat that should be added to
the above discussion. The number of points required by the simplex "pattern" of
the multidirectional search algorithm is O(n). For the algorithms that do not use
a simplex pattern, the number of points required to guarantee convergence, though
not necessarily to execute the algorithm on a sequential machine, is exponential in
n. (For example, the hypercube constructed in the factorial design algorithm of Box
requires O(2’) new points at each iteration.) All of these algorithms share the same
convergence analysis and yet the number of points required by the multidirectional
search algorithm is linear, rather than exponential, in the size of the problem--which
is why we believe the multidirectional search algorithm to be the most practical of
these algorithms to implement on a parallel machine.

REFERENCES

[1] M. AVPIEL, Nonlinear Programming: Analysis and Methods, Prentice-Hall, Englewood Cliffs,
NJ, 1976.

[2] G. E. P. Box, Evolutionary operation: A method for increasing industrial productivity, Appl.
Statist., 6 (1957), pp. 81-101.

[3] J. CA, Optimisation thgorie et algorithmes, Dunod, Paris, 1971.
[4] J. E. DENNIS, JR. AND R. S. SCHNABEL, Numerical Methods .for Unconstrained Optimization

and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.
[5] J. E. DENNIS, ,]1. AND V. TOICZON, Direct search methods on parallel machines, Tech. Peport

90-19, Department of Mathematical Sciences, Rice University, Houston, TX 77251-1892,
1990.

[6] J. E. DENNIS, JP. AND D. J. WOODS, Optimization on microcomputers: The Nelder-Mead sim-
plex algorithm, in New Computing Environments: Microcomputers in Large-Scale Com-
puting, A. Wouk, ed., Society for Industrial and Applied Mathematics, Philadelphia, PA,
1987, pp. 116-122.

[7] R. HOOKE AND T. A. JEEVES, "Direct search" solution of numerical and statistical problems,
J. Assoc. Comput. Mach., 8 (1961), pp. 212-229.

[8] J. A. NELDER AND R. MEAD, A simplex method for function minimization, Comput. J., 7
(96), . 30s-3.

[9] J. M. ORTEGA AND W. C. RHEINBOLDT, Iterative Solution o] Nonlinear Equations in Several
Variables, Academic Press, New York, 1970.

M. J. D. POWELL, An e]jcient method]or finding the minimum o] a]unction o] several
variables without calculating derivatives, Comput. J., 7 (1964), pp. 155-162.

H. H. ROSENBROCK, An automatic method .for finding the greatest or least value of a function,
Comput. J., 3 (1960), pp. 175-184.

W. SPENDLEY, G. R. HEXT, AND F. R. HIMSWORTH, Sequential application of simplex designs
in optimisation and evolutionary operation, Technometrics, 4 (1962), pp. 441-461.

[10]

[11]

[12]

ON THE CONVERGENCE OF MULTIDII:tECTIONAL SEARCH 145

[13] V. TORCZON, Multi-Directional Search: A Direct Search Algorithm for Parallel Machines,
Ph.D. thesis, Department of Mathematical Sciences, Rice University, Houston, TX, 1989;
also available as Tech. Report 90-7, Department of Mathematical Sciences, Rice University,
Houston, TX 77251-1892.

[14] Y. WEN-CI, The convergence property of the simplex evolutionary techniques, Scientia Sinica,
Special Issue of Mathematics, 1 (1979), pp. 68-77.

[15] , Positive basis and a class of direct search techniques, Scientia Sinica, Special Issue of
Mathematics, 1 (1979), pp. 53-67.

[16] W. I. ZANGWILL, Minimizing a function without calculating derivatives, Comput. J., 10 (1967),
pp. 293-296.

SIAM J. OPTIMIZATION
Vol. 1, No. 1, pp. 146-150, February 1991

() 1991 Society for Industrial and Applied Mathematics
011

A NEW PROOF OF SUPERLINEAR CONVERGENCE FOR
BROYDEN’S METHOD IN HILBERT SPACE*

C.T. KELLEYt AND E.W. SACHS:

Abstract. Broyden’s method is an extension of the secant method for an equation in one real
variable to an arbitrary Hilbert space setting. It is a result of Griewank that the Broyden iterates
converge locally superlinearly to a root if, in addition to the assumptions needed in finite dimension,
the initial approximation for the Frchet derivative differs from the Frchet derivative at the root
only by a compact operator. In this paper a new and much simpler proof of this theorem is given
based on the concept of collective compactness.

Key words. Broyden’s method, superlinear convergence, collective compactness

AMS(MOS) subject classifications. 65J15, 47H17, 49D15

1. Introduction. Broyden’s method is an iterative method for the solution of
finding

x, E X with F(x,) 0,

where X is a Hilbert space with inner product < .,. >, Y is a Banach space, and
F X Y is a Frchet differentiable map with a Lipschitz continuous Frchet deriva-
tive in a neighborhood of x,. For the finite-dimensional case, in order to avoid a
potentially expensive evaluation of the Jacobian of F at each iteration point, Broy-
den [2] considered the following iteration scheme with an update procedure for the
approximating operators

Bn e L(X, Y),

where L(X, Y) denotes the space of linear bounded operators from X into Y. Given
xn e X, Bn L(X, Y).

(i) Solve B,s,--F(xn) for s, X.
(ii) Set x,+ x, + s, X and y, F(x,+)- g(x,) Y.
(iii) Set Bn+ Bn + (1/llsnll2)(yn Bns)(R)s L(X, Y).

Here, for E Y and 2 X the operator (R) 2 L(X, Y) is defined as

for all x e X.

Local convergence theorems assume that the initial data x0 and B0 are sufficiently
close to x, and F’(x,), respectively. Furthermore, F’(x,) -1 L(Y,X) is required,
which implies that X and Y are homeomorphic to each other.

Received by the editors October 25, 1989; accepted for publication (in revised form) September
30, 1990.

North Carolina State University, Department of Mathematics, Box 8205, Raleigh, North Car-
olina 27695-8205. The research of this author was supported by National Science Foundation grants
DMS-8900410 and INT-8800560, and Air Force Office of Scientific Research grant AFOSR-ISSA-
890044.

Universitt Trier, FB IV-Mathematik, Postfach 3825, 5500 Trier, Federal Republic of Germany.
The research of this author was partially supported by Air Force Office of Scientific Research grant
85-0243 and the Deutsche Forschungsgemeinschaft.

146

BROYDEN’S METHOD IN HILBEI:tT SPACE 147

In [4] it was shown that this leads to a linear rate of convergence for the iterates.
Superlinear convergence of the Broyden iterates,

(1.1) lim
[Ixn+l x,[[

0,

for finite-dimensional problems was proved in [3]. However, Stoer [10] proved with
counterexamples that quasi-Newton methods do not yield superlinear convergence
in Hilbert space under the same assumptions as in the finite-dimensional case. It
was shown in [7] that the Dennis-Mor(! condition is still necessary and sufficient for
superlinear convergence in Hilbert space. But this condition could only be verified
for Broyden’s method in a weak sense, which is identical with the strong version if
X is a finite-dimensional space. In [11] a proof of superlinear convergence was given
for the linear case where Do Bo F’(x,) has p-summable singular values. In [9] it
was proved that the superlinear rate of convergence is retained under the additional
assumption that D0 is a Hilbert-Schmidt operator. Griewank ([5],[6]) weakened this
assumption to Do being a compact operator. He proved this result using the singular
values and their variational characterization. His analysis could be applied to variable
metric rank-two updates as well as Broyden’s method. Here we give a different proof
for the Broyden iterates which does not require singular value information and is
more elementary. Our proof is based on the fact that the sequence of discrepancies
D, Bn F’(x,) is a collectively compact set of operators if Do is compact. This
proof is also valid for general Hilbert spaces without the separability assumption that
was needed in the proof in [6].

2. Convergence rate results. First, we state the linear convergence rate the-
orem due to Dennis [4].

THEOREM 2.1. Let F be Frdchet differentiable and F(.) Lipschitz continuous in
a neighborhood ofx, with F(x,) 0 and F’(x,)-1 E L(Y,X).

Then for each c E (0, 1) there exists e > 0 such that if
{{xo x,{{ < e and }{Bo F’(x,)[{

_
e,

then the Broyden iterates are well defined and satisfy

for all n .
The next theorem gives a condition for a superlinear rate of convergence; see also

THEOREM 2.2. Let all the assumptions of Theorem 2.1 be satisfied and assume
that the Broyden iterates satisfy (2.1) with c (0, 1). Then we obtain a superlinear
rate of convergence, (1.1), if and only if the Dennis-Moral condition

(2.2) lim 0
II ll

holds.
In general, however, for Broyden’s method the last condition is only true in the

sense of weak convergence; see also [7]. Thus, we have Theorem 2.3.
THEOREM 2.3. Under the assumptions of Theorem 2.2, the iterates produced by

Broyden’s method satisfy

lim
,X((B=

0

148 C.T. KELLEY AND E. W. SACHS

for all A E Y, the dual of Y.
In the next lemma we show that Dn Bn P(x,) is a sequence of collectively

compact operators (see also [1]), provided Do is compact. Recall that a sequence
of linear operators, (Kn}, is collectively compact if for every bounded set, B, the
set, UnKnB, is relatively compact. Note that since any bounded set is a subset of a
scalar multiple of B(1) (the closed ball of radius one about zero in X), the collective
compactness of (K,} is equivalent to the relative compactness of the set

UnKnB(1).

LEMMA 2.4. Let all the assumptions of Theorem 2.2 be satisfied and let Do be
compact. Then the sequence (Dn} is collectively compact.

Proof. As above, we let B(p) denote the closed ball of radius p about 0 in X. To
prove the assertion we exhibit a compact set S such that

UnSn C S, where Sn DuB(l).

Let Pn Sn (R) Sn/llsnll 2 n(x,x). Note that the update formula for Bn yields

Dn+l=Dn(I-Pn)+An,

where An is the rank-one operator

An f(F’(xn + tsn) F’(x*))Sn dt (R) sn

Now, Dn(I- Pn)B(1) C DuB(l) because Pn is an orthogonal projector on X, so
that

uq’n+l C ’..n "t- AnB(1).

Moreover, by linear convergence (2.1) of the Broyden iterates, IIA, II _< Kcn for some
K > 0 and c E (0, 1). Hence for each n there is an n E X with]lYnll 1 such that if
we let

In {x Xlx =an, -1 <_ a <_ 1},

then

Therefore for all n,

n+l a n -[-KcnIn.

Sn C So + E KcIj S.
j=O

The set ’j=o cJb is compact because -j=o cJ converges. Granting this point,
the compactness of S is shown because So is compact as Do is a compact operator.

To complete the proof we verify that TL’j0 cJIj is compact. The proof is by a
standard diagonalization argument (see [8] for other uses of this technique in func-
tional analysis) and is put in only for completeness. Let {x} C S. We will construct
a convergent subsequence of {xt }. We may represent each element of the sequence by

BROYDEN’S METHOD IN HILBERT SPACE 149

where {al,j} C [-1,1]. As [-1, 1] is compact there is, for each j, a subset of the
natural numbers, Aft, such that a subsequence of {al,j}e is convergent to a limit,

a. Clearly we may form these sequences in such a way that Af c Af-i by extracting
the convergent subsequence of {a,j_l } before that of {a,j }. Let

and

k c a(k),jYj

where l(k) is the kth element of Ark. By the nesting of the subsequences, Af c Af_,
{k} is a subsequence of {xl}. We complete the proof by showing that k .

Let e > 0 be given. First let K0 be such that

j=Ko+I

Then for k > Ko
go

j=0 j=Ko+I

go
_< .71 +

j=O

Now let K be such that

for all k > K and j <_ Ko. Then if k > max(Ko, K),

THEOREM 2.5. If the assumptions of Lemma 2.4 hold then the Broyden iterates
converge q-superlinearly to x..

Proof. Lemma 2.4 implies that every subsequence of

D,,(s,,/lls,,ll) e s= c s

has a norm convergent subsequence. Since qn converges weakly to zero by Theo-
rem 2.3, this observation implies that the whole sequence qn converges to zero in
norm and hence that the Dennis-Mor6 condition (2.2) holds. Theorem 2.2 yields the
statement of the theorem.

REFERENCES

[1] P. M. ANSELONE, Collectively Compact Operator Approximation Theory, Prentice-Hall, Engle-
wood Cliffs, NJ, 1971.

[2] C. G. BROYDEN, A class of methods for solving simultaneous equations, Math. Comp., 19

150 C.T. KELLEY AND E. W. SACHS

[3] C. G. BROYDEN, J. E. DENNIS, AND J. J. MoP, On the local and superlinear convergence of
quasi-Newton methods, IMA J., 12 (1973), pp. 223-246.

[4] J. E. DENNIS, Toward a unified convergence theory for Newton-like methods, in Nonlinear
Functional Analysis and Applications, L. B. Rall, ed., Academic Press, New York, 1971,
pp. 425-472.

[5] A. GRIEWANK, Rates of convergence for secant methods on nonlinear problems in Hilbert space,
Proc. Numerical Analysis, Guanajuato, Mexico, 1984, in Lecture Notes in Mathematics
1230, J. P. Hennart, ed., Springer-Verlag, Heidelberg, 1986, pp. 138-157.

[6] The local convergence of Broyden-like methods on Lipschitzian problems in Hilbert
space, SIAM J. Numer. Anal., 24 (1987), pp. 684-705.

[7] W. A. GRUVER AND E. SACHS, Algorithmic Methods in Optimal Control, Pitman, London,
1980.

[8] M. REED AND B. SIMON, Methods of Modern Mathematical Physics, I: Functional Analysis,
Academic Press, London, 1972.

[9] E. SACHS, Broyden’s method in Hilbert space, Math. Prog., 35 (1986), pp. 71-82.
[10] J. STOEP, Two examples on the convergence of certain rank-2 minimization methods for

quadratic functionals in Hilbert space, Linear Algebra Appl., 28 (1979), pp. 217-222.
[11] R. WINTHEP, A numerical Galerkin method for a parabolic problem, Ph.D. thesis, Department

of Computer Science, Cornell University, Ithaca, New York, 1977.

SIAM J. OPTIMIZATION
Vol. 1, No. 2, pp. 151-165, May 1991

1991 Society for Industrial and Applied Mathematics
001

A SIMPLICIAL ALGORITHM FOR THE NONLINEAR STATIONARY
POINT PROBLEM ON AN UNBOUNDED POLYHEDRON*

Y. DAI?, G. VAN DER LAAN$, A. J. J. TALMAN, AND Y. YAMAMOTO?

Abstract. A path-following algorithm is proposed for finding a solution to the nonlinear stationary
point problem on an unbounded, convex, and pointed polyhedron. The algorithm can start at an arbitrary
point of the polyhedron. The path to be followed by the algorithm is described as the path of zeros of some
piecewise continuously differentiable function defined on an appropriate subdivided manifold. This manifold
is induced by a generalized primal-dual pair of subdivided manifolds. The path ofzeros can be approximately
followed by dividing the polyhedron into simplices and replacing the original function by its piecewise
linear approximation with respect to this subdivision. The piecewise linear path of this function can be
generated by alternating replacement steps and linear programming pivot steps. A condition under which
the path of zeros converges to a solution is also stated, and a description of how the algorithm operates
when the problem is linear or when the polyhedron is the Cartesian product of a polytope and an unbounded
polyhedron is given.

Key words, simplicial algorithm, stationary point problem, subdivided manifold, convergence condition

AMS(MOS) subject classifications. 90A14, 90A30, 90A33

1. Introduction. Let K be a convex polyhedron in R n. We assume that K is
unbounded and pointed, i.e., K has at least one vertex, and that K is represented by
the set {xRnlA’x<-b}={xRl(ai)tx<=bi for i=1,...,m}, where A is an nxm
matrix consisting of column vectors ai for i= 1,..., m, and b=(bl,’", b,,) is an
m-vector. Further, let f be a continuously differentiable function from K to R. Then
the (nonlinear) stationary point problem for f on K is to find a point x in K such that

(z-x)’f(x) >-o

for any point z in K. We call x a stationary point off on K. If the function f is affine
on K, we call the problem the linear stationary point problem. The stationary point
problem on an unbounded convex polyhedron is frequently met in mathematical
programming, for example, to find a Karush-Kuhn-Tucker point for an optimization
problem with linear constraints.

To solve the nonlinear stationary point problem on K we propose a path-following
algorithm. Such an algorithm traces the set of zeros of a piecewise continuously
differentiable function g defined from an (n + 1)-dimensional subdivided manifold to
R". In case the zero vector is a regular value of the function g there exists a path of
zeros initiating from an arbitrarily chosen point in K. The (n + 1)-dimensional sub-
divided manifold is induced by a generalized primal-dual pair of subdivided manifolds,
where the primal sets are determined by the faces of K and the dual sets are determined
by the normal cones of these faces. A primal-dual pair of subdivided manifolds is a
basic framework in path-following techniques for finding fixed points or solving
stationary point problems (see, for example, [1], [2], [4], [7]-[9], and [10]).

Received by the editors October 30, 1989; accepted for publication (in revised form) August 16, 1990.
? Institute of Socio-Economic Planning, University of Tsukuba, Tsukuba, Ibaraki 305, Japan.
$ Department of Econometrics, Vrije Universiteit, P.O. Box 7161, 1007 MC Amsterdam, the Netherlands.
Department of Econometrics, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, the Netherlands.
The research of this author was partly supported by Alexander von Humboldt-Stiftung while he visited

Forschungsinstitut ftir Diskrete Mathematik/Institut fiir (3konometrie und Operations Research, Universitit
Bonn, Federal Republic of Germany.

151

152 DAI, VAN DER LAAN, TALMAN, AND YAMAMOTO

The path S of zeros of the function can be approximately followed by a simplicial
algorithm. This algorithm subdivides first the set K into simplices in some appropriate
way and replaces the function f by its piecewise linear approximation f with respect
to this triangulation. For this function the path of zeros of g becomes piecewise linear
and can therefore be followed by making alternating replacement steps and linear
programming pivot steps for a sequence of adjacent simplices of varying dimension.

Since the set K is unbounded, the path S may diverge to infinity. We state a
simple condition on the function under which the path S is bounded and therefore
leads from the starting point to a solution of the problem. We also describe how the
algorithm should be adapted in case K is the Cartesian product of a polytope, i.e., a
bounded convex polyhedron, and an unbounded convex polyhedron, and under what
condition the path S is bounded for this case. We conclude the paper with a short
description ofthe algorithm when the function is affine on K. The convergence condition
for this problem is related to the well-known condition of copositive plus in case of
the linear complementarity problem.

This paper is a generalization of path-following techniques introduced earlier for
solving stationary point problems. In [8] such a method has been proposed for the
linear stationary point problem on a polytope. In [7] the nonlinear stationary point
problem on a polytope was treated. Finally, in 1 a path-following algorithm for the
linear stationary point problem on a polyhedral cone was introduced.

This paper is organized as follows. Section 2 briefly reviews a basic theorem for
path-following algorithms and extends the concept of a primal-dual pair of subdivided
manifolds. In 3 we describe the generalized pair of primal-dual subdivided manifolds
which will underlie the algorithm. Section 4 defines the path of zeros leading from an
arbitrary point to either infinity or a solution. We describe how this path can be
approximately followed by a simplicial algorithm. In 5 we state a convergence
condition guaranteeing that the path is bounded. Finally, 6 and 7 discuss the cases
when K is the product of a polytope and a convex polyhedron and when f is affine
on K, respectively.

2. Generalization of the primal-dual pair of subdivided manifolds. We shall briefly
review a basic theorem for path-following algorithms and extend the concept of the
primal-dual pair of subdivided manifolds introduced by Kojima and Yamamoto [4].

We call an/-dimensional convex polyhedron a cell or an l-cell. When a cell X is
a face (see, for example, [6]) of a cell Y, we write X

_
Y. We denote X < Y when X

is a proper face of Y. Particularly when an (l-1)-cell X is a face of an /-cell Y, we
call X a facet of Y and denote it by X- Y.

A collection of cells of the same dimension, say l, is called an /-dimensional
subdivided manifold if it satisfies the following conditions:

(1) any two cells of intersect in a common face unless the intersection is empty,
(2) any facet of a cell of lies in at most two cells of ,
(3) each point of cells of has a neighborhood which intersects finitely many

cells of .
We denote the collection of all faces of cells of by , i.e.,

{X IX is a face of some cell of },

and the union of all cells of by [w[, i.e.,

I1 tA Ix Ix is a cell of].

It is noteworthy that consists of cells of various dimensions. By the second and
most crucial condition, each (l- 1)-cell of lies in either one or two/-cells of . We

SIMPLICIAL ALGORITHM FOR STATIONARY POINT PROBLEMS 153

refer to the collection of those (1-1)-cells lying in exactly one /-cell of as the
boundary of and denote it by 0. A continuous mapping g from into R" is
piecewise continuously differentiable (abbreviated by PC 1) on if the restriction of g
to each cell of has a continuously differentiable extension. We denote the Jacobian
matrix of g at a point x of a cell C of by Dg(x; C). A point c R is a regular
value of the PC mapping g" I1-’ Rn if

xB_<C and g(x)=c imply dim{Dg(x;C)ylyB}=n.

We now state one of the basic theorems for a path-following algorithm [2].
THEOREM 2.1. Let be an (n+ 1)-dimensional subdivided manifold in some

Euclidean space and let g’[l - R" be a PC mapping. Suppose c R is a regular value
ofg and g-l(c) . Then g-l(c) is a disjoint union ofpaths and loops, where a path is

a connected one-dimensional manifold homeomorphic to one of the intervals (0, 1), (0, 1],
and [0, 1], and a loop is a connected one-dimensional manifold homeomorphic to the
one-dimensional sphere. Furthermore, g-1 (c) has the following properties"

(1) g-l(c)X is either empty or a disjoint union of smooth one-manifolds for each
Xe,

(2) a loop of g-l(c) does not intersect 10[,
(3) if a path S of g-l(c) is compact, the boundary OS of S consists of two distinct

points in I&.l.
We first generalize the primal-dual pair of subdivided manifolds proposed in [4].

In [4] the dual operator relating a pair of subdivided manifolds was assumed to satisfy
several conditions including one-to-one. We will here relax these conditions. Let
and 9 be subdivided manifolds. A dual operator, say d, is defined on and assigns
to each cell of either the empty set or a cell Y of 9 such that for some fixed positive
integer l, called the degree,

dim X + dim Y

holds. We denote the image of X under the operator d by Xd. When a pair of
subdivided manifolds and 9 is linked by such an operator d, we call the triplet
(, 9; d) a generalized primal-dual pair of subdivided manifolds, GPDM for short. We
allow a dual operator to assign the same cell of 9 to more than one cell of , that is,
to be a noninjective dual operator. Letting

(2.1) {X x Xa X o, Xa },

the conditions required for to be a subdivided manifold are given in the next lemma.
LEMMA 2.2. Suppose (, 9; d) is a GPDM with degree 1. Let . be defined by

(2.1). Then is an 1-dimensional subdivided manifold if and only iffor every (1-1)-cell
Xx Yof:

(1) there are at most two cells Z of ’ such that

(2.2) X.Z and zd=Y,
(2) if Y<Xd, then there is at most one cell Z of o satisfying (2.2).
Proof. Among the three conditions of a subdivided manifold the second one is

crucial and the others will be straightforward. Note that an (l- 1)-cell X x Y of is
a facet of an /-cell Z x Zd of if and only if either

(2.3) X=Z and Y<Zd

or

(2.4) X<Z and Y=Zd

154 DAI, VAN DER LAAN, TALMAN, AND YAMAMOTO

holds. From the first condition (1) it follows that there are at most two cells Z x Zd

of satisfying (2.4). Furthermore, condition (2) means that there is at most one such
cell if a cell Z x zd= X X Xd satisfying (2.3) exists. Therefore we have shown that
X x Y lies in at most two /-cells of w.

The "only if" part is readily seen by the same argument. [3

The following lemma characterizes the cells constituting the boundary 0 of .
LEMMA 2.3. An l- 1)-cell X x Yof belongs to the boundary O of ifand only

if the following conditions hold"
(1) if Y.Xd, then there is no cell Z of satisfying (2.2),
(2) if Y Xd, then there is exactly one cell Z of o satisfying (2.2).

3. Construction of a GPDM. In what follows, we shall present a subdivision of
the polyhedron K and construct a GPDM having this subdivision as the primal
subdivided manifold. We assume that K is unbounded.

It is well known that K can be decomposed into a polytope and a polyhedral
cone C containing the directions of all rays in K, and that C is given by C {xlAtx <- 0}
(see, for example, [6]). Since K is pointed, the cone C of rays is also pointed, namely,
C f-I (-C) {0}. Indeed, suppose that r C (’1 (-C) and consider two points v + r and
v-r for an arbitrarily chosen vertex v of K. Since r and -r C, both of these two
points lie in K. If r 0, then the point v would be a middle point of these points,
which contradicts the fact that v is a vertex.

Let w be an arbitrary point of K. In the algorithm proposed below for solving
the stationary point problem on K the point w will be the starting point. For some
strictly positive m-vector y, let h -AT and let H= {xlh’x ho} be a hyperplane for
some positive number ho. We can see that if ho is sufficiently large, this hyperplane
intersects every unbounded face of K while the negative halfspace H-= {x] h tx <= ho}
contains w and all vertices of K in its interior and hence all bounded faces of K. To
see this, let r be a nonzero vector of C. Since C is pointed, Atr O. More precisely,
Atr <-0 and (ai)tr < 0 for at least one column ai of A. Then, by the definition of h,

(3.1) h tr -’ytAtr > O.

Therefore, when ho is large enough for the interior of H- to contain all vertices of K
and w, the hyperplane H intersects every unbounded face of K.

Now we introduce several notations. Let H/= {xl h’x >-ho} be the positive half-
space of H. For any face F of K, let

F-= {x[x FI"I H-},

F= {xlxe F(-I H},

and

F+= {xlx e Ff-I H+}.

Note that if some face F is entirely included in H-, then F-= F. For an arbitrary
subset G of K, we denote the convex hull of G and w by wG. Let

{wF-] w : F< K} U {wK) U {K/).

SIMPLICIAL ALGORITHM FOR STATIONARY POINT PROBLEMS 155

It can easily be proved that is a subdivided manifold with the same dimension as
K. Moreover, the collection is equal to

={wF-lwC:F<K}
U {wFl F is an unbounded face of K}
U {F+IF is an unbounded face of K}

(3.3) U {FIF is an unbounded face of K}

U{w},
and

(3.4)
An example is illustrated in Fig. 3.1.

To make the dual subdivided manifold @, we subdivide R" in almost the same
way as in [1]. The normal cone at x K to K is defined to be

(3.5) N(x,K)={yly’(z-x)<-O for every zK}.
It is the cone of all outward normal vectors at x to K. It is readily seen that normal
cones are identical at any relative interior point of a face F of K. Therefore we denote
it by F*. Letting

I(F) {i1 (ai)tx bi for every x F},

n o

wF1

w K o K +

FIG. 3.1

156 DAI, VAN DER LAAN, TALMAN, AND YAMAMOTO

then we obtain

F*-{yly= E
iel(F)

liai, i 0 for each I(F) }.
The dual subdivided manifold is defined to be

(3.6)

where

{{v}*l v is a vertex of K}

U {F* + (h)[F is an extreme ray of K},

(3.7) (h)={yly=ah for some a_>-0},

being the ray in the direction h. Then @ is obviously an n-dimensional subdivided
manifold,

(3.8)

and

={F*IF<_K}

U {F*+ (h)lF is an unbounded face of K},

(3.9) Il-- R
For constructing a GPDM it remains to define an operator d linking the subdivided
manifolds and . Let

(wF-)d F* if w F < K;

(wF)d= F*+ (h) if F is an unbounded face of K;

(F+)d= F* +(h) if F is an unbounded face of K;
(3.10)

(F-)d if wF<K;

(F)d= if F is an unbounded face of K;

({w}) =.
Then the dimensions of a cell X in and its dual cell X in sum up to n + 1 if
X is nonempty, that is, the GPDM (, @; d) constructed above has degree n + 1. Let

be the collection of (n+l)-dimensional cells defined by (2.1) for this
GPDM (, ; d). We shall show that is an (n + 1)-dimensional subdivided manifold
by demonstrating that the GPDM(,@; d) satisfies the conditions of
Lemma 2.2.

LMMh 3.1. For any n-cell X x Y ofl derived from (3.3), (3.8), and (3.10), the
two conditions (1) and (2) of Lernrna 2.2 are satisfied.

Proof From the definition of the dual operator d it follows that if at least two
cells of are mapped to an identical cell they must be equal to wF and F+ for some
unbounded face F of K. This means that condition (1) of Lemma 2.2 is satisfied. Next,
suppose that there are two different cells Z1 and Z in satisfying (2.2). Then, Z wF
and Z F+ for some unbounded face F of K. Since X is a facet of both Z and Z,
X must be F and hence X=. This proves that the second condition of Lemma
2.2 is also satisfied. [3

SIMPLICIAL ALGORITHM FOR STATIONARY POINT PROBLEMS 157

Thus we have seen that is an (n + 1)-dimensional subdivided manifold as an
immediate consequence of Lemma 2.2. By applying Lemma 2.3 to the GPDM (, @; d)
considered here, we obtain the following lemma.

LEMMA 3.2.

O={{w}xF*IwV:F<K, dim F= O}

LJ {{w} x (F* + (h)) F is an extreme ray ofK}

LJ {F+ x F’IF is an unbounded face of K}
(3.11)

U{F-xF*IwC:F<K}

{wF F*l w F, F is an unbounded face ofK}

0{wF-x G*lwe G, wF<G, G<_K},

and

(3.12)

Note that

Io 1 (t..A [{w}x{v}*l v is a vertex of K, v w])

CI ((,.] [{w} x (F*+(h))[F is an extreme ray of K])

U(I[FxF*I{w} F_K]).

IoI({w}(R"\{w}*))O(LA[FF*I{w} F<__K]).

4. Path-following technique. Let J/ be the (n + 1)-dimensional subdivided mani-
fold obtained from the GPDM (, 9; d) as described in the previous section, and let
f be a continuously differentiable function from K into Rn. To find a stationary point
off on K, we consider the system

(4.1) g(x, y) =-- f(x) + y O, (x, y) I 1.
If 0 R" is a regular value of the mapping g, then from applying Theorem 2.1 to system
(4.1) we obtain that g-l(0) consists of disjoint paths and loops. Suppose the starting
point w is not a stationary point of f on K. Then we see from Lemma 3.2 that
(w, -f(w)) g-l(0) 101. Consequently, the connected component of g-(0) contain-
ing (w,-f(w)) is a path. In the following, we denote this path by S. Also, according
to Theorem 2.1, if the path S is bounded, then it will provide a distinct end point
(x, y) in [0[. Since (x, y) satisfies the system of equations (4.1), y -f(x). If x w,
(x,y) would coincide with (w,-f(w)). Therefore, according to (3.12), (x,y)=
(x, -f(x)) lies in F x F* for some face F of K and x is a stationary point off on K.

To follow the path S in I1, we subdivide K into simplices such that each cell
X in is triangulated. An appropriate simplicial subdivision of K is obtained by first
triangulating the set K- as described in [7]. Note that the starting point w is a vertex
of this triangulation. In order to triangulate K/, note that K/ is the union of K+(h)
and F/ + (h) over all unbounded facets F of K. The subset K+(h) can be triangulated
in exactly the same way as wK; and each subset F/+(h) can be triangulated in a
similar way as wF- by using projections of w+h on the faces of F/ instead of
projections of w on the faces of F-, as illustrated in Fig. 4.1.

Let f be the piecewise linear approximation off with respect to the triangulation.
Taking f instead off in (4.1), the path T of solutions to (4.1) originating at (w, -f(w))
(w,-f(w)) is piecewise linear and can therefore be followed by making pivoting steps
in subsequent systems of linear equations. For ease of description we restrict ourselves

158 DAI, VAN DER LAAN, TALMAN, AND YAMAMOTO

/

+ + < >

F K+<h>

F F3++ < h >

FIG. 4.1

to a polyhedron K for which none of the inequalities (ai)’x<= bi is redundant and each
vertex is an end point of exactly n one-faces of K. To start the algorithm we first solve
the linear program

min f(w)’x

(4.2) s.t. A’x<=b

hx<=ho
By the choice of h and ho, this problem always has an optimal solution, which is some
vertex, for instance v, of the feasible region. If the constraint h’x <-ho is not binding
at v, v is a vertex of K itself and so we take F= {v} and find a one-dimensional
simplex cr of the triangulation in wF wF- which has w as a vertex. Let us denote w
by w and the other vertex of cr by w2. Let /x* be a dual optimal solution of (4.2)
corresponding to the kth constraint (ak)’X <= bk. Then, barring degeneracy /x* > 0, if
and only if the kth constraint is binding at v, i.e., k I(F). Then we see that (A *, A 2")
(1, 0) and tz*, k I(F) satisfy the system of linear equations

i=1 1

When the constraint htx _<-ho is binding at v, v lies on an extreme ray of K. We take
the ray as F and find a one-dimensional simplex cr containing w as a vertex in wF.
Let tx, k I(F), and a* be a dual optimal solution of (4.2) corresponding to the kth
constraint (ak)’X=< bk and the last constraint htx<=ho, respectively. Then we see that
(A*, A*) (1, 0), /k*, kI(F), and a* are a solution of

i=1 1 kI(F)

SIMPLICIAL ALGORITHM FOR STATIONARY POINT PROBLEMS 159

In both cases we leave the starting point w by increasing A2 from zero. Note that (x, y),
which is ("= 1AiWi, 2ki(F)Ixkak) and (Y= liwi’ -kI(F)Ixkak d-ah), respectively, is a
point on the path T as long as all variables remain nonnegative.

Now, in general, let (x, y) be a point on the path T. Then in some t-cell X of
there is a simplex r with vertices w 1, w t+l such that x lies in tr and f(x) in Xd.
Hence, there exist nonnegative numbers A *, 1, , + 1, such that x i A *w and

Y A * 1. Moreover, if X wF-, there exist nonnegative numbers IX*k, k I(F), such
that y Yk I(F) IX*k ak and if X wF or X F+, there exist nonnegative numbers
IX k*, k I(F), and a* such that y Yk I(F) IX*k ak + a* h. In case not all vertices of K
are determined by n one-faces of K, we refer to [7]. Since (x, y) is a solution of (4.1)
with f instead off and f(x)=YA*f(w), it follows that A* i-1 t+l IX*k,
k I(F), is a nonnegative solution to the system of linear equations

(4.3) A, + 2 IXk
i--1 1 kI(F)

if X wF-, and that A *, i-- 1,...
to the system of lineal" equations

,t+l, IXk*, kI(F), a * is a nonnegative solution

(4.4) A + IXk -- t;

i=1 1 kl(F)

if X wF or X F+. The system (4.3) or (4.4) has a line segment of solutions
corresponding to a line segment of points x i Aiw in tr, assuming nondegeneracy.
At an end point of solutions one of the variables is equal to zero. When Ai =0 for
some {1,. ., + 1}, x lies in the facet z opposite the vertex w of tr. This facet lies
either in the boundary of X or is a facet of just one other t-simplex # in the cell X
with vertices wJ, j i, and # w. Then in the latter case, to continue the path T in
#, a pivoting step is made with (f(vi) t, 1) . Suppose z lies in the boundary of X and
X wF-. Then x is a stationary point of f on K if
lies in wG- with G a facet of F or z lies in wF. In the first case the path T can be
continued in wG- by pivoting ((ak) , 0) into (4.3), where k is the unique index in
I(G), not in I(F). In the latter case the path T can be continued in wF by pivoting
(h , 0) into (4.3). Now, suppose z lies in the boundary of X and X wF or X F+.
Then, when X wF, z lies either in wG for some facet G of F or in F; and when
X F+, z lies either in G+ for some facet G of F or in F. When z is in wG or G+,
the path T can be continued by pivoting ((ak) t, O) into (4.4), where k is the unique
index in I(G), not in I(F). When
in F+ if X wF and in wF if X-F+; and the path T can be continued in # by
making a pivoting step with (f(), 1)

We now consider the case that at an end point of solutions of (4.3) or (4.4) we
have that IXk--0 for some k I(F). Let G be the unique face of K such that I(G)=
I(F)\{k}. Then with x , hiw’ we have that f(x)=, h,f(w’)= -g,(IX/ak G*.
First, suppose that X wF-. If w G, then also x G, since F is a facet of G. Therefore,
we G implies (x,-f(x)) G x G*, and hence x is a stationary point of f on K. In
case w G or if X- wF or F/, then tr is a facet of a unique (t + 1)-dimensional
simplex t in wG-, wG, or G/, respectively; and the path can be continued in # by
making a pivoting step with (f(), 1)’ in (4.3) or (4.4), where
opposite

Finally, we consider the case that in (4.4), a 0 at an end point. If X wF and
w F, then cr is a facet of a unique (t + 1)-simplex # in wF- and the path can be
continued in wF- by making a pivoting step with (f()’, 1)’ in (4.4), where is the

160 DAI, VAN DER LAAN, TALMAN, AND YAMAMOTO

vertex of # opposite r. If X wF and w F or if X F+, then x Y’-i hiwi F and
f(x) =Yi hf(wi) =--YkI(F) tXkak F*, so that x is a stationary point of f on K.

This completes the description of how to follow approximately the path S by
making alternating pivoting and replacement steps for a sequence of adjacent simplices
of varying dimension. When this sequence does not diverge and terminates with a
simplex, it contains a stationary point) of f on K. This point) is an approximate
stationary point off on K. To improve the accuracy of the approximation, if necessary,
we can take a finer triangulation of K with the point : as the new starting point w
and apply the same procedure.

5. Convergence condition. In this section we state a condition under which the
path S is bounded and therefore leads from w to a stationary point of f on K.

LEMMA 5.1. Let (x, y) be a solution of the system

(5.1) g(x,y)=O, (x,y)F+x(F*+(h)).

Ifx is not a stationary point, then

rty>O

for any nonzero vector r in the cone C such that (ai)tr =0 for all 6 I(F).
Proof The point y in F* +(h) is equal to Blx + ah for some vector /x->_ 0 and

number a => 0, where B denotes the submatrix of A consisting of the column vectors
ai for i I(F). Since x is not a stationary point, a > 0. Then

rty r’(Btx + ah)= (B’r)’ix + ah’r= ahtr> 0

by the choice of h. [3

CONDITION 5.2. There is a set U c R" such that U K is bounded and for each
point x K\ U there is a nonzero vector in C 71 { r Rn ai)tr 0 if ai)tx bi} satisfying

7(x)>-o.
LEMMA 5.3. Under Condition 5.2 the path S does not diverge.
Proof Suppose the contrary. Then there is a solution (Y, fi) of the system (4.1)

such that Y F+\ U for some face F, since the continuity of the function f requires
the x-component to diverge. Therefore, by Lemma 5.1 and Condition 5.2, we see that
(f()+37)> 0 for some vector , which contradicts the statement that (, 37) is a
solution of (4.1).

6. Stationary point problems on a Cartesian product of a polytope and a poly-
hedron. We consider a stationary point problem defined on the Cartesian product of
a polytope and a polyhedron. The product is again a polyhedron and the discussion
of 3, 4, and 5 could still be applied to this case. However, it will be quite useful to
consider it separately because a lot of problems are defined on such product sets. Let

gl {Xl R ’h AtlXl <-

be a nonempty polytope and let

A2x2 b2}
be a nonempty, convex, unbounded, and pointed polyhedron, with Ai an ni x mi matrix
and bi an mi-vector for 1, 2. We consider the stationary point problem for a
continuous function f from KlXK2 to R",xR2. We denote f(x) by f(x)=
(fl(xl, x2),f2(xl, x2)). Then (xl, x2) K1 x K2 is a stationary point of f on K1 x K2 if

(Z Xl)71(Xl X2)-[" (Z2 X2)72(Xl, X2) 0

for any point (zl, z2) K1 K.

SIMPLICIAL ALGORITHM FOR STATIONARY POINT PROBLEMS 161

In the same way as in the preceding sections, we will construct a GPDM by
introducing an artificial hyperplane and corresponding halfspaces defined by

H {(x,, x) R",+"I h;x p ho},

where 7r is -, 0, and + when p is <_-, =, and >_-, respectively, h_ =-A_y for some fixed
positive vector % and ho> 0 is chosen such that the interior of the halfspace H-
contains all vertices of K1 x K2 as well as the starting point w (wl, w2). Note that

h2r2> 0 for any nonzero vector r_ in the set

C2 { r2 e R n2 A;r2 <-_ 0}

of directions of rays of K)_, which we have seen is a pointed cone. It is clear that a
face F of K1 x K2 is itself a Cartesian product of faces of K1 and K2, which we will
denote by F1 and F2, respectively. Let

ho},H2 {x2 e R"I h2x2 p
where r is -, 0, and + when p is <_-, =, and >=, respectively. We define

F=F2f3H for r=-,0, and+.

Then

F==FlxF for r=-,0, and+.

It is also clear that the normal cone F* corresponding to a face F of K is given by

= , x F*,
where F* and F* are defined with respect to K1 c R nl and K2 c R"2, respectively.
Thus, with the dual operator d defined as follows, we obtain a GPDM:

(w(F1X F))d F*I x F*2
(w(F1X F))d F*I x (F* +(hE))

(F1 x F-)d FI* x (F* +
(Fl X F)a=
(F X F)d
({w}) =.

if wC_FlXF<K;

if F2 is an unbounded face of K2;

if F2 is an unbounded face of K2;

if wC:FlXF2<K;

if F2 is an unbounded face of K2;

The collection of cells, each cell being the Cartesian product of a primal cell and
its dual, is clearly a subdivided (nl+ n2+ 1)-manifold. The boundary 0 contains
{(w, w2)} x (R", x R"2\{(wl, w2)}*). It also contains (F x F2) x (F* x F2*) for all faces
F1 of K1 and for all faces F2 of K2 when (w, w2) is not a vertex of K; and when
(w, w2) is a vertex of K, it contains (F1 x F2)x (F* x F2*) for all faces F1 of K1 not
equal to { Wl} and for all faces F2 of K2 not equal to {w2}. Therefore, when the starting
point w=(wl, w2) is not a stationary point, the point (x,xz,yl,y2)=
(wl, w2, -fl(wl, w2), -f2(wl, w2)) lies in the boundary 101 of I1 and under the regular
value assumption there is a path leading from it to either a stationary point or to
infinity. Thus, in exactly the same way as in the preceding sections, the problem is
now reduced to tracing the path S of solutions to the system

(fl(Xl, X2), f2(Xl, X)))+(y,, y)=0, (Xl, X2, Yl, Y2) e I1.
The remarkable feature of this path is shown in the following lemma, where

Sx {x (Xl, x2) (Xl, x2, y, Y2) S for some (Yl, Y2) R"’+"}.

162 DAI, VAN DER LAAN, TALMAN, AND YAMAMOTO

LEMMA 6.1. If (1, 2) e S, VI H/, then 1 is a stationary point for fl(., 2) on K1,
’ti.e., xlf(:,) < xlf(2,) for all x K.
Proofi Since (, 2) H+, it is in F x F for some face F of K and some

unbounded face F of K. By the construction of the GPDM,

(-fl(l, 2), -f2(1, 2)) F x (F+ (h)).

This means that 1 is a stationary point for f(., Y) on K.
LEMMA 6.2. Let (Yl, Y2, ill, fi2) be a point of S. Suppose that (Yl, Y) is not a

stationary point and lies in H. en
r2y2 0

for any nonzero vector r2 in the cone C such that (a2i)tr 0 whenever (a)2 b2,
where a is the ith column ofA and b2i is the ith component of b2.

Proof Let B be the submatrix of A2 consisting of the columns a2 such that
(a2) ’2 b2. Then 2 B2 + ah2 for some vector 0 and real number a 0. Since
(Y, Y2) is in H+ and is not a stationary point, we have a > 0 by Lemma 6.1. Therefore,

rzy2 r(Bz+ah2)=ah2r2>O.

CONDITION 6.3. ere is a set U2 R such that U2 Kz is bounded andfor each
point 2 KU one of the following conditions holds:

(1) there is no stationary point for fl(", Y2) on K1,
(2) for each point x K, there is a nonzero vector in Cz{r26 R"](ai)rz=O

if (a2i)’Y2 b2i} such that f2(x,, 2)0.
THEOREM 6.4. Under Condition 6.3 the path S does not diverge.
Proof Suppose the contrary. Then there is a point (Yl, Yz) S H+ such that

Y Uz. By Lemma 6.1, Y is a stationary point for fl(’, Y) on K1. Therefore, condition
(2) must be satisfied at this point, so that for some nonzero vector 2 in C:
{r R"(ai)’r=O if (ai)’Y bi} we must have

A(,,) 0.

On the other hand, we have seen in Lemma 6.2 that

This is a contradiction.

7. Linear stationary point problems. In this section, we consider a special but
important case where the function f from K to R is an affine function, i.e., f(x)=
Qx+ q, where Q is an n n matrix and q is an n-vector. For simplicity of notation
we confine ourselves to the linear stationary point problem defined on a polyhedron
instead of the product of a polytope and a polyhedron. As for complementary pivoting
algorithms for solving a linear complementarity problem, we show that if the matrix
Q is copositive plus on the polyhedral cone C and the problem has a stationary point,
the path does not go to infinity and consequently leads to one of the stationary points.

DEFINITION 7.1. The matrix Q is copositive plus on C if
(1) r’Qr>=O for any re C,
(2) (Q+Q’)r=O if re C and r’Qr=O.
LEMMA 7.2. There exists no point x e K such that Qx + q =-Atx for some vector

i >=O if and only if there is a (v, u)eRnR such that ve C, Q’v=Au, b’u+q’v<O,
and u >= O.

SIMPLICIAL ALGORITHM FOR STATIONARY POINT PROBLEMS 163

Proof. There exists no point x in K satisfying Qx + q =-A/x for some /x-> 0 if
and only if the system

(7.1) A (x x2) <= b, Q(x, xz) + q -Alz, x x tx >- 0

is not solvable. By Farkas’ Alternative Theorem, we have an equivalent statement to
(7.1): the following system:

(7.2) Qv-Au=O, Av<-O, u>=O, btu+q’v<O

is solvable. This means the existence of a point v in C such that Q’v=Au and
btu+q’v<O for some u->0. [3

LEMMA 7.3. Let Q be copositive plus on C. If the path S is unbounded and does not
contain a point which provides a stationary point, then there are no stationary points.

Proof Suppose S is unbounded, then there are (x, y) S and (, 37) 0 such that
(x, y) +/3 (9, 37) S for any/3 => 0. Then

(7.3))7+ Q: 0.

Moreover, as /3 increases, (x, y)+/3(, 37) will be entirely contained in a cell F+
(F* +(h)) for some face F_< K. Here note that # 0 because the contrary would yield
(), 37)=0. Then we have

xF+

y=y’+Ah

and

for some y’ F* and some A _-> O,

C f-I {r R"l(ai)tr=O if (a,)’x b,}

37 29’+/xh for some 37’ F* and some/x -> 0.

Therefore, we have

Suppose/x > 0. By the choice of h and since 9 C, we have/x)’h > 0, which contradicts
that Q is copositve plus on C. Therefore,/x 0 and)’Q) 0. If A 0, then y y’ F*.
This means that the point x is a stationary point. Since we have assumed that S does
not contain such a point, we see that A >0. Since 2’Q =0 implies (Q+ Q’) =0,
we have

Q’X -QX 37)7’+/xh 37’ F*.

In other words, there is some vector u satisfying

Q’=Au,

(7.4) Ui_>- 0 for I(F),

U 0 for i I(F).

We also have

(7.5) y,t(-y)=’(Qx+q)=x’Qt+qt=xt(-Q)+q’=x+q’.

On the other hand, since ff Cfl{rRnl(a)’r=O if (a)tx=bg} and y’ F*,

(7.6) t(_y) :, (_y,_ Ah) -,’y’- A’h -A2th < O.

164 DAI, VAN DER LAAN, TALMAN, AND YAMAMOTO

From (7.5) and (7.6) we have xt29+ qtg < 0. Since x F+, we also have that Atx + s b
for some slack variable vector s satisfying

si-->0 foriI(F),

si=0 foriI(F).

Then

b’u + q’g < b’u -x= (A’x + s)tu -x’(-Q)
(7.7)

x’Au + s’u- x’(Q’g) x’(Au- Q)+ s’u o.
From (7.4), (7.7), and Lemma 7.2, we conclude that there are no stationary points. [3

The algorithm for tracing the piecewise linear path S, being linear on each cell
of /, is quite similar to that proposed in Yamamoto [8] for solving linear stationary
point problems on polytopes. We will only give an outline here. Suppose we are at a
point (x, y) on the path, i.e.,

(7.8) Qx + q + y O, (x, y) 6 X x Xd,

for some cell X x Xd of /. By the decomposition theorem of a polyhedron, each point
of a polyhedron is a sum of two points: a convex combination of vertices of the
polyhedron and a nonnegative combination of directions of extreme rays. Let U and
R be the sets of vertices and extreme rays of X, respectively. Then a point x e X is
written as

x= A,,u+E Orr,
uU rR

=1,
uU

A, >= O, a,. >= O.

On the other hand, Xa is the cone generated by coefficient vectors ai of binding
constraints of the face corresponding to X and the vector h. Then a point y X is
written as

y 2/xia, /x ->_ 0

if we denote h by ao. Therefore, (7.8) has a solution if and only if the system

(7.9) A" [QllU] + #[Qoor]+txi[;’] [-q]’
A, --> 0, ar -> 0, /x _>-- 0

has a solution (A, a,/_t). It should be noted here that a vertex of X is either the starting
point w or a vertex of some face of K- corresponding to X and that an extreme ray
of X is also an extreme ray of some face of K. More precisely,

U {w} U {vertices of F-}, R when X wF-,

U {w}U {vertices of F}, R= when X wF,
U {vertices of F}, R {extreme rays of F} when X F+.

In every case a vertex or an extreme ray can be generated in need when we keep in
storage the index set ofbinding constraints, including H {x e R" h’x ho}, determin-
ing the face F.

SIMPLICIAL ALGORITHM FOR STATIONARY POINT PROBLEMS 165

Suppose we are at an end point of the line segment or halfline of the path within
X Xd. Since the path is linear within X x Xd, an appropriate choice of the objective
function cxx + Cyy makes the current end point the unique maximal solution of the
linear program:

max c,x at- Cyy,

s.t. x Y ,X,u +Y cr,

y , Id,iai,

,Au[Qltl]-F txr[Qor]-+-tzi[aoi]
h O, Ol > O, [.l, O.

In fact, the outward normal vector at the point (x, y) to X x Xd may serve as (c, Cy).
Then the other end point, when the path within X x Xd is a line segment, or the
diverging direction, when it is a halfline, can be found by solving the following linear
minimization program:

min cx + Cyy,

s.t. x Auti q- Orr

y iai,

Abe 0, O 0, /’/i 0.

From this we see that solving the problem is a typical application of the Dantzig-Wolfe
decomposition principle for large structured linear programs. By solving a sequence
of these problems we can trace the path and finally, after a finite number of iterations,
we meet with an end point of the path or find that the path goes to infinity.

REFERENCES

Y. DAI AND Y. YAMAMOTO, The path following algorithm for stationary point problems on polyhedral
cones, J. Oper. Res. Soc. Japan, 32 (1989), pp. 286-309.

[2] M. KOJIMA, An introduction to variable dimension algorithms for solving systems of equations, in
Numerical Solution of Nonlinear Equations, Springer-Verlag, Berlin, New York, 1981, pp. 199-237.

[3] S. KARAMADIAN, Generalized complementarity problem, J. Optim. Theory Appl., 8 (1971), pp. 161-168.
[4] M. KOJIMA AND Y. YAMAMOTO, Variable dimension algorithms: Basic theory, interpretations and

extensions of some existing methods, Math. Programming, 24 (1982), pp. 177-215.
[5] R. SAIGAL, Extension of the generalized complementarity problem, Math. Oper. Res., (1976),

pp. 260-266.
[6] J. STOER AND C. WITZGALL, Convexity and Optimization in Finite Dimensions I, Springer-Verlag,

Berlin, New York, 1978.
[7] A. J. J. TALMAN AND Y, YAMAMOTO, A simplicial algorithmfor stationary point problems, Math. Oper.

Res., 14 (1989), pp. 383-399.
[8] Y. YAMAMOTO, A path following algorithm for stationary point problems, J. Oper. Res. Soc. Japan, 30

(1987), pp. 181-198.
[9] , Stationary point problems and a path-following algorithm, in Proc. 8th Mathematical Program-

ming Symposium, Hiroshima, Japan, 1987, pp. 153-170.
[10] , Fixed point algorithms for stationary point problems, Mathematical Programming, Recent

Developments and Applications, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1989,
pp. 283-307.

SIAM J. OPTIMIZATION
Vol. 1, No. 2, pp. 166-190, May 1991

1991 Society for Industrial and Applied Mathematics

002

CONES OF MATRICES AND SET-FUNCTIONS AND 0-1 OPTIMIZATION*

L. LOVASZt AND A. SCHRIJVER:

Abstract. It has been recognized recently that to represent a polyhedron as the projection of a

higher-dimensional, but simpler, polyhedron, is a powerful tool in polyhedral combinatorics. A general
method is developed to construct higher-dimensional polyhedra (or, in some cases, convex sets) whose
projection approximates the convex hull of 0-1 valued solutions of a system of linear inequalities. An
important feature of these approximations is that one can optimize any linear objective function over them
in polynomial time.

In the special case of the vertex packing polytope, a sequence of systems of inequalities is obtained
such that the first system already includes clique, odd hole, odd antihole, wheel, and orthogonality constraints.
In particular, for perfect (and many other) graphs, this first system gives the vertex packing polytope. For
various classes of graphs, including t-perfect graphs, it follows that the stable set polytope is the projection
of a polytope with a polynomial number of facets.

An extension of the method is also discussed which establishes a connection with certain submodular
functions and the M6bius function of a lattice.

Key words, polyhedron, cone, vertex packing polytope, perfect graph, M6bius function

AMS(MOS) subject classifications. 05C35, 90C10, 90C27

0. Introduction. One ofthe most important methods in combinatorial optimization
is that which represents each feasible solution of the problem by a 0-1 vector (usually
the incidence vector of the appropriate set), and then describes the convex hull K
of the solutions by a system of linear inequalities. In the nicest cases (e.g., in the
case of the bipartite matching problem) we obtain a system that has polynomial size
(measured in the natural "size" n of the problem). In such a case, we can compute
the maximum of any linear objective function in polynomial time by solving a linear
program. In other cases, however, the convex hull of feasible solutions has exponentially
many facets and so can only be described by a linear program of exponential size. For
many combinatorial optimization problems (including those solvable in polynomial
time), this exponentially large set of linear inequalities is still "nice" in one sense or
another. We mention two possible notions of "niceness":

--Given an inequality in the system, there is a polynomial size certificate of the
fact that it is valid for K. If this is the case, the problem of determining whether a
given vector is in K is in the complexity class co-NP.

--There is a polynomial time separation algorithm for the system; that is, given
a vector, we can check in polynomial time whether it satisfies the system, and if not,
we can find an inequality in the system that is violated. It follows, then, from general
results on the ellipsoid method (see GrStschel, Lovfisz, and Schrijver [14]) that every
linear objective function can be optimized over K in polynomial time.

Many important theorems in combinatorial optimization provide such "nice"
descriptions of polyhedra. Important examples of polyhedra with "nice" descriptions
are matching polyhedra, matroid polyhedra, stable set polyhedra for perfect graphs,
etc. On the other hand, stable set polyhedra, in general, or travelling salesman poly-
hedra, are not known to have "nice" descriptions (and probably do not have any).
Typically, to find such a "nice" description and to prove its correctness, one needs ad

Received by the editors January 10, 1990; accepted for publication (in revised form) October 18, 1990.

? Department of Computer Science, E6tv6s Lorind University, Budapest, Hungary H-1088, and
Department of Computer Science, Princeton University, Princeton, New Jersey 08544.

Mathematische Centrum, Kruislaan 413, 1098 SJ Amsterdam, the Netherlands.

166

CONES OF MATRICES AND SET-FUNCTIONS 167

hoc methods depending on the combinatorial structure. However, one can mention
two general ideas that can help in obtaining such linear descriptions:

mGomory-Chvdtal cuts. Let P be a polytope with integral vertices. Assume that
we have already found a system of linear inequalities valid for P whose integral
solutions are precisely the integral vectors in P. The solution set of this system is a

polytope K containing P which will in general be larger than P. We can generate
further linear inequalities valid for P (but not necessarily for K) as follows. Given a
linear inequality

valid for K, where the ai are integers, the inequality

E aixi <- [a]

is still valid for P but may eliminate some part of K. Gomory [11] used a special
version of this construction in his integer programming algorithm. If we take all
inequalities obtainable in this way, they define a polytope K’ with P c_ K’ c K. Repeat-
ing this with K’ in place of K we obtain K", etc. Chvital [8] proved that in a finite
number of steps, we obtain the polytope P itself.

Unfortunately, the number of steps needed may be very large; it depends not only
on the dimension but also on the coefficients of the system with which we start. Another
problem with this procedure is that there is no efficient way known to implement it
algorithmically. In particular, even if we know how to optimize a linear objective
function over K in polynomial time (say, K is given by an explicit, polynomial size
linear program), and K’= P, we know of no general method to optimize a linear
objective function over P in polynomial time.

mProjection representation (new variables). This method has received much atten-
tion lately. The idea is that a projection of a polytope may have more facets than the
polytope itself. This remark suggests that even if P has exponentially many facets, we
may be able to represent it as the projection of a polytope Q in higher (but still
polynomial) dimension, having only a polynomial number of facets. Among others,
Barahona [4]; Liu [16]; Ball, Liu, and Pulleyblank [3]; Maculan [19]; Balas and
Pulleyblank [1], [2]; Barahona and Mahjoub [5]; and Cameron and Edmonds [6] have
provided nontrivial examples of such a representation. It is easy to see that such a

representation can be used to optimize linear objective functions over P in polynomial
time. In the negative direction, Yannakakis [26] proved that the travelling salesman
polytope and the matching polytope of complete graphs cannot be represented this
way, assuming that the representation is "canonical." (Let P En and P’m be two

polytopes. We say that a projection representation 7r:P’-* P is canonical if the group
F of isometries of En preserving P has an action as isometries of E" preserving P’ so
that the projection commutes with these actions. Such a representation is obtained,
e.g., when new variables are introduced in a "canonical" waymin the case of the
travelling salesman polytope, this could mean variables assigned to edges or certain
other subgraphs, and constraints on these new variables are derived from local proper-
ties. If we have to start with a reference orientation, or with specifying a root, then
the representation obtained will not be canonical.) No negative results seem to be
known without this symmetry assumption.

One way to view our results is to provide a general procedure to create such
liftings. The idea is to extend the method of Gr/Stschel, Lovisz, and Schrijver [12] for
finding maximum stable sets in perfect graphs to general 0-1 programs. We represent

168 L. LOV,SZ AND A. SCHRIJVER

a feasible subset not by its incidence vector v but by the matrix vv r. This squares the
number of variables, but in return we obtain two new powerful ways to write down
linear constraints. Projecting back to the "usual" space, we obtain a procedure some-
what similar to the Gomory-Chvfital procedure" it "cuts down" a convex set K to a
new convex set K’ so that all 0-1 solutions are preserved. In contrast to the Gomory-
Chvfita cuts, however, any subroutine to optimize a linear objective function over K
can be used to optimize a linear objective function over K’. Moreover, repeating the
procedure at most n times, we obtain the convex hull P of 0-1 vectors in K.

Our method is closely related to recent work of Sherali and Adams [22]. They
introduce new variables for products of the original ones and characterize the convex
hull, in this high-dimensional space, of vectors associated with 0-1 solutions of the
original problem. In this way they obtain a sequence of relaxations of the 0-1 optim-
ization problem, the first of which is essentially the N operator introduced in 1 below.
Further, members of the two sequences of relaxations are different but closely related;
some of our results in 3, in particular, formula (6) and Theorem 3.3, follow directly
from their work.

This method is also related to (but different from) the recent work of Pemantle,
Propp, and Ullman [20] on the tensor powers of linear programs.

In 1, we describe the method in general, and prove its basic properties. Section
2 contains applications to the vertex packing problem, one of the best studied com-
binatorial optimization problems. It will turn out that our method gives in one step
almost all of the known classes of facets of the vertex packing polytope. It will follow,
in particular, that if a graph has the property that its stable set polytope is described
by the clique, odd hole, and odd antihole constraints, then its maximum stable set can
be found in polynomial time.

In 3 we put these results in a wider context by raising the dimension even higher.
We introduce exponentially many new variables; in this high-dimensional space, rather
simple and elegant polyhedral results can be obtained. The main part of the work is
to "push down" the inequalities to a low dimension and to carry out the algorithms
using only a polynomial number of variables and constraints. It will turn out that the
methods in 1, as well as other constructions like TH (G), as described in Gr6tschel,
Lovfisz, and Schrijver [13], [14], follow in a natural way.

1. Matrix cuts. In this section we describe a general construction for "lifting" a
0-1 programming problem in n variables to n 2 variables, and then projecting it back
to the n-space so that cuts, i.e., tighter inequalities still valid for all 0-1 solutions, are
introduced. It will be convenient to deal with homogeneous systems of inequalities,
i.e., with convex cones rather than polytopes. Therefore we embed the n-dimensional
space in ,+1 as the hyperplane x0 1. (The 0th variable will play a special role
throughout.)

One way to view our constructions is to generate quadratic inequalities valid for
all 0-1 solutions. These may be viewed as homogeneous linear inequalities in the
() + n + 1-dimensional space, and they define a cone there. (This space can be identified
with the space ofsymmetric n + 1 x n + 1) matrices.) We then combine these quadratic
inequalities to eliminate all quadratic terms in order to obtain linear inequalities not
derivable directly. This corresponds to projecting the cone down the n + 1-dimensional
space.

l.a. The construction of matrix cones and their projections. Let K be a convex
cone in /1. Let K* be its polar cone, i.e., the cone defined by

K* {u G [n+l: u Tx >= O for all x K}.

CONES OF MATRICES AND SET-FUNCTIONS 169

We denote by K the cone spanned by all 0-1 vectors in K. Let Q denote the cone
spanned by all 0-1 vectors x ,+1 with Xo 1. We are interested in determining K,
and generally we may restrict ourselves to subcones of Q. We denote by ei the ith unit
vector, and set f Co- ei. Note that the cone Q* is spanned by the vectors e and f.
For any (n + 1) x (n + 1) matrix Y, we denote by Y the vector composed of the diagonal
entries of Y.

Let KI Q and K2 Q be convex cones. We define the cone M(KI, K2)
_

"+)"+) consisting of all (n+ 1)(n+ 1) matrices Y= (yj) satisfying (i), (ii), and
(iii) below (for motivation, the reader may think of Y as a matrix of the form xx r,
where x is a 0-1 vector in K 0 K2).

(i) Y is symmetric;
(ii) Y Yeo, i.e., y, Yoi for all 1 -< _-< n;
(iii) uTyo >- 0 holds for every u KI* and v K2*.
Note that (iii) can be rewritten as
(iii’) YK*

_
K1.

We shall also consider a slightly more complicated cone M+(K, K2), consisting
of matrices Y satisfying the following condition, in addition to (i), (ii), and (iii):

(iv) Y is positive semidefinite.
From the assumption that K1 and K2 are contained in Q it follows that every

Y: (Yo) M(K1, K2) satisfies Yo >= O, Yij <- Y, Yo <- Yoo, and yij Y, + Yj Yoo.
These cones of matrices are defined by linear constraints and so their polars can

also be expressed quite nicely. Let Upsd denote the cone of positive semidefinite
(n + 1) (n + 1) matrices (which is self-dual in the space Usy of symmetric matrices),
and Uskew the linear space of skew symmetric (n + 1) (n + 1) matrices (which is the
orthogonal complement of Usym). Let U1 denote the linear space of (n + 1) (n + 1)
matrices (wi), where Woj=-w for l<-j<=n, Woo=0 and wo=O if i#0 and i#j. Note
that U is generated by the matrices f ef (i= 1,..., n).

With this notation, we have, by definition,

M(K1, K2)*= U1 + Uskew+ cone {uv r" u K*I v K*},
and

M+(K, K)*= U + Uskew q- Upsd+ cone {uv T" u K* v K*}.
Note that only the last term depends on the cones K1 and K. In this term, it would
be enough to let u and v run over extreme rays of K* and K*, respectively. So if K
and K2 are polyhedral, then so is M(K1, K2), and the number of its facets is at most
the product of the numbers of facets of Ka and K2.

Note that Upsd and hence M/(K1, K2) will generally be nonpolyhedral.
We project down these cones from the (n + 1) (n + 1)-dimensional space to the

(n + 1)-dimensional space by letting

N(K,, K2) {Yeo" Y M(K1, K2)}= {Y: Y M(K1, K2)}

and

N+(K,, K2) {Yeo" Y M+(K,, K2)} {Y: Ye M+(K,, K2)}.

Clearly, M(K1, K2)= M(K2, KI) and so N(K1, K2) N(K2, K1) (and similarly for
the "+" subscripts).

If A "+)"+) is a linear transformation mapping the cone Q onto itself, then
clearly M(AK, AK2) AM(K, Kz)AT. If n ->_ 2, then from AQ Q it easily follows
that ATeo is parallel to Co, and hence N(AK1, AK2)--AN(K, K2). In particular, we
can "flip" coordinates, replacing x by Xo-x for some i# 0.

170 L. LOV,SZ AND A. SCHRIJVER

If K1 and K2 are polyhedral cones, then so too are M(K1, K2) and N(K1, K2).
The cones M+(K1, K2) and N+(K1, K2) are also convex (but generally not polyhedral),
since (iv) is equivalent to an infinite number of linear inequalities.

LEMMA 1.1. (K1 f3 K2) N+(K1, Kz)
_
N(K1, K2) K1 f3 K2.

Proof (1) Let x be any nonzero 0-1 vector in K1 f’l K2. Since K =_ Q, we must
have Xo 1. Using this it is easy to check that the matrix Y xxr satisfies (i)-(iv).
Hence x Yeo N+(K, K2).

(2) N+(K1, K2)_ (K,, K2) trivially.
(3) Let x N(K1, K2). Then there exists a matrix Y satisfying (i)-(iv) such that

x Yeo. Now, by our hypothesis that K1 m__ Q, it follows that eo e K*, and hence by
(iii’), x Yeo is in K2. Similarly, x K [-]

We will see that, in general, N(KI, K2) will be much smaller than K1 71K2.
The reason why we consider two convex cones instead of one is technical. We

shall need only two special choices: either K1 K2--K or K --K, K2 Q. It is easy
to see that

N(K1CI K2, K f3 K2) N(K1, K2)
_
N(K1 f"l K2, Q).

This suggests that it would suffice to consider N(K, K); but, as we shall see, N(K, Q)
behaves algorithmically better (see Theorem 1.6 and the remark following it), and this
is why we allow two different cones. To simplify notation, we set N(K)= N(K, Q)
and M(K)= M(K, Q). In this case, K*= Q* is generated by the vectors ei and f,
and hence (iii’) has the following convenient form:

(iii") Every column of Y is in K; the difference of the first column and any other
column is in K.

l.b. Properties of the cut operators. We give a lemma that yields a more explicit
representation of constraints valid for N(K) and N/(K). Unfortunately, the geometric
meaning of N(K) and N/(K) is not immediate; Lemmas 1.3 and 1.5 may be of some
help in visualizing these constructions.

LEMMA 1.2. Let K Q be a convex cone in n+m and w [n/l.
(a) w N(K)* if and only if there exist vectors al, ", a, K*, a real number h,

and a skew symmetric matrix A such that ai+ hei+Aei K* for i= 1,..., n, and
w i=l ai + AI (where 1 denotes the all-1 vector).

(b) we N+(K)* if and only if there exist vectors al,’", a, K*, a real number
h, a positive semidefinite symmetric matrix B, and a skew symmetric matrix A such that
ai + hei + Aei + Bei K* for 1, , n, and w i=l ai + A1 + BI.

Proof Assume that w N(K)*. Then we{ M(K)*, and so we can write

we:=2 atbt + hieifir+A,
i=1

where a, K*, b, Q*, h , and A is a skew symmetric matrix. Since Q* is spanned
by the vectors ei and f, we may express the vectors bi in terms of them and obtain a
representation of the form

(1) we:= aieT, + fftifiT+ Aieif+A,
i=1 i=1 i=1

where ai, ai K*. Multiplying (1) by ej from the right we get

(2) O= aj- gt Ajej + Ae.

CONES OF MATRICES AND SET-FUNCTIONS 171

Multiplying (1) by eo and using (2) we get

Here aj-Ajej + Aej tj K*. Since, trivially, ej K*, this condition remains valid if
we decrease Aj. Hence we can choose all the Aj =- equal. This proves the necessity
of the condition given in (a).

The sufficiency of the condition, as well as of assertion (b), are proved by similar
arguments. [3

Our next lemma gives a geometric property of N(K), which is easier to apply
than the algebraic properties discussed before. Let Hi {x"+: xi=0} and Gi
{x "+: xi Xo}. Clearly, Hi and Gi are hyperplanes supporting Q at a facet, and all
facets of Q are determined this way.

LEMMA 1.3. For every convex cone K Q and every 1 <-i <-_ n,

N(K) (K ("l Hi)+ (K CI Gi).

Proof Consider any x N(K) and let Y M(K) be a matrix such that Yeo x.
Let Yi denote the ith column of Y. Then by (ii), yi Gi and by (iii"), Yi
Similarly, Yo yi K f3 Hi, and so Yeo yo (Yo Yi) + yi

Let us point out the following consequence of this lemma: if K f’) Gi {0}, then
N(K)

_
Hi. If, in particular, K meets both opposite facets of Q only in the 0 vector,

then N(K)= {0}. This may be viewed as a very degenerate case of Gomory-Chvital
cuts (see below for more on the connection with Gomory-Chvital cuts).

One could define a purely geometric cutting procedure based on this lemma: for
each cone K

_
Q, consider the cone

(3) No(K) ni ((K n Gi)+(K n Hi)).

This cone is similar to N(K) but is generally bigger. We remark that this cone could
also be obtained from a rather natural matrix cone by projection: this arises by imposing
(ii), (iii), and the following restricted form of (i)" Yoi Yio for i= 1,..., n.

Figure 1 shows the intersection of three cones in 3 with the hyperplane x3 1"
the cones K, N(K), and N(N(K)), and the constraints implied by Lemma 1.3. We
see that the cone in Lemma 1.3 gets close to N(K) but does not coincide with it.

We remark that N(K (3 Hi) N(K) f"l Hi for 1,. , n; it should be noted that
N(K t3 Hi) does not depend on whether it is computed as a cone in "+ or in

We can get a better approximation of K by iterating the operator N. Define
Nt(K) recursively by N(K)- K and N’(K)= N(Nt-I(K)) for t.-> 1.

THEOREM 1.4. N"(K) K o.
Proof Consider the unit cube Q’ in the hyperplane x0 0 and let 1 -<_ <= n. Consider

any face F of Q’ of dimension n- and let F be the union of faces of Q’ parallel to

K N(K) N(K)

172 L. LOV/SZ AND A. SCHRIJVER

F. We prove, by induction on t, that

(4) N’(K) cone (K f-)/).
For n, this is just the statement of the theorem. For 1, this is equivalent to
Lemma 1.3.

We may assume that F contains the vector eo. Let F’ be an (n + 1)-dimensional
face of Q’ containing F and let be an index such that F’t3 H F. Then, by the
induction hypothesis,

N’-I(K) cone (K fq F--7).

Hence by Lemma 1.3,

St(K) S(St-l(K)) cone (Nt-I(K) I") (Hi t_J Gi))___
cone ([cone (K fq F’) f’) Hi] t_J [cone (K f’) F’) f3 Gi]).

Now Hi is a supporting plane of cone (K f’)F’) and hence its intersection with the
cone is spanned by its intersection with the generating set of the cone:

cone (K f-) F’) fq H cone (K f3 F’ f) Hi)

cone (K fq F).

Similarly,

cone (K f) F’) f-) Gi cone (K f) F).

Hence (4) follows.
Next we show that if we use positive semidefiniteness, i.e., we consider N/(K),

then an analogue of Lemma 1.3 can be obtained that is more complicated but important
in the applications to combinatorial polyhedra.

LEMMA 1.5. Let K Q be a convex cone and let a + be a vector such that
ai <-- 0 for 1, , n and ao >- O. Assume that a 7"x >- 0 is valid for K fq G for all such
that ai < O. Then a rx >-_ 0 is valid for N+(K).

(The condition that ao -> 0 excludes only trivial cases. The condition that ai <- 0 is
a normalization, which can be achieved by flipping coordinates.)

Proof. First, assume that ao 0. Consider a subscript such that ai < 0. (If no
such exists, we have nothing to prove.) Then for every x e Gi\{0}, we have a rx <= aixi <
0, and so, x K. Hence K f) Gi {0}, and so by Lemma 1.3, N/(K)
As this is true for all with ai < 0, we know that a TX 0 for all x e N/(K).

Second, assume that ao> 0. Let x N/(K) and let Ye M/(K) be a matrix with
Yeo x. For any 1 <= i<= n, the vector Yei is in K by (iii") and in Gi by (ii); so by
the assumption on a, aTyei>=O whenever ai<0. Hence aTy(aoeo-a)=
a rY(-alel a,e,)>=O (since those terms with ai=0 do not contribute to the
sum anyway), and hence aTy(aoeo)>--arYa>=O by positive semidefiniteness.
Thus a rYeo a 7"x >- O.

l.c. Algorithmic aspects. Next we turn to some algorithmic aspects of these con-
structions. We have to start by sketching the framework we are using; for a detailed
discussion, see Gr6tschel, Lovisz, and Schrijver [14].

Let K be a convex cone. A strong separation oracle for the cone K is a subroutine
that, given a vector x +, either returns that x K or returns a vector w K* such
that x TW < O. A weak separation oracle is a version of this which allows for numerical
errors" its input is a vector x and a rational number e > 0, and it either returns
the assertion that the euclidean distance of x from K is at most e, or returns a vector
w such that Iw >= 1, wTx <= e, and the euclidean distance of w from K* is at most e. If

CONES OF MATRICES AND SET-FUNCTIONS 173

the cone K is spanned by 0-1 vectors, then we can strengthen a weak separation oracle
to a strong one in polynomial time.

Let us also recall the following consequence of the ellipsoid method: Given a
weak separation oracle for a convex body, together with some technical information
(say, the knowledge of a ball contained in the body and of another one containing
the body), we can optimize any linear objective function over the body in polynomial
time (again, allowing an arbitrarily small error). If we have a weak separation oracle
for a convex cone K

_
Q, then we can consider its intersection with the halfspace

Xo -< 1; using the above result, we can solve various important algorithmic questions
concerning K in polynomial time. We mention here the weak separation problem for
the polar cone K*.

THEOREM 1.6. Suppose that we have a weak separation oracle for K. Then the weak
separation problem for N(K) as well as for N+(K) can be solved in polynomial time.

Proof Suppose that we have a (weak) separation oracle for the cone K. Then we
have a polynomial time algorithm to solve the (weak) separation problem for the cone
M(K). In fact, let Y be any matrix. If it violates (i) or (ii), then this is trivially
recognized and a separating hyperplane is also trivially given. (iii) can be checked as
follows: we have to know if Yu K holds for each u Q*. Clearly it suffices to check
this for the extreme rays of Q*, i.e., for the vectors ei and f. But this can be done
using the separation oracle for K.

Since N(K) is a projection of K, the weak separation problem for N(K) can
also be solved in polynomial time (by the general results from [14]).

In the case of N+(K), all we have to add is that the positive semidefiniteness of
the matrix Y can be checked by Gaussian elimination, pivoting always on diagonal
entries. If we always pivot positive elements, the matrix is positive semidefinite. If the
test fails, it is easy to construct a vector v with vYv < 0; this gives, then, a hyperplane
separating Y from the cone. [3

We remark that this proof does not remain valid for N(K, K). In fact, let K be
the cone induced by the incidence vectors of perfect matchings of a graph G with m
nodes (with "1" appended as a 0th entry). Then the separation problem for K can be
solved in polynomial time. On the other hand, consider the matrix Y (Yj), where

1, ifi=j or i=0 or j=0,
YiJ -4(m +2)/m2, otherwise.

Then Y6 M(K, K) if and only if G is 3-edge-colorable, which is NP-complete
to decide. We do not know if Theorem 1.6 extends to N(K, K), but suspect that it
does not.

Note, however, that if K is given by an explicit system of linear inequalities, then
M(K, K) is described by a system of linear inequalities of polynomial size and so the
separation problem for N(K, K) and N+(K, K) can be solved in polynomial time. In
this case, we get a projection representation of N(K) and of N(K, K) from polyhedra
with a polynomial number of facets. It should be remarked that this representation is
canonical.

I.d. Stronger cut operators. We could use stronger versions of this procedure to
get convex sets smaller than N(K).

One possibility is to consider N(K, K) instead of N(K)= N(K, Q). It is clear
that N(K, K)

_
N(K). Trivially, Theorem 1.4 and Lemma 1.3 remain valid if we

replace N(K) by N(K, K). Unfortunately, it is not clear whether Theorem 1.6 also
remains valid. The problem is that now we have to check whether YK*_ K, and

174 L. LOVASZ AND A. SCHRIJVER

unfortunately K* may have exponentially many, or even infinitely many, extreme rays.
If K is given by a system of linear inequalities, then this is not a problem. So in this
case we could consider the sequence N(K, K), N(N(K, K), K), etc. This shrinks
down faster to K than Nt(K), as we shall see in the next section.

The following strengthening of the projection step in the construction seems quite
interesting. For VEn+l, let M(K)v={Yv: YEM(K)}. So N(K)= M(K)eo. Now
define

/’(K) f"l,)int(O*) M(K)v.
Note that the intersection can be written in the form

I(K) f’],o* M(K)(eo+ u).

It is easy to see that

KN(K)_N(K).

The following lemma^gives a different characterization of/(K).
LEMMA 1.7. XE N(K) if and only (ffor every wEn+ and every uE * such that

(eo+u)wT E//(K)*, we have wTx>=O.
In other words, /r(K)* is generated by those vectors w for which there exists a

vEint (*) such that vw T

Proo (Necessity) Let xEN(K),
M(K)*. Then in particular x can be written as x= Yv, where YE M(K). So wTx
wrYv y. (vwr)>=O.

(Sufficiency) Assume that x (K). Then there exists a v E int (K*) such that
x : M(K)v. Now M(K)v is a convex cone, and hence it can be separated from x by
a hyperplane, i.e., there exists a vector w E "+ such that wrx < 0 but wrYv >= 0 for
all Y E M(K). This latter condition means that vw r

E M(K)*, i.e., the condition given
in the lemma is violated.

The cone (K) satisfies important constraints that the cones N(K) and N+(K)
do not. Let bEn+l, and define Fb --{xEn+l" b Tx -->0}.

LEMMA 1.8. Assume that N(K Vi Fb) {0}. Then -b E I(K)*.
Proof If N(K CI Fb) {0}, then for every matrix YE M(K 0 Fb) we have Yeo 0.

In particular, Yoo=0 and hence Y=0. So M(K VI Fb) {0}. Since clearly

M(K f3 F)* M(K)* +cone {bu r" u E O*},
this implies that M(K)* +{bu r. u E Q*} (n+l)(n+l). So, in particular, we can write

-be=Z+bu r with ZEM(K)* and uEQ*. Hence -b(eo+u)rEM(K)*. By the
previous lemma, this implies that -bE (K)*. [3

We can use this lemma to derive a geometric condition on (K) similar to
Lemma 1.5.

LEMMA 1.9. Let K
_
Q be a convex cone and assume that eo- K. Then

N(K) (K VI G,)+. .+(K VI G,).

In other words, if a TX >= 0 is valid for all of the faces K f"l Gi, then it is also valid
for (K).

Proof Let b -a + teo, where > 0. Consider the cone K 71Fb. By the definition
of b, this cone does not meet any facet Gi of Q in any nonzero vector. Hence by
Lemma 1.3, N(K VI Fb) is contained in every facet Hi of Q, and hence N(K Fb)_
cone (eo). But N(K f-1Fb) K and so N(K 71Fb)-- {0}.

Hence by Lemma 1.7, we get that -b a- teoE N(K)*. Since this holds for every
< a and/Q(K)* is closed, the lemma follows. [3

CONES OF MATRICES AND SET-FUNCTIONS 175

Applying this lemma to the cone in Fig. 1, we can see that we obtain K in a
single step. The next corollary of Lemma 1.9 implies that at least some of the Gomory-
Chvital cuts for K are satisfied by)Q(K).

COROLLARY 1 10. Let 1 < k < n and assume that ki= Xi > 0 holds for every x K.
Then ki= Xi >- Xo holds for every x 1Q(K).

The proof consists of applying Lemma 1.9 to the projection of K on the first k + 1
coordinates.

Unfortunately, we do not know if Theorem 1.6 remains valid for N(K). Of course,
the same type of projection can be defined starting with M/(K) or with M(K, K)
instead of M(K), and properties analogous to those in Lemmas 1.8, 1.9 can be derived.

2. Stable set polyhedra. We apply the results in the previous section to the stable
set problem. To this end, we first survey some known methods and results on the facets
of stable set polytopes.

2.a. Facets of stable set polyhedra and perfect graphs. Let G (V, E) be a graph
with no isolated nodes. Let a(G) denote the maximum size of any stable set of nodes
in G. For each A V, let xA v denote its incidence vector. The stable set polytope
of G is defined as

STAB (G)= conv {XA" A is stable}.

So the vertices of STAB (G) are just the 0-1 solutions ofthe system of linear inequalities

(1) xi=>0 for each iV,

and

(2) xi + X/-< 1 for each /j E.

In general, STAB (G) is much smaller than the solution set of (1), (2), which we
denote by FRAC (G) ("fractional stable sets"). In fact, they are equal if and only if
the graph is bipartite. The polytope FRAC (G) has many nice properties; what we
will need is that its vertices are half-integral vectors.

There are several classes of inequalities that are satisfied by STAB (G) but not
necessarily by FRAC (G). Let us mention some of the most important classes. The
clique constraints strengthen the class (2)" for each clique B, we have

(3) E xi -<1.
iB

Graphs for which (1) and (3) are sufficient to describe STAB (G) are called perfect.
It was shown by Gr/Stschel, Lovisz, and Schrijver [12] that the weighted stable set
problem can be solved in polynomial time for these graphs.

The odd hole constraints express the nonbipartiteness of the graph: if C induces
a chordless odd cycle in G, then

(4) X 1/2 (1 C[- 1).
iC

Of course, the same inequality holds if C has chords; but in this case it easily follows
from other odd hole constraints and edge constraints. Nevertheless, it will be convenient
that, if we apply an odd hole constraint, we do not have to check whether the circuit
in question is chordless.

Graphs for which (1), (2), and (4) are sufficient to describe STAB (G) are called
t-perfect. Graphs for which (1), (3), and (4) are sufficient are called h-perfect. It was
shown by Gr/Stschel, Lovisz, and Schrijver [13] that the weighted stable set problem
can be solved in polynomial time for h-perfect (and hence also for t-perfect) graphs.

176 L. LovAsz AND A. SCHRIJVER

The odd antihole constraints are defined by sets D that induce a chordless odd
cycle in the complement of G"

(5) x,<=2.

We shall see that the weighted stable set problem can be solved in polynomial time
for all graphs for which (1)-(5) are enough to describe STAB (G) (and for many more
graphs).

All constraints (2)-(5) are special cases of the rank constraints: let U_ V induce
a subgraph Gu, then

(6) 2 x, <= a(Gt).
iU

Of course, many of these constraints are inessential. To specify some that are essential,
let us call a graph G a-critical if it has no isolated nodes and a(G-e)> a(G) for
every edge e. Chvfital [9] showed that if G is a connected a-critical graph then the
rank constraint

E x,-< (G)
iV(G)

defines a facet of STAB (G).
(Of course, in this generality, rank constraints are ill behaved: given any one of

them, we have no polynomial time procedure to verify that it is indeed a rank constraint,
since we have no polynomial time algorithm to compute the stability number of the
graph on the right-hand side. For the special classes of rank constraints introduced
above, however, it is easy to verify that a given inequality belongs to them.)

Finally, we remark that not all facets of the stable set polytope are determined
by rank constraints. For example, let U induce an odd wheel in G, with center u0 U.
Then the constraint

Iv[-2 Ivl-2E Xi"Xuo
i U\{Uo} 2 2

is called a wheel constraint. If, e.g., V(G)= U, then the wheel constraint induces a
facet of the stable set polytope.

Another class of nonrank constraints of a rather different character are orthogonal-
ity constraints, introduced by GrStschel, Lovfisz, and Schrijver [12]. Let us associate
with each vertex i V, a vector V n, SO that v, 1 and nonadjacent vertices corre-
spond to orthogonal vectors. Let c" with Icl 1. Then

E (crvi)2xi <= 1
iV

is valid for STAB (G). The solution set of these constraints (together with the nonnega-
tivity constraints) is denoted by TH (G). It is easy to show that

STAB (G)
_
TH (G) FRAC (G).

In fact, STAB (G) satisfies all the clique constraints. Note that there are infinitely
many orthogonality constraints for a given graph, and TH (G) is in general nonpolyhe-
dral (it is polyhedral if and only if the graph is perfect). The advantage of TH (G) is
that every linear objective function can be optimized over it in polynomial time. The
algorithm involves convex optimization in the space of matrices, and was the main
motivation for our studies in the previous section. We shall see that these techniques

CONES OF MATRICES AND SET-FUNCTIONS 177

give substantially better approximations of STAB (G) over which one can still optimize
in polynomial time.

2.b. The "N" operator. To apply the results in the previous chapter, we homogen-
ize the problem by introducing a new variable Xo and consider STAB (G) as a subset
of the hyperplane Ho defined by Xo 1. We denote by St (G) the cone spanned by the
vectors

where A is a stable set. We get STAB (G) by intersecting ST (G) with the hyperplane
Xo 1. Similarly, let FR (G) denote the cone spanned by the vectors (), where
x FRAC (G). Then FR(G) is determined by the constraints

and

xi -> 0 for each V,

xi + xj =< Xo for each ij E.

Since it is often easier to work in the original n-dimensional space (without
homogenization), we shall use the notation N(FRAC (G))= N(FR (G))f] Ho, and
similarly for N/, N, etc. We shall also abbreviate N(FRAC (G)) by N(G), etc. Since
FRAC (G) is defined by an explicit linear program, one can solve the separation
problem for it in polynomial time. We shall say briefly that the polytope is polynomial
time separable. By Theorem 1.6, we obtain the following.

THEOREM 2.1. For each fixed r >-O, N+(G), as well as Nr(G), are polynomial time
separable.

It should be remarked that, in most cases, if we use Nr(G) as a relaxation of
STAB (G), then it does not really matter whether the separation subroutine returns
hyperplanes separating the given x_ Nr(G) from Nr(G) or only from STAB (G).
Hence it is seldom relevant to have a separation subroutine for a given relaxation, say,
N(G); one could use just as well a separation subroutine for any other convex body
containing STAB (G) and contained in Nr(G) (such as, e.g., Nr+(G)). Hence the
polynomial time separability of Nr+(G) is substantially deeper than the polynomial
time separability of N(G) (even though it does not imply it directly).

In the rest of this section we study the question of how much this theorem gives
us: which graphs satisfy N_(G) STAB (G) for small values of r, and more generally,
which of the known constraints are satisfied by N(G), N+(G), etc. With a little abuse
of terminology, we shall not distinguish between the original and homogenized versions
of clique, odd hole, etc., constraints.

It is a useful observation that if Y--(yij) M(FR (G)), then Yij--’O whenever
ij E G). In fact, the constraint xi + xj _-< 1 must be satisfied by Yei, and so Yii + Yji <- Yo
y, by nonnegativity. This implies yj O.

Let a Tx <-b be any inequality valid for STAB (G). Let W
_
V and let aw w

be the restriction of a to W. For every v V, if aTx <-b is valid for STAB (G),
then a,_vx<b= is valid for STAB(G-v) and a Tv_r(v)_ox=<b-av is valid for
STAB G F(v) v). Let us say that these inequalities arise from a Tx <_- b by the deletion
and contraction of node v, respectively. Note that if a TX _--< b is an inequality such that
for some v, both the deletion and contraction of v yield inequalities valid for the
corresponding graphs, then a Tx <= b is valid for G.

Let K be any convex body containing STAB (G) and contained in FRAC (G).
Now Lemma 1.3 implies the following lemma.

178 L. LOVSZ AND A. SCHRIJVER

LEMMA 2.2. If a TX <--b is an inequality such that for some v V, both the deletion
and contraction of v give an inequality valid for K, then a Tx <-_ b is valid for N(K).

This lemma enables us to characterize completely the constraints obtained in one
step (not using positive semidefiniteness).

THEOREM 2.3. The polytope N(G) is exactly the solution set of the nonnegativity,
edge, and odd hole constraints.

Proof. (1) It is obvious that N(G) satisfies the nonnegativity and edge constraints.
Consider an odd hole constraint icXi<-1/2(]Cl-1). Then for any iC, both the
contraction and deletion of result in an inequality trivially valid for FRAC (G).
Hence the odd hole constraint is valid for N(G) by Lemma 2.2.

(2) Conversely, assume that x v satisfies the nonnegativity, edge, and odd hole
constraints. We want to show that there exists a nonnegative symmetric matrix Y=
(Yij) (n+l)(n+l) such that Yio Yu Xi for all 1 -< _-< n, Yoo 1, and

X + Xj .3f_ Xk 1 Yik + Yjk Xk

for all i, j, k V such that ij E (the lower bound comes from the condition that
Yfk FR G); the upper, from the condition that Yek FR (G)). Note that the constraint
has to hold in particular when k; then the upper bound implies that Yo 0, while
the lower bound is automatically satisfied.

The constraints on the y’s are of a special form: they involve only two variables.
We can therefore use the following (folklore) lemma, which gives a criterion for the
solvability of such a system, more combinatorial than the Farkas lemma.

LEMMA 2.4. Let H= (W, F) be a graph and let two values 0 <- a(ij) <- b(ij) be
associated with each edge of H. Let U

_
W also be given. Then the linear system

a(ij) <- yi + y <= b(ij) (ij e F),

yi>=O (i W),

Yi--0 (i U)

has no solution if and only if there exists a sequence of (not necessarily distinct) vertices
Vo, Vl," ", Vp such that vi and vi+ are adjacent (the sequence is a walk), and one of
the following holds:

(a) p is odd and b(vov) a(v v2) + b(v2v3) + b(Vp_lVp) < 0;
(b) p is even, Vo Vp, and b(vov)-a(vv2)+b(v2v3) a(Vp_Vp)<O;
(c) p is even, Vp U, and b(VoVl) a(vlv2) + b(v2v3) a(Vp_l Vp) < 0;
(d) p is odd, Vo, Vp U, and -a(vov)+b(vv2)-a(v_v3) a(Vp_Vp)<O.
In our case, we have as W the set of all pairs { i, j} (i j), U is the subset consisting

of the edges of G, two pairs, {i, j} and {k, 1}, are adjacent in H if and only if i= k and
je E (G), and a(ij, jk) xi + x + Xk 1, b(/j, jk) x. We want to verify that if x
satisfies all the odd hole constraints, then none of the walks of types (a)-(d) in the
lemma above can occur. Let us ignore, for a while, how the walk ends. The vertices
of the walk in H correspond to pairs ij; the edges in the walk correspond to triples
(ijk) such that ik E. Let us call this edge the bracing edge of the triple. We have to
add up alternately x and 1 xi xj Xk call the triple positive and negative accordingly.

Let w be a vertex of G that is not an element of the first and last pair Vo and Vp.
Then following the walk, w may become an element of a vi, stay an element for a
while, and then cease to be; this may be repeated, say, f(w) times. It is then easy to
see that the total contribution of the variable Xw to the sum is -f(W)Xw.

CONES OF MATRICES AND SET-FUNCTIONS 179

It is easy to settle case (b) now. Then any vi can be considered first, and so the
above counting applies to each vertex (unless all pairs vi share a vertex of G, which
is a trivial case). So the sum

Pb(vov,) a(v, v2) + b(v2/.)3) a(t)p_ t.)p) "-- f(W)Xw.

But note that every vertex w occurs in exactly 2f(w) bracing edges. If we add up the
edge constraints for all bracing edges, we get P-w 2f(W)Xw >-’0, which shows that
(b) cannot occur.

Cases (a) and (c) take only a little care around the end of the walk, and are left
to the reader. Let us show how case (d) can be settled, which is the only case in which
the odd hole constraints are needed.

Consider again the bracing edges of the triples, but now, count the pairs Vo and
vp (which are edges of G) as bracing edges. Again, it is easy to see that the total sum
in question is (p+ 1)/2-Y f(W)Xw, where each w is contained in exactly 2f(w) bracing
edges. Unfortunately, we now have p +2 bracing edges, so adding up the edge con-
straints for them would not yield the nonnegativity of the sum. But observe that the
multiset of bracing edges (we count an edge that is bracing in more than one triple
with multiplicity) forms an Eulerian graph, and is, therefore, the union of circuits.
Since the total number of bracing edges, p + 2, is odd, at least one of these circuits is
odd. Add up the odd hole constraint for this circuit and the edge constraint, divided
by two, for each of the remaining bracing edges. We get that w f(W)Xw<=(P + 1)/2,
which shows that (d) cannot occur.

COROLLARY 2.5. If G is t-perfect, then STAB G) is the projection of a polytope
whose number offacets is polynomial in n. Moreover, this representation is canonical [-I

This corollary generalizes a result of Barahona and Mahjoub [5] that constructs
a projection representation for series-parallel graphs. It could also be derived in an
alternative way. The separation problem for the odd cycle inequalities can be reduced
to n shortest path problems (see [13]). Following this construction, one can see that
a vector x is in the stable set polytope of a t-perfect graph if and only if n potential
functions exist in an auxiliary graph. This yields a representation of STAB (G) as the
projection of a polytope with O(n2) facets. (We are grateful to the referee for this
remark.)

2.c. The repeated "N" operator. Next, we prove a theorem which describes a
large class of inequalities valid for Nr(G) for a given r. The result is not as complete
as in the case r 1, but it does show that the number of constraints obtainable grows
very quickly with r.

Let a rx_-< b be any inequality valid for STAB (G). By Theorem 1.4, there exists
an r >_-0 such that arx_-< b is valid for Nr(G). Let the N-index of the inequality be
defined as the least r for which this is true. We can define (and will study later) the
N/-index analogously. Note that in each version, the index of an inequality depends
only on the subgraph induced by those nodes having a nonzero coefficient. In particular,
if these nodes induce a bipartite graph, then the inequality has N-index 0. We can
define the N-index of a graph as the largest N-index of the facets of STAB (G). The
N-index of G is 0 if and only if G is bipartite; the N-index of G is 1 if and only if
G is t-perfect. Lemma 2.2 implies the following corollary (using the obvious fact that
the N-index of an induced subgraph is never larger than the N-index of the whole
graph).

COROLLARY 2.6. If.for some node v, G-v has N-index k, then G has N-index at
most k + 1.

180 L. LOVASZ AND A. SCHRIJVER

The following lemma about the iteration of the operator N will be useful in
estimating the N-index of a constraint.

LEMMA2.7. 1/(k+2)IENk(G) (k>-O).
Proof. We use induction on k. The case k--0 is trivial. Consider the matrix

Y (Yij) It(vu{})x(vt3{}) defined by

1 if i=j=O,

y= 1/(k+l), if i=O and j>O or i>O and j=O or i=j>O,
O, otherwise.

Then Y M(Nk-I(FR (G))), since

k+2
(eo+ ei) ST (G) Nk-I(FR (G))

and

yf
k+l 1 k+l(lv)Nk

k+2eo+ ej -< eo+ ej I(FR(G)),
jo,i k+2 k+2 k+l

and so by the monotonicity of Nk-I(FR (G)), Yf/ Nk-I(FR (G)). Hence the first
column of Y is in Nk(FR(G)), and thus 1/(k+2)lNk(G). [3

From these two facts, we can derive some useful bounds on the N-index of a graph.
COROLLARY 2.8. Let G be a graph with n nodes and at least one edge. Assume that

G has stability number a(G)= a and N-index k. Then

n
---2<__k<=n-a-1.

Proof. The upper bound follows from Corollary 2.6, applying it repeatedly to all
but one nodes outside a maximum stable set. To show the lower bound, assume that
k < (n/a)-2. Then the vector (1/(k+2))1 does not satisfy the constraint i xi<_- a and
so it does not belong to STAB (G). Since it belongs to Nk(G) by Lemma 2.7, it follows
that Nk(G) STAB (G)ma contradiction. [!

It follows in particular that the N-index of a complete graph on vertices is t- 2.
The N-index of an odd hole is 1, as an odd whole is a t-perfect graph. The N-index
of an odd antihole with 2k/ 1 nodes is k; more generally, we have the following
corollary.

COROLLARY 2.9. The N-index of a perfect graph G is w(G)- 2. The N-index of a
critically imperfect graph G is w(G)- 1.

Next westudy the index of a single inequality. Let arx <--_ b be any constraint
v b7/+). Define the defect of this inequality as 2xvalid for STAB (G) (a 7/+,

max{at-b: x FRAC (G)}. The factor 2 in front guarantees that this is an integer.
In the special case when we consider the constraint i x <_- a(G) for an a-critical graph
G, the defect is just the Gallai class number of the graph (see Lovisz and Plummer
[18] for a discussion of a-critical graphs, in particular of the Gallai class number).

Given a constraint, its defect can be computed in polynomial time, since optimizing
over FRAC (G) is an explicit linear program. The defect of a constraint is particularly
easy to compute if the constraint defines a facet of STAB (G). This is shown by the
following lemma, which states a property of facets of STAB (G) ofindependent interest.

LEMMA 2.10. Let i aixi b define a facet of STAB (G), different from those
determined by the nonnegativity and edge constraints. Then every vector v maximizing

CONES OF MATRICES AND SET-FUNCTIONS 181

a rx over FRAC (G) has V whenever ai > O. In particular,

max {arx x FRAC (G)} =1/2Y ai

and the defect of the inequality is ai- 2b.
Proof. Let v be any vertex of FRAC (G) maximizing a rx. It suffices to prove that

vi 1 whenever ai > 0; this will imply that the vector (1/2, , 1/2) r also maximizes a rx,
and to achieve the same objective value, v must have vi 1/2 whenever ai > 0.

Let U { V: vi 1 } and assume, by way of contradiction, that a(U) > 0. Clearly
U is a stable set. If we choose v so that U is minimal (but of course nonempty), then
ai > 0 for every U. Let F(U) denote the set of neighbors of U. Let X be any stable
set in G whose incidence vector X

x is a vertex on the facet of STAB (G) determined
by arx=b.

Consider the set Y=UU(X\F(U)). Clearly, Y is stable and a(Y)=
a(X) + a(U\X) a(F(U) f’) X). So, by the optimality of X, we have

a(U\X) < a(r(u) fq x).

On the other hand, consider the vector w v defined by

Ii ifiUfqX’

wi= ifiF(U)\X,, otherwise.

Then w FRAC (G) and a rw >= a rv +1/2a(F(U) f-I X) -1/2a(U\X) >- a rv. Bythe optimal-
ity of v, we must have equality, and so a(U\X)= a(F(U) f’)X). But this means that
x

X satisfies the linear equation

aixi=a(U).
i UUF(U)

So this linear equation is satisfied by every vertex of the facet determined by a rx b.
The only way this can happen is that it is the equation a rx b itself. But then a rv b
and so a rv _-< b also defines a facet of FRAC (G), which was excluded.

We need some further, related lemmas about stable set polytopes. These may be
viewed as weighted versions of results on graphs with the so-called K6nig property;
see 18, 6.3].

v and assume thatLEMMA 2.11. Let a R+
max {ax x STAB (G)} < max {arx x FRAC (G)}.

Let E’ be the set ofthose edges ijfor which Yi + Yj 1 holdsfor every vector y FRAC (G)
maximizing a rx. Then (V, E’) is nonbipartite.

Proof Suppose that (V, E’) is bipartite. Let z be a vector in the relative interior
of the face F of FRAC (G) maximizing a rx. Then clearly

E’= {ij E" zi + zj l}

and

F {x FRAC (G)" xi + x 1 for all ij E}.

Let U, W) be a bipartition of V, E’). In every connected component of V, E’), z => 1/2
on at least one color class and hence we may choose (U, W) so that zi->1/2 for all
i W. Then, W is a stable set in the whole graph G. Hence it follows that
w

1’ F. This implies that max{arx:xSTAB(G)}=max{arx:xFRAC(G)}ma
contradiction.

182 L. LOVASZ AND A. SCHRIJVER

v and assume thatLEMMA 2.12. As in the previous lemma, let a R+
max {a rx: x e STAB (G)} < max {a rx: x e FRAC (G)}.

Then there exists an Vsuch that every vector y FRAC (G) maximizing a rx has Yi .
Proof. Let E’ be as before. Then by Lemma 2.11, there exists an odd circuit C in

G such that E(C) E’. If y is any vector in FRAC (G) maximizing a rx, then by the
definition of E’, yi +y 1 for every edge ij E(C), and hence y =1/2 for every i
v(c).

Now we can state and prove our theorem, which shows the connection between
defect and the N-index.

THEOREM 2.13. Let arx <- b be an inequality with integer coefficients valid for
STAB G) with defect r and N-index k. Then

r
-<_k<r.
b-

Proo[2 (Upper bound) We use induction on r. If r 0 we have nothing to prove,
so suppose that r> 0. Then Lemma 2.12 can be applied and we get that there is a

=1vertex such that every vector y optimizing arx over FRAC (G) has Yi 5. Note that
trivially a > 0.

We claim that both the contraction and deletion of result in constraints with
smaller defect. In fact, let y be a vertex of FRAC (G) maximizing a,_ix. If y also
maximizes a rx, then y 1/2 and hence

2(a (,_y-b) 2(ary b)-a<2(ary b) r.

On the other hand, if y does not maximize a rx, then

2(a,_iy- b) =< 2(ary b) <2. max {arx b" x FRAC (G)}= r.

The assertion follows similarly for the contraction. Hence by the induction hypothesis,
the contraction and deletion of yield constraints valid for Nr-I(G). It follows by
Lemma 2.2 that a rx <-b is valid for Nr(G).

(Lower bound) By Lemma 2.7, (1/(k+2))leNk(G), and so arx<-_b must be
valid for (1/(k+2))l. So (1/(k+2))arl<-b and hence

Ta 1 r
k_>_-2_ E]

b b

It follows from our discussions that for an odd antihole constraint, the lower
bound is tight. On the other hand, it is not difficult to check that for a rank constraint
defined by an a-critical subgraph that arises from Kp by subdividing an edge by an
even number of nodes, the upper bound is tight.

We would like to mention that Ceria [7] proved that N(FRAC (G), FRAC (G))
also satisfies, among others, the K4-constraints. We do not study the operator
K - N(K, K) here in detail, but a thorough comparison of its strength with N and
N/ would be very interesting.

A class of graphs interesting from the point of view of stable sets is the class of
line-graphs: the stable set problem for these graphs is equivalent to the matching
problem. In particular, it is polynomial time solvable and Edmonds’s description of
the matching polytope [10] provides a "nice" system of linear inequalities describing
the stable set polytope of such graphs. The N-index of line-graphs is unbounded; this
follows, e.g., by Corollary 2.8. This also follows from Yannakakis’s result [26] men-
tioned in the Introduction, since bounded N-index would yield a representation of
the matching polytope as a projection of a polytope with a polynomial number of
facets. We do not know whether or not the N/-index of line-graphs remains bounded.

CONES OF MATRICES AND SET-FUNCTIONS 183

2.d. The "N+" operator. Now we turn to the study of the operator N+ for
stable set polytopes. We do not have as general results for the operator N+ as for the
operator N, but we will be able to show that many constraints are satisfied even for
very small r.

Lemma 1.5 implies the following lemma.
LEMMA 2.14. If a’x<= b is an inequality valid for STAB (G) such that for all v V

with a positive coefficient the contraction of v gives an inequality with N+-index at most

r, then a ’x <- b has N+-index at most r + 1.
The clique, odd hole, odd wheel, and odd antihole constraints have the property

that, contracting any node with a positive coefficient, we get an inequality in which
the nodes with positive coefficients induce a bipartite subgraph. Hence, we have the
following corollary.

COROLLARY 2.15. Clique, odd hole, odd wheel, and odd antihole constraints have
N+-index 1.

Hence all h-perfect (in particular all perfect and t-perfect) graphs have N+-index
at most 1. We can also formulate the following recursive upper bound on the N+-index
of a graph.

COROLLARY 2.16. If G-F(v)-v has N+-index at most r for every v V, then G
has N+-index at most r + 1.

Next, we consider the orthogonality constraints. To this end, consider the cone
MTH of (VU {0}) x (VU {0}) matrices Y= (Yij) satisfying the following constraints:

(i) Y is symmetric;
(ii) Yii Yio for every i V;

(iii’) Yo 0 for every ij E;
(iv) Y is positive semidefinite.
As remarked, (iii’) is a relaxation of (iii) in the definition of M+(FR (G)). Hence

M+(FR (G))
TLEMMA 2.17. TH (G)={Yeo: Y MTH, eo Yeo 1).

Proofi Let x TH (G). Then, by the results of Gr6tschel, Lovfi.sz, and Schrijver
13], x can be written in the form Vo v), where the v (i V) form an orthonormal

representation of the complement of G and Vo is some vector of unit length. Set Xo-- 1
and define Y0 vv. Then it is easy to verify that Y MTH and Yeo x.

The converse inclusion follows by a similar direct construction.
This representation of TH (G) is not a special case of the matrix cuts introduced

in 1 (though it is clearly related). In 3 we will see that, in fact, TH (G) is in a sense
more fundamental than the relaxations of STAB (G) constructed in 1. Right now we
can infer the following.

COROLLARY 2.18. Orthogonality constraints have N+-index 1.
We conclude with an upper bound on the N+-index of a single inequality. Since

a(G- F(v) v) < c(G), Lemma 2.14 gives, by induction, Corollary 2.19.
COROLLARY 2.19. If a rx<= b is an inequality valid for STAB (G) such that the

nodes with positive coefficient induce a graph with independence number r, then a rx <= b
has N+-index at most r. In particular, a rx <-_ b has index at most b.

Let us turn to the algorithm aspects of these results. Theorem 2.1 implies the
following corollary.

COROLLARY 2.20. The maximum weight stable set problem is polynomial time
solvable for graphs with bounded N+-index.

Note that even for small values of r, quite a few graphs have N+-index at most
r. Collecting previous results, we obtain Corollary 2.21.

COROLLARY 2.21. For any fixed r >- O, if STAB (G) can be defined by constraints
a rx <-b such that either the defect of the constraint is at most r or the support contains

184 L. LOV,SZ AND A. SCHRIJVER

no stable set larger than r, then the maximum weight stable set problem is polynomial
time solvable for G.

3. Cones of set-functions. Vectors in Rs are just functions defined on the one-
element subsets of a set S; the symmetric matrices in the previous sections can be
considered as functions defined on unordered pairs. We show that if we consider
set-functions, i.e., functions defined on all subsets of S, then some of the previous
considerations become more general and sometimes even simpler.

In fact, most of the results extend to a general finite lattice in the place of the
boolean algebra, and we present them in this generality for the sake of possible other
applications.

3.a. Preliminaries: Vectors on lattices. Let us start with some general facts about
functions defined on lattices. Given a lattice L, we associate with it the matrix Z
called the zeta-matrix of the lattice, defined by

1, if i<-j,
’iJ= 0, otherwise.

For j L, let ’ denote the jth column of the zeta matrix, i.e., let

’:(i) ’/:.
If we order the rows and columns of Z compatibly with the partial ordering defined
by the lattice, it will be upper triangular with l’s in its main diagonal. Hence it is
invertible, and its inverse M Z-1 is an integral matrix of the same shape. This inverse
is a very important matrix, called the MiJbius matrix of the lattice. Let

M (p,(i, j)),,.i.

The function/, is called the MiJbiusfunction of the lattice. From the discussion above,
we see that/z(i, i) 1 for all , and/z(i, j) 0 for all i,j such that j. Moreover,
the definition of M implies that for every pair of elements a <- b of the lattice,

Y /z(a, i)={1,1" if a--b,
a-<i_-<b /0, otherwise;

and

/z(i,b)=l, ifa=b,
a=<i=<b [0, otherwise.

Either one of these identities provides a recursive procedure to compute the M/Sbius

function. It is easy to see from this procedure that the value of the M6bius function
/z(i, j), where i<-j, depends only on the internal structure of the interval [i, j]. Also
note the symmetry in these two identities. This implies that if/z* denotes the M6bius
function of the lattice turned upside down, then

/x*(i, j) =/x(j, i).

For j e L, let/z denote the jth column of the M/Sbius matrix, i.e., let

Id, I.l, ij

We denote by/x: the jth row of the M/Sbius matrix, and by/xt,:j the restriction of/x
to the interval i, j], i.e., the vector defined by

/x(i, k),
/xt,3(k) O,

if k<-j,
otherwise.

CONES OF MATRICES AND SET-FUNCTIONS 185

The M/Sbius function of a lattice generalizes the M6bius function in number
theory, and it can be used to formulate an inversion formula extending the M/Sbius
inversion in number theory. Let g t be a function defined on the lattice. The zeta
matrix can be used to express its lower and upper summation function"

and

(zrg)(i) E g(J),
ji

(Zg)(i) Z g(J).

Given (say) f= Zg, we can recover g uniquely by

g(i) (Mf)(i) tz(i, j)f(j).

The function g is called the upper Miibius inverse of f. The lower Miibius inverse is
defined analogously.

There is a further simple but important formula relating a function to its inverse.
Given a functionf, we associate with it the matrix Wy= (wij), where

wij f(v j).

We also consider the diagonal matrix Dy with (Df), =f(i). Then it is not difficult to
prove the following identity (Lindstr6m [15], Will [24]).

LEMMA 3.1. If g is the upper Mibius inverse off, then Wf ZDgZ T.
For more on M6bius functions, see Rota [21], Lovisz [17, Chap. 2], or Stanley

[23, Chap. 3].
A function fL will be called strongly decreasing if Mf>=O. Since f=Z(Mf),

this is equivalent to saying that f is a nonnegative linear combination of the columns
of Z, i.e., of the vectors ’. So strongly decreasing functions form a convex cone
H H(L), which is generated by the vectors ’, j L. Also by definition, the polar
cone H* is generated by the rows of M, i.e., by the vectors

Let us mention that the vector/t,l is also in H* for every _<-j. This is straightfor-
ward to check by calculating the inner product of tzt,j with the generators j of H. It
is easy to see that strongly decreasing functions are nonnegative, monotone decreasing,
and supermodular, i.e., they satisfy

f(v j) +f(^ j) >=f(i) +f(j).

Lemma 3.1 implies Corollary 3.2.
COROLLARY 3.2. A function f is strongly decreasing if and only if Wf is positive

semidefinite.
It follows, in particular, that f is strongly decreasing if and only if for every x t,

xTWfx , f(ivj)>--O.
XiXj

It is, in fact, worthwhile to mention the following identity, following immediately from
Lemma 3.1. Let f, x R and let g Mf and y Zx. Then

xTWfx E g(i)y(i)2.
iL

In particular, if f is strongly decreasing, then

() xWx >__ g(0)x(0).

186 L. LOVASZ AND A. SCHRIJVER

Remark. Let L 2s, and let f Rt such that f(0) 1. Thenf is strongly decreasing
if and only if there exist random events As (s S) such that for every X S,

Prb(HseX A.) =f(X).

(If this is the case, (Mf)(X) is the probability of the atom lqsxA 1-Is-x As.) In
particular, we obtain from (1) that for any A RE with A (0)= 1,

X,Y sX(.J Y iS

This is a combinatorial version of the Selberg sieve in number theory (see [17, Chap.
2]). Inequality (1) can be viewed as Selberg’s sieve for general lattices; see Wilson [25].

The lattice structure also induces a "multiplication," which leads to the semigroup
algebra of the semigroup (L, v). Given a, b t, we define the vector a v b by

(a v b)(k)= E a(i)b(j).
ivj= k

In particular,

ei v ej ely

(and the rest of the definition is obtained by distributivity). It is straightforward to see
that this operation is commutative, associative, and distributive with respect to the
vector addition, and has unit element eo (where 0 is the zero element of the lattice).
This semigroup algebra has a very simple structure: elementary calculations show that

(2) ZT(a v b)(k)= (Zra)(k) (Zrb)(k),

and hence the semigroup algebra is isomorphic to the direct product of ILl copies of. It also follows from (2) that a vector a has an inverse in this algebra if and only if
(ZTa)(k) 0 for all k.

Another identity which will be useful is the following:

(3) (avb)Wc-arWb.

Using this, we can express the fact that a vector c is strongly decreasing as follows:

(ava)Tc>--_O for every a

In particular it follows that H* is generated by the vectors a v a, a . Comparing
this with our previous characterization, it follows that the vectors / must be of the
form a v a. In fact, v/x =/x; more generally, the vectors/xt,j are also idempotent.
Using (2) it is easy to see that the idempotents are exactly the vectors of the form, where I

_
L. Moreover, the "v" product of any two vectors/z is zero.

3.b. Optimization in lattices. Given a subset F
_

L, we denote by cone (F) the
convex cone spanned by the vectors ’, F. Since these vectors are extreme rays of
H, and all extreme rays of H are linearly independent, it is, in principle, trivial to
describe F by linear inequalities. It is determined by the system

=0, if it_F,
(4) txf x >=0, if F.

CONES OF MATRICES AND SET-FUNCTIONS 187

But since cone (F) is generally not full-dimensional, it may have many other minimal
descriptions. For example, in the case when F is an order ideal (i.e., x F, y -< x imply
y F), cone (F) could be described by

(5) x H, x(i) 0 for all F.

Hence

(6) cone (F)* ={a RL: (ZTa)(k)>=O for all kF}.

Our main concern will be to describe the projection of cone (F) on the subspace
spanned by a few "small" elements in the lattice. Let I be the set of these "interesting"
lattice elements. We consider R as the subspace of L spanned by the elements of L
For any convex cone k_ H, let KI denote the intersection of K with i and let K/I
denote the projection of K onto i. Then (K*)I K* is the set of linear inequalities
valid for K involving only variables corresponding to elements of L Also, (K*) is
the polar of K/I with respect to the linear space i.

For example, in the case when L 2s, where S is an n-element set, we can take
I as the set of all singletons and f. If we project cone (F) on this subspace, and
intersect the projection with the hyperplane x 1, then we recover the polyhedron
usually associated with F (namely, the convex hull of incidence vectors of members
of F). Note that the projection itself is just the homogenization introduced in 1. The
cone Q considered in 1 is just H/L

From these considerations we can infer the following theorem, due (in a slightly
different form) to Sherali and Adams [22].

THEOREM 3.3. If 2s then conv {/,a: A 6 o%} is the projection of the following
cone to singleton sets:

x O, txfx >= 0 (j), Izfx 0 (j).

The (n->_ 1)x (n + 1) matrices Y used in 1 can be viewed in this framework in
two different ways. First, they can be viewed as portions ofthe vector x e 2s determined
by the entries indexed by f, singletons, and pairs; the linear constraints on M(K)
used in 1 are only the constraints we can derive in a natural way from the constraints
involving just the first n + 1 variables.

Second, the matrices Y also occur as principal minors of the corresponding (huge)
matrix W". So the positive semidefiniteness constraint for M+(K) is just a relaxation
of the condition that for x e H, W is positive semidefinite. (It is interesting to observe
that while by Corollary 3.2, the positive semidefiniteness of W" is a polyhedral
condition, this relaxation of it is not.)

Let us discuss the case of the stable set polytope. We have a graph G (V, E)
and we take S V, L 2s. Let F consist of the stable sets of G. Then cone (F)_ R
is defined by the constraints

x H, xi 0 for every ij E.

We can relax the first constraint by stipulating that the upper left (n + 1)x (n + 1)
submatrix W of W is positive semidefinite. Then these submatrices form exactly the
cone MTr as introduced in 2. As we have seen, the projection of this cone to ,
intersected with the hyperplane Xo 1, gives the body TH (G).

Note that the "supermodularity" constraints xo-xi-x + Xo >- 0 are linear con-
straints valid for H, and involve only the variables indexed by sets with cardinality at
most 2, but they do not follow from the positive semidefiniteness of W. Using these
inequalities we obtain from x0 0 the constraint x => x-< Xo for every edge ij E.

188 L. LOVASZ AND A. SCHRIJVER

Returning to our general setting, we are going to interpret the operators N, N+,
and N in this general setting, using the group algebra. In order to describe the projection
of cone (F) on E I, we want to generate linear constraints valid for cone (F) such that
only the coefficients corresponding to elements of I are nonzero. To this end, we use
the semigroup algebra to combine constraints to yield new constraints for cone (F).
(This may temporarily yield constraints having some further nonzero coefficients, which
we can eliminate afterwards.)

We have already seen that a v a cone (F)* for every a. From (2) and (6) we can
read off the following further rules:

(a) If a, b e cone (F)*, then a v b cone (F)*.
(b) If a int (cone (F)*) and a v b cone (F)*, then b cone (F)*.
In rule (b), we can replace the condition that a e int (cone (F)*) by the perhaps

more manageable condition that a-eo+c with c e cone(F)*. In fact, eoe
int (cone (F)*) and hence for every c e cone (F)*, eo+ c e int (cone (F)*). Conversely,
if a eint (cone (F)*), then for a sufficiently small t>0, a-teoecone(F)*. Set c-
(a-eo)/t, then c+eocone(F)* and (c+eo)vb-(avb)/tecone(F)*, and hence
b e cone (F)*.

If ZTa > 0, then rule (b) follows from rule (a). In fact, let c(k) 1/(ZTa)(k), and
d- Mrc. Then d is the inverse of a, that is, d v a-eo, and (Zrd)(k) c(k)>O for
all k, so d e cone (F)*. Hence

b (a v b) v d cone (F)*,

by rule (a).
For two cones K1, K2_ EL, we denote by K v K2 the cone spanned by all vectors

Ul v u:, where ui Ki. (The set of all vectors arising in this way is not convex in general.)
This operation generalizes the construction of N(K1, K2), N/(K1, g2), and N(K) in
the following sense.

PROPOSITION 3.4. Let L- 2s, I, the set consisting of O, and the singleton subsets of
S, and let K1, K2

_
HI be two convex cones. Then

(i) N(K1, K2)* ((K*), v (K2*),),;
(ii) N/(KI, K2)*=((K*)v(K*2),+E’ vl),.
Proof of (i). First, we assume that w((K*) v(K2*))i. Then we can write

w t at v bt, where at (K*I)I and bt (K*2)I. Let x N(K1, K2); then we can write
x= Yeo with Y=(yoM(K, K2)). Define the vector yEL by

ifkI,
y(k)= Y0, ifk={y,j},

0, else.

Then we have

wx wry Y (at v bt)ry a,r Yb,_>- 0.

This proves that w N(K1, K2)*.
Second, assume that w N(K1, K2)*. Then we can write

we’f =_, a,b+ _,
Aieifi +A,

i=1

where at KI*, bt K2*, Ai E, and A is a skew symmetric matrix. Now it is easy to

CONES OF MATRICES AND SET-FUNCTIONS 189

check that

w=(a, vb,),

and so w ((K*)I v (K*2),),.
The proof of part (ii) is analogous. D
Next we show that the construction ofN is, in fact, a special case ofthe application

of rule (b).
LEMMA 3.5. Let L 2s, I, the set consisting of , and the singleton subsets of S,

and let K H/ I, a convex cone. Then

]Q(K)* {a RI" ::lb int (K*)t such that a v b (K*)t v (Q*)}.

The proof is analogous to that of Proposition 3.3, and is omitted.
We can use the formula in Proposition 3.4 to formulate a stronger version of the

repetition of the operator N. Note that

N2(K)*= [[(K*)I v (Q*),], v (Q*)I], - [(K*)/v (Q*), v (Q*),],,

and similarly, if we denote (Q*)I v... v (Q*)I (r factors) by Qr, then

V(K)* [(K* v Qr],.

Now it is easy to see that the cone Q is spanned by the vectors/xti,j where _j and

IJl--< r. For fixed r, this is a polynomial number of vectors. Let N(K) denote the polar
cone of [(K*)I v Q]I in the linear space Rt. Then /(K)_ Nr(K).

For the case of boolean algebras (and in a quite different form), the sequence
N(K) of relaxations of K was introduced by Sherali and Adams [22], who also
showed that N (K) K o.

It is easy to see that if K is polynomial time separable, then so is N(K) for
every fixed r: to check whether x N(K), it suffices to check whether there exist
vectors a ti’jl (K*) for every andj with j and Inl _-< r such that a .i.j ati’J v/xt,a

and a 7"x < 0. This is easily done in polynomial time using the ellipsoid method.

Acknowledgments. The first author is grateful to the Department of Combinatorics
and Optimization of the University of Waterloo for its hospitality while this paper was
being written. Discussions with Mike Saks and Bill Pulleyblank on the topic of the
paper were most stimulating. The authors also thank the referees for their insightful
remarks.

REFERENCES

1] E. BALAS AND W. R. PULLEYBLANK (1983), The perfect matchable subgraph polytope of a bipartite
graph, Networks, 13, pp. 495-516.

[2] (1989), The perfectly matchable subgraph polytope of an arbitrary graph, Combinatorica, 9,
pp. 321-327.

[3] M. O. BALL, W. LIU, AND W. R. PULLEYBLANK (1989), Two terminal Steiner tree polyhedra, in
Contributions to Operations Research and Economics, B. Tulkens and H. Tulkens, eds., MIT
Press, Cambridge, MA, pp. 251-284.

[4] F. BARAHONA (1988), Reducing matching to polynomial size linear programming, Res. Report CORR
88-51, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario,
Canada.

[5] F. BARAHONA AND A. R. MAHJOUa (1987), Compositions of graphs and polyhedra II: Stable sets,
Res. Report 87464-OR, Institut fiir Operations Research, Universitiit Bonn, Bonn, FRG.

190 L. LOVASZ AND A. SCHRIJVER

[6] K. CAMERON AND J. EDMONDS (1989), Coflow polyhedra, preprint, University of Waterloo, Waterloo,
Ontario, Canada.

[7] S. CERIA (1989), personal communication.
[8] V. CHV.TAL (1973), Edmonds polytopes and a hierarchy of combinatorial problems, Discrete Math., 4,

pp. 305-337.
[9] (1975), On certain polytopes associated with graphs, J. Combin. Theory Ser. B, 13, pp. 138-154.
10] J. EDMONDS (1965), Maximum matching and a polyhedron with 0-1 vertices, J. Res. Nat. Bur. Standards,

69B, pp. 125-130.
[11] R. E. GOMORY (1963), An algorithm for integer solutions to linear programs, in Recent Advances in

Mathematical Programming, R. Graves and P. Wolfe, eds., McGraw-Hill, New York, pp. 269-302.
[12] M. GRTSCHEL, L. LovAsz, AND A. SCHRIJVER (1981), The ellipsoid method and its consequences in

combinatorial optimization, Combinatorica, 1, pp. 169-197.
[13] (1986), Relaxations of vertex packing, J. Combin. Theory Ser. B, 40, pp. 330-343.
[14] (1988), Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, Berlin, New

York.
[15] B. LINDSTR3M (1969), Determinants on semilattices, Proc. Amer. Math. Soc., 20, pp. 207-208.
[16] W. Lu (1988), Extended formulations and polyhedral projection, Ph.D. thesis, Department of Com-

binatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada.
[17] L. LovAsz (1979), Combinatorial Problems and Exercises, Akad6miai Kiad6, Budapest, Hungary;

North-Holland, Amsterdam, the Netherlands.
[18] L. Lov./sz AND M. D. PLUMMER (1986), Matching Theory, Akad6miai Kiad6, Budapest, Hungary;

Elsevier, Amsterdam, the Netherlands.
[19] N. MACULAN (1987), The Steiner problem in graphs, Ann. Discrete Math., 31, pp. 185-222.

[20] R. PEMANTLE, J. PROPP, AND D. ULLMAN (1989), On tensor powers of integer programs, preprint.
[21] G.-C. ROTA (1964), On thefoundations ofcombinatorial theory I. Theory ofM6biusfunctions, Z. Wahrsch.

Verw. Gebiete, 2, pp. 340-368.
[22] H. D. SHERAL AND W. P. ADAMS (1988), A hierarchy ofrelaxations between the continuous and convex

hull representations for zero-one programming problems, preprint.
[23] R. P. STANLEY (1986), Enumerative Combinatorics, Vol. 1, Wadsworth, Monterey, CA.
[24] H. S. WLF (1968), Hadamard determinants, M6bius functions, and the chromatic number of a graph,

Bull. Amer. Math. Soc., 74, pp. 960-964.
[25] R. J. WILSON (1970), The Selberg sieve for a lattice, in Combinatorial Theory and Its Applications,

P. Erd6s, A. R6nyi, and V. T. S6s, eds., Coll. Math. Soc. Jinos Bolyai, North-Holland,
Amsterdam, 4, pp. 1141-1149.

[26] M. YANNAKAKS (1988), Expressing combinatorial optimization problems by linear programs, in Proc.
29th IEEE Symposium on Foundations of Computer Science, White Plains, NY, pp. 223-228.

SIAM J. OPTIMIZATION
Vol. 1, No. 2, pp. 191-205, May 1991

1991 Society for Industrial and Applied Mathematics
003

CONVERGENCE OF BEST ENTROPY ESTIMATES*

J. M. BORWEIN" AND A. S. LEWIS

Abstract. Given a finite number of moments of an unknown density on a finite measure space, the
best entropy estimate--that nonnegative density x with the given moments which minimizes the Boltzmann-
Shannon entropy I(x):= x log x--is considered. A direct proof is given that I has the Kadec property in

L--if Yn converges weakly to 37 and I(yn) converges to I(37), then yn converges to 37 in norm. As a corollary,
it is obtained that, as the number of given moments increases, the best entropy estimates converge in LI
norm to the best entropy estimate of the limiting problem, which is simply in the determined case.
Furthermore, for classical moment problems on intervals with strictly positive and sufficiently smooth,
error bounds and uniform convergence are actually obtained.

Key words, moment problem, entropy, Kadec, partially finite program, normal convex integrand, duality

AMS(MOS) subject classifications, primary 41A46, 05C38; secondary 08A45, 28A20

1. Introduction. We shall suppose that (S,/z) is a finite measure space, and define
the closed proper convex function b:R--> (-, +c] by

ulogu, if u>0,
b(u) := 0, ifu =0,

+, if u < 0.

This function is a normal convex integrand [18], allowing us to define (minus)
the Boltzmann-Shannon entropy 16 (x): LI(S,) -> (-, +c] by

(1) 16 (x):= j 6(x(s)) dtx(s).

Suppose 0 =< g LI(S, tz) is an unknown density that we wish to estimate on the
basis of a finite number of observed moments,

bi Is g(s)ai(s) dlx(s), i= 1,..., n,

where the ai’s are given functions in L(S, tz). This is a problem which commonly
arises in diverse areas of physics, engineering, and statistics (see, for example, [14]
and [11]). One popular technique is to choose the maximum entropy estimate--the
solution of the optimization problem

minimize I6 (x)

(Pn) isubjectt IsX(S)ai(s) dlx(s)=bi’ i=l" "
tx)

Attractive dual methods are available for solving the problems (Pn) computa-
tionally (see, for example, [7]).

* Received by the editors August 9, 1990; accepted for publication (in revised form) October 10, 1990.
This research was partially supported by the Natural Sciences and Engineering Research Council of Canada.

Department of Mathematics, Statistics, and Computing Science, Dalhousie University, Halifax, Nova
Scotia, Canada B3H 3J5.

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario,
Canada N2L 3G1.

191

192 J.M. BORWEIN AND A. S. LEWIS

One measure of the effectiveness of this approach is the behavior of the optimal
solution xn of (Pn) as n-c (see, for example, [5] and [20]). At least when g is
determined uniquely by the moment sequence (gai) we would hope that x converged
to in some sense. In [17] it was shown essentially that in this case x d/x converged
to d/x weak-star as measures, while in [3] this was strengthened to the result that x
converges weakly to in L1 (see also [10] and [15]). In this paper we will show that,
in fact, x converges in L1 norm to , and that with some further assumptions, the
convergence is actually uniform.

The results break naturally into two parts. In the first we demonstrate the simple
but remarkable geometric fact that, in common with the Lp norms (1 <p <), the
Boltzmann-Shannon entropy 16 has the Kadec property: weak convergence of xn to
g and convergence of 16 (xn) to 16 () implies norm convergence of xn to . Our proof
will be self-contained and straightforward. In the section which follows, we deduce
the required convergence result and discuss some further implications.

In the second set of results, we begin by deriving a bound for the L1 error in
estimating : by x using duality techniques. Finally, when is strictly positive and
sufficiently smooth, we are able to combine this bound with ideas from the first collection
of results and some standard approximation theory to show that, for classical algebraic
and trigonometric moment problems on intervals, the best entropy estimates x converge
uniformly to the underlying unknown density

2. Strongly convex functions. In this section we derive the geometric property of
the entropy which we will apply to the question of convergence.

LEMMA 2.1. The Boltzmann-Shannon entropy I defined in (1) is a proper, lower
semicontinuous convex function, strictly convex on its domain,

dom 16 := {x LI(S tz) I (x)< +o},

and with weakly compact level sets, {x LI S,
Proof. (See [19].) The fact that the level sets are weakly compact follows either

from the fact that the conjugate function b*(v)= ev-1 is everywhere finite, or directly
from the Dunford-Pettis criterion [8].

The following inequality relating the so-called I-divergence of two probability
densities with their L1 distance appeared independently in [6],[12], and [13]. For
completeness, we include a proof, following [12].

LEMMA 2.2 (a) For 0 < v , 0 <- u

(u v)2_-< ((2u/3)+ (4v/3))(u log (u/v)- u + v).

(b) For O<-x, yeLl(S, dtz) with sX(S) dtx=sy(S) d/x 1,

1
Ix(s)-y(s)ldz

s
x(s) log (x(s)/y(s)) dtx >=- s

Proof. (a) It is easy to check by differentiating that the function

+-- (tlogt-t+l)-(t-1)2

is convex on [0, +), and attains a minimum value of 0 when 1. Putting := u/v
gives (a).

(b) If y(s)--O and x(s)>O simultaneously on a nonnull set, then the left-hand
side is + and there is nothing to prove. Therefore, assuming this does not occur, we

CONVERGENCE OF BEST ENTROPY ESTIMATES 193

can restrict attention to the case where x(s)>0 and y(s)>0 almost everywhere (if
necessary, removing the set where x(s) y(s) 0). Now set u := x(s) and v := y(s) in
(a), take square-roots, and apply the Cauchy-Schwarz inequality to obtain (b), noting
that u log (u/v) u + v >= O, by (a). [3

Notes. (1) We use the inequality (b) only in the case where log y L, in which
case there is no difficulty in defining the left-hand side in (b). If, however, we wish
to be more precise, we define the left-hand side as +o unless x_>-0; otherwise it is
defined as

I (x)+ Is O(y(s), s) dtz(s),

where @’R x S- (-, +] is the normal convex integrand

(v, s):= -x(s) log v,
+03,

ifx(s) =0,
ifx(s)> 0,
ifx(s) > 0,

v>0,
v<-0

(see [18]).
(2) It is easy to see from the proof that inequality (b) is strict unless x y almost

everywhere.
(3) As observed in [12], the constant 1/2 on the right in (b) is the best possible.

2 replacing IIx y][for(4) We cannot hope for a similar inequality with IIx-yll
some p > 1 on the right. To see this, take S [0, 1] with Lebesgue measure; define, for
k>l,

k, fors[0, l/k],
X(S) :--

0, for se (1/k, 1];

and let y(s):= 1 almost everywhere. Then j x log x/y=log k, while it is easy to see
2 ka(1-1/p)that IIx-yll--

Despite observation (4) above we can prove a somewhat similar result for the Lp
norms.

PROPOSITION 2.3. For O<-x, yLoo(S, dtx) with sX(S) dtx=sy(S dtx, and 2 <-

p < +o,

X(S) log (x(s)/y(s)) ate >- (lip(p- 1))(max {llxll, yll}) -llx yll,

Proof. Suppose v (0, 1]. It is easy to check by differentiation that

q(u) := u log (u/v)- u + v -(1/p(p 1))lu vle

is convex for u [0, 1] and attains a minimum value of 0 at u v. Thus for u [0, 1],
v (0, 1], we have

u log(u/v)-u+v>-(1/p(p-1))lu-vl v.

As before, we can restrict attention to the case where y(s)>0, almost everywhere.
Now if we set M:= max {llxll, Ilyll}, put u :- (1/ M)x(s) and v := (1/ M)y(s) in the
above, and integrate, we obtain the result, l-]

194 J. M. BORWEIN AND A. S. LEWIS

We are now ready to prove the geometric property of the Boltzmann-Shannon
entropy 14, that we will apply to the moment problem. In keeping with the terminology
for normed spaces we make the following definition.

DEFINITION 2.4. Suppose X is a normed space with f:X--> (-o, +].
(a) (See [3].) The function f is Kadec if, whenever y,-->)7 weakly in X and

f(y,)-->f() < +, it follows that y,--> y in norm.
(b) The function f is strongly convex if it is Kadec and is a lower semicontinuous

convex function, strictly convex on its domain {x If(x)< +}, with weakly compact
level sets {x]f(x) <-_ a} for a.

For example, with X= Lp(S, tz) for 1 <p<+, the norm/(x) := IlXllp is strongly
convex (see, for example, [8]). The main result of this section will be that the entropy
14, is strongly convex on LI(S,/z). By Lemma 2.1, it remains to show that 14, is Kadec.

LEMMA 2.5. Suppose 0 <-- y,, LI(S, tz), for n 1, 2, , with, for each n,
y, > O. Suppose further that y, --> weakly in L1 and that 14, y, --> 14, (fi) < +o.
Then y, fi II, - o.

Proof By scaling the measure /z by a scalar factor, we lose no generality by
supposing that J y,=jy=l, for all n. For rn=l,2,..., we write (x^rn)(s):=
min {x(s), m}, and define

(2) ym:=(1-(1/m)) yam

Thus log y" L, and y’= 1.
Now we have

12 IlY,--Ymll21<-- f Y, log (y,/y’),

I (y.)- f y. log y

- 1 (y)- I y og y,

(.9 ^ m)] +(1/m)[l(S)-l].

by Lemma 2.2,

as n --> , by assumption,

1-(l/m)) log 37^ m (37^ m)

+(l/m) log [(S)-1]/+ 14, (.9) (convexity and (2))
)

(1- (1/ rn)) [{ log (f fi^ rn)}{f y}-f fi log (fi

+ (l/m)log [/z(S)] {f y} + I4, ()7).

Now since u log u->_-1/e for any u >_-O, we have

-1/e =< 37 log (37 ^ m) ’ 37 log fi 6 L1,

as m-->, so we can apply the monotone convergence theorem to deduce that as
m--> , the right-hand side tends to 0. Thus we obtain

(3) lim lim Y,, Y" II, 0.

CONVERGENCE OF BEST ENTROPY ESTIMATES 195

We also have

Ily-ll, (1-(l/m)) 37 ^ m

<=(/m)+ (-(/ml ^ m [(y m-]

+]][(1--(’/m))(;Am)-’--l]ll
=(1/m)+(1-(1/m)) m [-(m)]

0, as m by monotone convergence.

Finally, by combining (3) and the above, we obtain

lim y lll Y Y I], y]]1 0,

(37 ^ m)] +(1/m)[la(s)-l]-.9

as m-0. [3

LEMMA 2.6. Suppose X is a normed space, and an--> 6 in .
(a) If wn -> weakly in X, then anwn -> weakly.
(b) If IIw-l[-0, then IIw-ll-o.
Proof The proof is elementary. [3

THEOREM 2.7. The Boltzmann-Shannon entropy 16 is strongly convex.

Proof By Lemma 2.1, we just have to show that 16 is Kadec. To this end, suppose
zn, L1, for n 1, 2, zn weakly in L1; and 16 (zn) 16 () < +. It follows
that 16 (zn)< +c, for all n sufficiently large, so , zn--> 0.

Consider first the case where 0, so > 0. By weak convergence, zn- , so
for all n sufficiently large, zn >0, and we can define functions 37: ()- and
y, := (Zn)-lzn. Thus 0=< y,, 37 L1, Yn)7 for each n, and by Lemma 2.6, y, 37
weakly. Furthermore,

I6(Yn)=I {(I Zn)--lznlog[(I Zn)--lzn]}
=(IZn)--{I6(zn)--(loglzn)IZ,}

=I,(y).
Thus Lemma 2.5 applies to show that []y,-9711 0, so by Lemma 2.6,]]zn-[]l-0.

Finally, suppose =0. Since z, => 0 for large n, we have, as n c,]]z,-11
zn --> 0 by weak convergence. [3

If we know a priori that the sequence (zn) in the above proof of the Kadec property
is uniformly bounded, we obtain a much stronger conclusion.

THEOREM 2.8. Suppose 0<= zn <= M almost everywhere, z,--> weakly in L, and

16 (z,) --> 16 (e). Then for any p < +, IIz. ell, - 0 as n --> .
Proof We first note that since the positive cone in L1 is closed, and hence weakly

closed, it follows from the assumptions that 0-< -< M, almost everywhere.

196 J.M. BORWEIN AND A. S. LEWIS

The proof is now exactly analogous to Lemma 2.5 and Theorem 2.7, with minor
changes. We can simplify the definition of ym in (2) to

ym :_ (1 -(1/ m)) + (1/ m)[tx(S)] -1,
and we use Proposition 2.3 in place of Lemma 2.2. The only real change is the case

0 in Theorem 2.7. For large n we know zn->-0, and we may as well assume that
zn 0. Now we can assert, by Proposition 2.3, for p _-> 2, large n, and some M => M2

(lip(p- 1))M]-p zn z _-< z log
p

=I6(z,,-(I z)log(I z)->0, as n->,

from which it follows that [[z, lip - 0.

3. L convergence. In this section we will apply the strong convexity of the entropy
16 to deduce, in particular, that if the unknown density g is uniquely determined by
its moments, (gai), then the optimal solution x, of (P,) converges in L norm to
g. The approach will be through the following elementary result, which may be found
in [3].

THEOREM 3.1. Let X be a topological space, with a nested sequence ofclosed subsets,
X F1 F2 " , and suppose f" X -> (-oo, +oo] has compact level sets. Consider the
optimization problems

(qn) inf{f(x)lxF,}

(Q) inf f(x) x F,

The values of (Q) and (Q) are attained, iffinite, and the value of (Q,) increases in
n to the value of (Q) (finite or infinite). Suppose furthermore that xn is optimal for
(Q), and x is the unique optimal solution for (Q), with finite value. Then x, --> xo.

COROLLARY 3.2. Let X be a normed space with a nested sequence of closed, convex
subsets, X F F: . , and suppose f X --> (-c, +] is strongly convex. Suppose
that (Q) has finite value. Then (Q,) and (Q) have unique optimal solutions (with
finite value), x and x, respectively, and x, --> x in norm.

Proof. Existence follows from Theorem 3.1, and uniqueness is a consequence of
strict convexity. Theorem 3.1 shows that x, - x weakly, and also f(xn -->f(x), whence
xn x in norm, by the Kadec property. [3

We recall the problems (P,) of 1:

minimize 16 (x)

(P,) subject to j x(s)a(s) dtz(s) b, i= 1,. ., n,

O X G Ll(S,/).

The limiting problem is

minimize

(P) subject to

i(x)

s
x(s)ai(s) dtx(s) bi,

O<-xeL,(S,).

i=1,2,...,

Applying Corollary 3.2 gives the following result.

CONVERGENCE OF BEST ENTROPY ESTIMATES 197

COROLLARY 3.3. The value of (Pn) increases in n to the value of (P) (finite or

infinite). If (P) hasfinite value, then (Pn) and (P) have unique optimal solutions (with
finite value), x and x, respectively, and [Ix-xlll

Proof. The proof is by Corollary 3.2.
Notes. (1) Assuming, as in 1, that the bi’s are the moments of an unknown

density 0 -< L1, then if I6 ()<+ it follows that (P) has finite value.
(2) If, furthermore, S is a compact metric space with Borel measure/x, and the

linear span of {aili 1, 2,... } is dense in the continuous functions C(S) (as in the
classical trigonometric and algebraic moment problems), then it is easily checked that

is uniquely determined by its moments (,ai), and so x. In this case x. z II, -’ 0.
(3) Convergence in L1 norm is the best possible" in general, we cannot expect

convergence in Lp norm for any p > 1. To see this, suppose 0-< L with 16 () < +,
but that Lp for any p > 1. Such functions are not difficult to construct (see, for
example, [21]). It is well known that, under mild assumptions (see Theorem 4.2), the
unique optimal solution of (P,) is of the form

Xn e,[’:l Aiai--1

for some A ", and so x L for each n. If IIx - o, it would follow that Lp,
which is a contradiction for p > 1.

(4) On the other hand, if the xn’s are uniformly bounded, then we can apply
Theorem 2.8 in place of the Kadec property to deduce that Ilx, gllp - 0 as n - c, for
every p < +. Unfortunately it is unclear how we might know uniform boundedness
of (x,) a priori. We return to this question of stronger convergence in the next section.

In some estimation problems it is natural to suppose that the unknown density
is bounded above by some known constant 0< K R (see, for example, [7]). In this
case it may be appropriate to modify the Boltzmann-Shannon entropy I6 (x) to

16 (x) + I6 (K x), thereby incorporating this information. We then arrive at the follow-
ing modified problems:

minimize

(P) subject to f x(s)ai(s) dtx(s)= bi, i-- 1,..., n,
3s

I(x)+I(K-x)

x e L,(S, tx),

and the limiting problem

minimize

(P) subject to f x(s)ai(s) dtz(s) bi, i= 1, 2,.
3s

I (x)+ I (K-x)

x LI(S, A6).

The following proposition concerning strong convexity is useful in this context.
PROPOSITION 3.4. Let X be a normed space with f, g X - (-c, +c]. Suppose f is

strongly convex and g is convex, lower semicontinuous, and bounded below. Then f+ g
is strongly convex.

198 J.M. BORWEIN AND A. S. LEWIS

Proof. Clearly f+ g is lower semicontinuous and convex, since f and g are, and
is strictly convex on its domain, since f is. Suppose g ->_ M. Then the level set

{xl(f+g)(x)<-_a}c {xlf(x)<-_a-M},
and is closed, so therefore it is weakly compact. Finally, the fact that f+ g is Kadec
follows from Theorem 6.5 in [3]. [3

From Corollary 3.2 we immediately deduce that if (P) has finite value, then the
unique optimal solution x’, of (P) converges in L1 norm to the unique optimal solution
x’ of (P) (and corresponding comments to Notes 1 and 2 following Corollary 3.3
hold). However, we can prove a stronger result.

THEOREM 3.5. The value of (P) increases in n to the value of (P) (finite or

infinite). If (P) has finite value, then (P) and (P) have unique optimal solutions
withfinite value) x’ andx’ respectively, and IIx’ x’ll, -, 0, as n - ,foreeryp /.

Proof. Since b (u) >_- 1/e for all u, I6 (K x) is bounded below (and certainly is
convex and lower semicontinuous). Therefore, by Proposition 3.4, I6(x)+I6 (K-x)
is strongly convex, so we can apply Theorem 3.1 and Corollary 3.2 to deduce the first
assertions and the fact that [[x’,-x’[[->0. Thus by lower semicontinuity,
limn_, I6 (x’) -> I6 (x’). However, we also know that

lim I6 (x’) lim (I6 (x’)+ I6 (g-x’)-I6 (g-x’,,))

I6 (x’) + I6 (K- x’) lirn 16 (K- x’,,)

<= I6 x’) + I6 K x’) I6 K

I (x’),
again by lower semicontinuity.

Thus 16 (x’)- 16 (x’), and Theorem 2.8 now gives the result.

4. Error bounds and uniform convergence. In the last section we saw that the unique
optimal solution xn of the problem (P,) converged in L1 norm to the unique optimal
solution of the limiting problem (P) (which in the determined case is exactly the
unknown density 2). In this section we will demonstrate how, in more special circum-
stances, we can provide bounds on the L1 error between x, and 2. In classical cases
this in turn allows us to prove that when 2 is strictly positive and sufficiently smooth,
x, actually must converge uniformly to 2. This of course is the most desirable result
in practice.

In order to accomplish this, we use a combination of ideas from the previous
sections and results from classical approximation theory to investigate the relationship
between (P,) and its dual problem. We therefore begin by summarizing what is known
in general about this duality (see, for example, [2]). Recall that the primal problem is

minimize I6 (x)

(Pn) subject to Js (x 2) ai d/z 0, 1,. ., n,

O<-xL,(S,).
The corresponding dual problem is then

i max,m,ze [
The following weak duality result is elementary.

CONVERGENCE OF BEST ENTROPY ESTIMATES 199

PROPOSITION 4.1. The value of (Pn) is greater than or equal to the value of (Dn).
In order to claim equality between the values of the primal and dual problems,

we need a constraint qualification:

(CQ) There exists an L1, feasible for (Pn) with finite value, and with (s) > 0 a.e.

In practice, it is frequently the case that the constraint functions {al, , an} are
pseudo-Haar (in other words linearly independent on nonnull sets). For example, this
is the case when the ai’s are linearly independent and analytic on a compact interval
with Lebesgue measure (which covers the classical moment problems). In this case,
providing that 2 is nonzero with finite value, (CQ) holds.

When the constraint qualification holds, we get a strong duality result.
TIJEOREM 4.2. Suppose (CQ) holds. Then both (Pn) and (Dn) attain their values,

which are equal. If A is optimal for (Dn), then the unique optimal solution of (Pn) is

xn := eET=laTa’-1.
All these results may be found in [2].
We define the constant En associated with the problem (Pn) to measure how well

it is possible to approximate 1 + log 2 uniformly with a linear combination of the ai’s,
i=l,...,n.

DEFINITION 4.3. For each n, En is defined to be + unless log 2 L, in which
case En := min {lIE,=1 Aiai- 1 -log 2[[[h

Using this constant we can now give a lower bound on the value of (Dn) (and
therefore of (P,)). We need the following lemma.

LEMMA 4.4. Suppose fl > O.
(a) If lul<=, then l+u<-e<-l+u+efl2/2.
(b) If lv-wl<- , then le-eWlfl(l’+efl/2)eW.
Proof (a) This part follows by Taylor’s theorem, and convexity.
(b) -fl(l+efl/2)<-fl<-v-w<-e-W-l<-v-w+efl2/2<-fl(l+efl/2), by

applying (a) twice. Thus [e-w- 1[<-/3(1+ e/3/2), and the result now follows.
THEOREM 4.5. For every n we have

len II6 (2)---> V(Pn)--> V(Dn)--> I6(2)- ET,

where En is given by Definition 4.3 and V(. denotes value.
Proof. The first inequality follows from the fact that 2 is always feasible for (Pn),

while the second is Proposition 4.1. We need only check the last for log 2 L. Since
span {al,"" ", an} is finite-dimensional, there exists Rn attaining the minimum in
Definition 4.3, so

Xai- l-log 2
i=1

-< En a.e.

Applying Lemma 4.4(a) now gives

ey’’i=Ixiai-l-lg’2 <- 1 / .iai- 1 --log 2
i=1

so multiplying by 2 (which is nonnegative) gives

eE’;=x,a,-1- 2 a <- -2 log 2 +_1
i=1 2

Integrating now gives the result.

200 J.M. BORWEIN AND A. S. LEWIS

The following assumption holds in most of the cases in which we are interested.
ASSUMPTION. a 1.
PROPOSITION 4.6. Suppose a=-1. Whenever (P.) has finite value, denote its

(unique) optimal solution by
(a) If x is feasible for (Pn) with finite value, then xn log x <_- x log x.. In

particular, if (Pm) hasfinite value, with m >- n, then we have that x log x. _-< j Xm log
and if 14, (Y.) < +oo, then it follows that x. log x. _-< g log

(b) Suppose (CQ) holdsfor (P.). Ifx isfeasiblefor (P.), then we have x. log x.
x log x.. In particular, x. log x. : log x., and if (Pro) has finite value, with m >- n,

then x. log x. Xm log
Proof. Since & is convex, it is easy to check that if u > 0,

(4) (l/u){ 6(u+ uw)-cb(u)} $ (log u+ 1)w
as u $ 0. Then since x. is optimal for (P.), we have

0=<lim (1/u){I4, (x. + u(x-x.)) 14, (x.)}

-’f (logxn+l)(x--Xn)=f (X--Xn)lOgXn,

by the monotone convergence theorem (observing the fact that when u 1, the integrand
in the first inequality is integrable), providing x, > 0 almost everywhere, which gives
(a) in this case.

In view of Theorem 4.2, this is all we will use. However, in point of fact a more
precise argument shows that xn(s)=0 implies x(s)=0 almost everywhere (see [4]),
allowing us to restrict the range of integration to {slx,(s)>0}.

To see (b) we simply have to rewrite log x, using the known form of the solution
from Theorem 4.2. [3

By combining the above result with the weak duality bound in Theorem 4.5, and
using the inequality in Lemma 2.2, we obtain a bound on the L1 error of x, from
in terms of the approximation error E, of Definition 4.3. Ignoring the case 0, we
lose no generality (scaling if necessary) in assuming 1.

THEOREM 4.7. Suppose a 1, 1, and I4, (Y.) < +oo. Then the optimal solution
x satisfies

where E. is given by Definition 4.3.
Furthermore, if Lo and the sequence (x.) is uniformly bounded in L, then

given any 2 <-_ p <

(6) llx.
where the constant K is independent of n.

Proo By Proposition 4.6,

f I I le)logx._--> x. logx.=V(P.)_-> :log
2

E.

by Theorem 4.5. Applying Lemma 2.2(b) gives

1 f lee" 2

2 IIx. 11 = <
j

ff log (E/x.) <= E.

and hence the first result. The second part follows by using Proposition 2.3 in place
of Lemma 2.2.

CONVERGENCE OF BEST ENTROPY ESTIMATES 201

Thus we see that for large n, if we can approximate log : uniformly with a certain
error by linear combinations of the ai’s, 1,..., n, then x, approximates with
error no worse (asymptotically) in the L1 norm. In the last part of this section we shall
see that when E, is decreasing sufficiently quickly, as happens typically when is
sufficiently smooth, this actually forces uniform convergence of x to 2, due to the
known form of x from Theorem 4.2.

We know that, by definition, E 0 exactly when 1 + log lies in the closed span
of the ai’s in L. It follows from (5) that is therefore uniquely determined by this
fact and its moment sequence.

COROLLARY 4.8. Suppose al 1, log x and log x2 lie in cl span {al, a2," }, and
(X x2)ai O, for 1, 2,. .. Then x x2.

Proof Clearly 0 s x, x2 dom 16, and without loss of generality we may assume
that x x 1. If we set := x in (P,), then the corresponding sequence of optimal
solutions x, - x in L, by (5). Similarly, setting := x2 shows that the optimal solutions
2

X2" 2x,- However, since x and X
2 have identical moments, x, x,, for each n, so

X1-- X2, [3

DEFINITION 4.9. For each n 1, 2,. .,
:=max {llfllo/llfll,losfspan {al,""", a,}}.

We assume that at least one ai is not identically zero, whence it is clear from
positive homogeneity and compactness that A, is well defined for large n with 0 < A <
+, and A, is nondecreasing in n.

LEMMA 4.10. For any f span {al, ", a },

Ilf ll <_-- -log (1

where we interpret log (u) - if u <- O.
Proof. We first claim that for any u =>-M, with M > 0,

(7) le" 11--> M-(1 e-M)Iul.
TO see this, note that for u => 0, e 1 >- u, and eTM >= 1 M by convexity, so e 1 => u >=
M-(1 e-M)u, as required. On the other hand, for u [-M, 0], by convexity we have

exp {u} exp {(-u/M)(-M)+(1-(-u/M))O}

<= (-u/M) exp (-M) + (1 -(-u/M)) exp (0)

(-u/M) eTM + 1 + (u/M),

so we obtain 1- e"_-> -M-(1- e-a4)u, which gives (7).
Now to prove the lemma, we can suppose f 0. Then from (7) we obtain, since

f-->-Ilfll almost everywhere, le-ll>=llfllL(1-e-"rllo)lfl almost everywhere, so
integrating shows

lief- III, --> Ilf 51(1 e-little)[Ifll,--> A’(1 e-I111)
by Definition 4.9. The result now follows. [q

LEMMA 4.11. With E, defined as in Definition 4.3, there exists a p, in
span {al, , a,}, satisfying IIp- l-log xll= E, ana hence

IleP-’-ll’<-E"(l+l-E"eZ") f
Proof The first statement is just the definition of E,. Now applying Lemma 4.4(b)

Egives lep-I-I<-E.(I+sEe) almost everywhere, and integrating gives the
result.

202 J. M. BORWEIN AND A. S. LEWIS

We are now ready to obtain an estimate for the uniform error of the optimal
solution xn from .

THEOREM 4.12. Suppose al =- 1, ff 1, and log L (or equivalently, for some
6 > 0, t3 _-< ff 6 -1 almost everywhere). en with E, and A, defined in Definitions 4.3
and 4.9, the unique optimal solution of (P,),

X := eE%Aai-1,

has the property that

IIo -ol[E-o 1-(ess inf)-IA,E e-(1 + e./:+(E/2) ee-)}.

Proof Since > 0 almost everywhere, (CQ) is satisfied, so x, has the form given
by Theorem 4.2, and

(8) Ilx-llEe/,
by Theorem 4.7.

By Lemma 4.11, there exists p in span {a,..., a} with

(9) lip.- 1-log gll E,,

(10) lie p"-I- X]I E.(1 +E. e-).

If we write q. :=
i= A ai, we obtain from (8) and (10),

E.(1 +E. e + e/)]e-’-

f eP.-’]eq,,-p"-

]]e q--p- 1]1 ess inf e p--l)

eqn-Pn-

by (9). Thus we obtain

1111 u e(1+u ee + e/a)(ess inf)-.

We now apply Lemma 4.10, observing that -log (1-u) is increasing in u"

Iq-pll-og (-alle- eEn-log {1- (ess infg) 1A,E, ee.(I+E, + ee-/)}.

This, in combination with (9), gives the result.
The error estimate in the above result shows that, providing, as n increases, that

A is increasing at a slower rate than E, is decreasing, then log x, must converge to
log in [. I. More precisely, we have the following result.

COROLLARY 4.13. Suppose al 1 and log L. Supposefurther that A,E, 0 as
n, where E, and A are given by Definitions 4.3 and 4.9, respectively. en the
unique optimal solution of (P,), x,, converges in

O(A,E,), as n .
Proo: Since g 0, we can, without loss of generality, scale so that d 1.

Since A, is nondecreasing in n, we have that E,- 0, so Theorem 4.12 shows that

l log x -log (lim
N (S) + 2(ess inf)-1,

CONVERGENCE OF BEST ENTROPY ESTIMATES 203

since An -> m jtz(S) -1. Thus for some constant k (independent of n),]log xn -log 1 =<
kA,E, almost everywhere for all n; so by Lemma 4.4(b),

[Xn-l<-(kA,,En)(1 +e(ka"")(kAnEn)/2) a.e.

Thus limn_.oo IIx,-lloo/a,E, kllll, and the result follows.
So we see from the above that if En O(n-’) and A, O(n3), where/3 < c, then

xn converges to in with error no larger than O(n3-’). In general, E, (and
hence c) will depend on the smoothness of , whereas An (and fl) depends only on
the constraint functions {al,"" ",

Once we know that IIx-11-0, we can replace the use of (5) in Theorem 4.7
by (6). Following through the above argument, and replacing 11. II1 by I1" I1 where

A E2/P whereappropriate (p->_ 2) gives the slightly refined estimate [Ix, ff[[O(

(11)

In particular,

An,p := max {llf[loo/llfll 10 #f6 span {al, , anI}.

(2) IIx-lloo=O(A,=E).
In the final section we consider two classical cases where explicit bounds are

known for En and An. This allows us to show that for algebraic and trigonometric
moment problems on intervals, if the underlying density is sufficiently smooth and
strictly positive, the estimates x, converge uniformly to

5. The classical algebraic and trigonometric moment problems. We begin by sum-
marizing Corollary 4.13. We consider the problem

minimize I6 (x)

(P,) subject to Is (x)ai dtx O, 1,. ., n,

O<=x Ll(S, tx),

where we suppose log : Loo, and al 1, and we denote the unique optimal solution
by xn. Then Corollary 4.13 states that IIx - 0, providing E,An 0, where En and
An are given by Definitions 4.3 and 4.9, respectively:

E, =min {llf-log glllf span {al,’"", a,}},

A, =max {I]fllo/llfllllOfspan {al,""", a,}}.

We consider two special cases.

Algebraic moment problems. In this case, S [0, 1], z is Lebesgue measure, and
a(s)=s-1, for i= 1,..., n.

THEOREM 5.1. Suppose,for the algebraic momentproblem, that is twice continuously
differentiable and strictly positive. Then

Proof. Since 0<)e C[0, 1], it follows that log)e C[0, 1], so by Jackson’s
theorem [9], for some constant k, E, <- (k/n)o((log)", 1/n), where

to(g,):-sup{Ig(s)-g(t)l ls-tl<-,,s, t[O, 1]},

is the modulus of continuity. Since co(g,O+)=O for continuous g, the result
follows.

204 J.M. BORWEIN AND A. S. LEWIS

THEOREM 5.2. For the algebraic moment problem,

n2>=An>_{(n+l)2/4, nodd,
n(n +2)/4, n even.

Proof. For the proof, see 1].
COROLLARY 5.3. Suppose, for the algebraic moment problem, that is twice con-

tinuously differentiable and strictly positive. Then the unique optimal solutions xn converge
uniformly to .

Proof. For the proof, see Corollary 4.13 and Theorems 5.1 and 5.2. [3

In fact, a rather more precise version of the above argument, using (12), shows
that if is k times continuously ditterentiable (k_->2) and strictly positive, then
IIXn--,[Io o(nl-k): the relevant Jackson theorem states that in this case E, o(n-k),
while it is shown in [1] that A,2 n. We also see in this case, from Theorem 4.7, that
for any 2 _--< p < +c, IIx, l]p o(n-2k/p). In particular, IIx 11=

In general, the smoother ff is, the more rapidly E, tends to zero. If is analytic
on [0, 1], or in other words has an analytic extension to an open subset of the complex
plane containing [0, 1], then E,-->0 linearly: E, O(p") for some constant 0=<p < 1.
If, in fact, ff is an entire function, the convergence is superlinear (see [16]). It follows
from Corollary 4.13 that for analytic, strictly positive in the algebraic moment
problem,]Ix,-zll-’0 linearly with the same convergence ratio as E, and if 2 is
entire, the convergence is superlinear.

Trigonometric moment problems. In this case, S=[-Tr, r], 27r/x is Lebesgue
measure, and for j 1, 2,. ., a2j (s) cos (js) and a2j+l (s) sin (js).

THEOREM 5.4. Suppose, for the trigonometric moment problem, that is strictly
positive with both and ’ continuous and 27r-periodic. Then, nE2n+l

Proof. By [9], Een+l <- (578/n)to((log)’, 1/n), where again to(.,. is the modulus
of continuity; so the result follows. [3

THEOREM 5.5. For the trigonometric moment problem, 2n + 1 ->_ A2,+1 -> n.

Proof For the proof, see [22].
COROLLARY 5.6. Suppose, for the trigonometric moment problem, that is strictly

positive with both and ’ continuous and 27r-periodic. Then the unique optimal solutions
x, converge uniformly to .

Proof Theorems 5.4 and 5.5 show that

A2,,+lE2,+ _--< (2n + 1)E2,+, -->0,

L2n+2E2n+2 A2n+3E2n+l (2n + 3)E,+ - 0.

Thus A,E,- 0, so the result follows by Corollary 4.13.
In fact, just as in the algebraic case, a more precise version of the above argument

(using the fact that A,+l,2 (2n + 1) 1/2 in this case [22]) shows that if , g’, , ffk)
are continuous and 27r-periodic, with g strictly positive, then I[x,-:[l o(n/2)-k).
Furthermore, Theorem 4.7 shows that for any 2 <_-p < +c, Ilxn gllp O(n-k/P). In
particular, IIx. zll=

Our approach can be extended to prove similar results for multidimensional
algebraic and trigonometric moment problems. Thus one can consider polynomials
with maximum degree or sum of degrees not exceeding n, etc., on various domains.
This becomes considerably more technical and we choose not to take the matter further
herein.

Note added in proof. Error bounds for the trigonometric case under certain
conditions on (and numerical results) may be found in [23], and bounds for problems
involving some entropies other than the Boltzmann-Shannon entropy appear in [24].

CONVERGENCE OF BEST ENTROPY ESTIMATES 205

REFERENCES

D. AMIR AND Z. ZIEGLER, Polynomials ofextremal Lp-norm on the Lo-unit sphere, J. Approx. Theory,
18 (1976), pp. 86-98.

[2] J. M. BORWEIN AND A. S. LEWIS, Duality relationships for entropy-like minimization problems, SIAM
J. Control Optim., 29 (1991), pp. 325-338.

[3] , On the convergence of moment problems, Trans. Amer. Math. Soc., 1991, to appear.
[4] J. M. BORWEIN, A. S. LEWIS, AND R. NUSSBAUM, Entropy minimization, DAD problems and doubly-

stochastic kernels, to appear.
[5] W. BRITTON, Conjugate duality and the exponential Fourier spectrum, Lecture Notes in Statistics 18,

Springer-Verlag, New York, 1983.
[6] I. CsISZAR, Information-type measures ofdifference ofprobability distributions and indirect observations,

Studia Sci. Math. Hungar., 2 (1967), pp. 299-318.
[7] A. DECARREAU, D. HILHORST, C. LEMARICHAL, AND J. NAVAZA, Dual methods in entropy maxi-

mization: Application to some problems in crystallography, SIAM J. Optimization, submitted.
[8] J. DIESTEL, Sequences and Series in Banach Spaces, Springer-Verlag, New York, 1984.
[9] R. P. FEINERMAN AND D. J. NEWMAN, Polynomial Approximation, Williams and Wilkins, Baltimore,

MD, 1974.
[10] B. FORTE, W. HUGHES, AND Z. PALES, Maximum entropy estimators and the problem of moments,

Rend. Mat. Set. VII, 9 (1989), pp. 689-699.
[11] S. M. KAY AND S. L. MARPLE, Spectrum analysis--a modern perspective. Proc. ILL-E, 69 (1981),

pp. 1380-1419.
[12] J. H. B. KEMPERMAN, On the optimum rate of transmitting information, in Probability and Information

Theory, Proceedings of an International Symposium, McMaster University, Hamilton, Ontario,
pp. 126-169; Lecture Notes in Mathematics 89, Springer-Verlag, Berlin, 1969.

[13] S. KULLBACK, A lower bound for discrimination information in terms of variation, IEEE Trans.
Inform. Theory, IT-13 (1967), pp. 126-127.

14] S.W. LANG AND J. H. MCCLELLAN, Spectral estimationfor sensor arrays, IEEE Trans. Acoust. Speech
Signal Process., ASSP-31 (1983), pp. 349-358.

15] A. S. LEWIS, The convergence of entropic estimates for moment problems, in Workshop/Miniconference
on Functional Analysis/Optimization, S. Fitzpatrick and J. Giles, eds., Centre for Mathematical
Analysis, Australian National University, Canberra, Australia, 1988, pp. 100-115.

[16] G. G. LORENTZ, Approximation of Functions, Second Edition, Chelsea, New York, 1986.
[17] L. R. MEAD AND N. PAPANICOLAOU, Maximum entropy in the problem of moments, J. Math. Phys.,

25 (1984), pp. 2404-2417.
[18] R. Z. ROCKAFELLAR, Integrals which are convexfunctionals, Pacific J, Math., 24 (1968), pp. 525-539.
[19] , Integrals which are convex functionals, II, Pacific J. Math., 39 (1971), pp. 439-469.
[20] J. SKILLING AND S. F. GULL, The entropy of an image, SIAM-AMS Proc., Applied Mathematics, 14

(1984), pp. 167-189.
[21] K. R. STROMBERG, An Introduction to Classical Real Analysis, Wadsworth, Belmont, CA, 1981.
[22] Z. ZIEGLER, Minimizing the Lp.-distortion of trigonometric polynomials., J. Math. Anal. Appl., 61

(1977), pp. 426-431.
[23] E. GASSIAT, Problme sommatoire par maximum d’entropie, C. R. Acad. Sci. Paris S6r. I, 303 (1986),

pp. 675-680.
[24] D. DACUNHA-CASTELLE AND F. GAMBOA, Maximum d’ entropie et problme des moments, Ann. Inst.

H. Poincar6 Probab. Statist., 26 (1990), pp. 567-596.

SIAM J. OPTIMIZATION
Vol. 1, No. 2, pp. 206-221, May 1991

(C) 1991 Society for Industrial and Applied Mathematics
O04

AN EFFICIENT IMPLEMENTATION OF MERRILL’S METHOD
FOR SPARSE OR PARTIALLY SEPARABLE SYSTEMS OF

NONLINEAR EQUATIONS*

YANG BING? AND GAO LIN:

Abstract. When Merrill’s method without an extra dimension is applied to solving sparse or partially
separable systems of nonlinear equations, the computational efficiency can be further improved, i.e., a larger
piece of linearity can be traversed in one step by using a suitable linear system. One of the linear systems
is updated and the corresponding technique is shown to update information about the linear system and
the large piece in the implementation of the method. Some numerical results of the method support the
claim that it is efficient. Also, some mistakes from a previous paper, in which the main technique exploiting
sparsity was proposed, are corrected.

Key words, fixed point algorithm, systems of nonlinear equations, variable dimension algorithm, sparsity,
partial separability

AMS(MOS) subject classification. 1T90

1. Introduction. Fixed point algorithms, initiated by Scarf 15], have been applied
to systems of nonlinear equations that come from economic equilibrium theory, game
theory, nonlinear programming, operations research, and various fields of engineering.
The common character of these algorithms is their global convergence under suitable
conditions, which is not possessed by traditional analytic methods, such as Newton’s
method. In general, however, fixed point algorithms are less efficient than analytic
methods. Many scholars have studied how to improve the efficiency of the fixed point
algorithm (see, e.g., [1]). One of their research results is the variable dimension
algorithm. Kojima, Yamamoto, Todd, Freund, and others have developed this
algorithm ([2], [4], [5], [9]), and its prototype was proposed by van der Laan and
Talman [6]. Another of the results is the technique to improve computational efficiency
by exploiting structure for a system of nonlinear equations which has special structures,
such as partial linearity, separability, partial separability, or sparsity. Kojima, Todd,
and others have proposed this technique ([3], [10], [11], [12], [13]). We can expect
that a variable dimension algorithm combined with a technique to improve computa-
tional efficiency by exploiting structure is more efficient for systems of nonlinear
equations which have special structures. Such systems often appear in models of
practical problems.

Todd developed a pivot-saving technique for sparse systems of nonlinear equations
in [13]. Kojima and Yamamoto pointed out that the technique can be applied to the
variable dimension algorithms that they developed [5]. In this paper, our contributions
are as follows:

(1) We point out that the technique in [13] can also be exploited for partially
separable systems, including separable systems, of nonlinear equations. We practically
apply the technique to Merrill’s method using Kojima and Yamamoto’s PDM structure

* Received by the editors March 2, 1990; accepted for publication (in revised form) November 26,
1990. This research was supported by the National Natural Science Foundation of China.

? Department of Management Engineering, Harbin Shipbuilding Engineering Institute, Harbin 150001,
China.

$ Department of Mathematics and Mechanics, Harbin Shipbuilding Engineering Institute, Harbin 15001,
China.

206

A METHOD FOR SPARSE/PARTIALLY SEPARABLE EQUATIONS 207

14] and obtain a variable dimension algorithm for sparse or partially separable systems
of nonlinear equations. In this algorithm a large piece of linearity can be traversed in
one step by using a suitable linear system and the corresponding technique to update
information about a large piece. Because we use a different homotopy, the PDM
structure, and other treatments, our linear system and its updating technique are
different from those in [13].

(2) We present some numerical results of our algorithm and prove that it is efficient.
(3) From our computational experience, we suspect that some details of the

updating technique in [13] are mistaken, thus we will point them out and show how
to revise them.

In 2, we first introduce the pivot-saving technique for sparse systems of nonlinear
equations given by Todd [13] in order to make our work understood. Then, we give
the definition of partial separability and point out that the technique in [13] can also
be used for partially separable systems, including separable systems, of nonlinear
equations. In 3, we present the linear system and the expression of a large piece of
linearity in our method. In 4, we show how to update the linear system corresponding
to one large piece in order to obtain the appropriate system for an adjacent large piece
and to revise some details of the updating technique in [13]. In 5, we report some
numerical results which prove that the implementation of the method and the kind of
pivot-saving technique proposed in [13] are efficient.

2. The pivot-saving technique. In Todd [13] a pivot-saving technique for sparse
systems of nonlinear equations was proposed. This technique is the main basis of the
present paper. First, let us introduce its outline.

When piecewise-linear homotopy algorithms are applied to the problem of
approximating a zero of a sparse function f" R - Rn, a large piece of linearity can be
traversed in one step by using a suitable linear system.

Confining ourselves to Merrill’s method, we define h" R x[0, 1]- R by h(x, t)
tf(x)+(1-t)f(x), where f’R"- R is a simple function, and we take f(x)=
M(x-x), where matrix M is n n and nonsingular..Let 1 be the piecewise-linear
approximation to h with respect to the triangulation J {j(v, 7r, s)} of R" [0, 1],
where vR"{1} has all v’s odd, 7r is a permutation of {1,2,..., n+l} with
r(j) n + 1, and s R" {-1} is a sign vector; each s is +1. The algorithm traces a
path of zeros of 1 starting from (x, 0). If it reaches some point (x, 1), then x is an
approximate zero off We then either stop, or restart the algorithm with a smaller grid
size, x, replacing x, and possibly a new matrix M. See, for example, [1]. Let e p

denote the pth unit vector of appropriate dimension. Then the vertices of r with the
grid size e are v, /)1, v n+, where

V0-- V, I.) i-- 1)
i-1

"1
I- ES,rr(i e =(i), 1 < <j,

l.) t)
--1 e + k

t.)
k -1 e kv +es j<k<-n+l.

Because fo is affine, the pieces of linearity of 1 are larger than the simplices of .
These pieces form a (polyhedral) subdivision] {fl(V, ,r, s)} of R" x[O, 11 (see [101).
The individual piece jl(/), ,n-, s), with ,r(j) n + 1, is the set of all w e R"+ satisfying

E -> S,n-(1)(W,tr(1 /-).rr(1)) -->" -> S’n(j-1)(W’rr(j-1) /)rr(j-1)) --> e(1 w,,+);

e(1--W.+l)>--O if j= n+ 1.

Here an inequality corresponds to a facet of & Introducing some notation, we can

208 YANG BING AND GAO LIN

rewrite these inequalities as Caw->_ d a, where each row of matrix Ca corresponds to
a facet of . Let Aa denote the derivative matrix of the affine function from Rn+l to
R that agrees with 1 on and let a denote the ith column of Aa; we have

a(i) (f(yi) f(yi-1))/ es(i), 1 <= <j;

ar(k)--m(k) j<k<n+l;=

an+l=y(yJ)+f(yj) and l(w)=l()+Aa(w-) foranyw,,

where yi is the projection of vertex vie Rn [0, 1] on R" and mk is the kth column
of the matrix M. Suppose f is sparse (for example, there is no component of f that
depends on both x, and Xq). If (i)=p and (i + 1)= q, 1 <-_i<=j 1, and denotes
7r with the positions of p and q interchanged, then we find Aa A with l(V, , s)
and j(v, , s). It follows that 1 is linear in [.J . Then we can say that when
f is sparse, a large piece of linearity of the homotopy 1, , meets 1-1(0) in a line
segment; this line segment can be traversed by considering a linear system Aw b,
Cw>=d. Here A=Aa, b=A-l(), with any point in , and a row of the matrix
C corresponds to a facet of the piece , the number of rows being equal to the number
of facets. We trace the segment numerically by generating a particular solution r? to
Aw b, Cw >= d (corresponding to where the piece is entered) and a vector z in the
null space of A. Then {w" Aw= b} {+Az}. After that we find where the segment
leaves the piece by finding the range of A for which C(ff + Az)_--> d; this corresponds
to a minimum ratio test in linear programming.

Some details of an implementation of a piecewise-linear homotopy algorithm
using these large pieces are given in Todd [13]. In particular, Todd describes what
must be stored and how to update the matrix A, and he demonstrates the directed
graph A which is used to identify the large piece .

Now we introduce the partial separability off. If we write x R as x (x,, Xq,),
Rn-2, and there are functions fP" R x R-2-> R and fq" R x Rn-2--> R such that

f(x)=fP(xp,)+fq(xq,), then we say that coordinates p and q are separable. If f
is differentiable, p and q are separable if the pth column of the derivative matrix Df(x)
does not depend on Xq and the qth column of Df(x) does not depend on Xp. If all
pairs (p, q) for 1-< p, q <_-n, and p q are separable, then the function f is separable.
If there is at least one separable pair (p, q), thef is partially separable. Clearly,. Aa Aa
when p (i) and q -(i + 1), 1 _-< _-<j 1, are separable. We say the pivot-saving
technique in [13] can be fully applied to separable or partially separable systems of
nonlinear equations.

3. The linear system and the large piece.
3.1. The homotopy. Suppose we solve the system of nonlinear equations

(3.1) f(x)=0 (xR)
where R is an n-dimensional Euclidean space and f is a continuous mapping from
R into itself. When a rough approximation of a solution of the system (3.1), w, is
known, we let

(3.2) g(x) =f(w+ x) (for every x e R").

We may deal with the system of equations

(3.3) g(x)=0 (xR)

instead. We define the mapping

(3.4) h(x, y, t) My + tg(x) ((x, y, t) R x R x R+),

A METHOD FOR SPARSE/PARTIALLY SEPARABLE EQUATIONS 209

with M a (sparse when g is sparse, with the same pattern) nonsingular matrix "close"
to the Jacobian of g, and we solve the system

(3.5) h(x, y, t) O, ((x, y, t) R" x R" x R+).

Under certain assumptions, the connected component of h-l(0) containing the
point (0, 0, 0) is a smooth path converging to (& 37, +). Then

(3.6) g(g) =0,

so that is a solution of (3.3) and w+ is a solution of (3.1).

3.2. The PDM. The primal-dual pair of subdivided manifolds (abbreviated as
PDM), given by Kojima and Yamamoto [4] for an efficient implementation of Merrill’s
method, is utilized here. In the case of n 2, the subdivided primal and dual both
look like a "checkerboard," see Fig. 3.1.

X2

x(o,2)

x(O, 1)

x(2, 2)

x(1, 1) x(2, 1)

x(1, O)

x(2, 0)

y(-1, 1)

Y2

y(O, 1)

y(1, 1)

y(-1,0) y(0,0) y(1,0) --y,

y(-1,-1)

y(0, -1)

y(1,-1)

FIG. 3.1

Let e be an arbitrarily fixed positive number and let Q be the set of all n-
dimensional vectors q (ql, q2," , %) such that each q is an integral multiple of e.

For every q Q, let

Ie (q) { i: qi is an even multiple of e },

Io(q) {j: qj is an odd multiple of e },
(3.7)

X(q) {x R" x q for Ie(q), qj-- 8, <-- Xj <= qj -1- 8, forj e Io(q)},

Y(q) {y R": q,- e <= y, <= q, + e for Ie(q), Y.i q forj e/o(q)};

then

P {X(q): q Q and/e(q) },

D { Y(q): q Q and Io(q) }

are subdivisions of R". The dual operator d is defined as

(3.8) Xd(q) Y(q), yd(q)=X(q) (forevery qe Q).

210 YANG BING AND GAO LIN

Let T be a simplicial refinement of the primal subdivided manifold P. For every cell
X of/5 (/5 {X(q)" q Q}), let

T[X {o- T: trc X, dim tr dim X}.

Define

(3.9)

and

(3.10)

N {tr x Xa x R+ tr 6

tx {X x Xa x R+" X /3};
then N is a refinement of the subdivided (n + 1)-manifold

3.3. The linear system and the large piece of linearity. Letting G" R"--> R be a
simplicial approximation of g, we replace the mapping of (3.4) by the mapping
H" R x R x R+ --> R n"

(3.11) H(x, y, t) My + tG(x) ((x, y, t) R" x R" x R+).

By tracing a path in the solution set H-l(0) of the system (3.11), we can obtain an
approximate solution to the system (3.3).

A modification of the triangulation J1 of R" is used in the simplicial refinement
of P. A k-dimensional simplex tr is

xO.. ox is an even multiple of e for 1 _-< i_-< n,

(3.12) x= x-1 + es() e(i) for 1 _-< _-< k,

O" CO(XO, X 1, xk).
Let z=trxXd(q)xR+ with q=xk, dimtr=k(O<-k<-_n), H-(O)fqz#f. Then

(3.13)
Io(q) {Tr(1), 7r(2),..., 7r(k)},

Ie(q) {1, 2, n}\Io(q),

and r is the set of all x satisfying

(3.14)

As

o oe >= s=()(x=()- x=()) >-. >= s()(x=()- x=()) >= 0
x qi (for all e Ie(q)).

(3.15) G(x) (a(1)a(2) a (k)) X(2) X() + g(x)
o

X(k) Xzr(k)]
where a()= (g(x) g(x-l))/es(i) (for 1 <= <_- k), we have

/XTr(1)]

tX(k)J

o

g(xO)_(a=(1)a(Z). a=(k)) X(2)
O"

(3.16)

My+ tG(x)= My+(a(1)a()

(for all x

(for all (x, y, t) z).

A METHOD FOR SPARSE/PARTIALLY SEPARABLE EQUATIONS 211

Let u tx, v y, and wj uj (j Io (q)), W 1) (i Ie (q)), and w,+ t. Thus the
system (3.5) in z becomes the linear system

Aw=b(3.17)

where

A" a (i) (g(x i) g(xi-))/

ai=m (iIe(q))

(3.18) n+l g(x)--(a(la(:z... a r(k))

(Tr(i) Io(q))

o

X(2)

O"

k

b Z q(,m(’ (Tr(i) Io(q)),
i=1

and (x, y, t) z if and only if (u, v, t) satisfies the linear system
o t)>. > o t)>0et >-- Sr(1)(tlr()--Xr(1) STr(k)(UTr(k)--XTr(k)

ui=qit (iIe(q))

(3.19) -e<-vi-qi<-_e (iIe(q))

v qj (j 6 Io(q

t>_O.

In order to describe concisely the piece of linearity, we use some notation similar
to that used in [13]. Let

et Tw 6o, sj(uj xt) TJw t3j

vi--qi--]/’W--t (iIe(q)),

0 "n+lw tn+l -t-e Tn+Zw tn+2,

and

C
pp’-" P ’)tp’, dpp,-- p p,

(j Io(q)),

--E n+3w- tn+3,

(p,p’ N/={0, 1,..., n+l, n+2, n+3}).

Let graph F consist of the edges

(0, 7r(1)), (Tr(1), 7r(2)),..., (Tr(k), n+ 1)

and

(n+2, i),(i,n+3) (foralliIe(q)).

Then the inequalities of (3.19) are of the form:

cPP’w>=dpp, ((p,p’) F)

w.+ -->_0

or

(3.20) c(r)w>-d(r), w,+>-o.

This is the inequality system corresponding to tr x Xd (q)x R+.

212 YANG BING AND GAO LIN

We now have Theorem 1.
THEOREM 1. The set of (x, y, t) lying in H-l(0) fq z is the set ofsolutions to Aw b,

C(F)w>-d(F), and wn+l>-O. That is, if w is a solution to the latter, then (x, y, t), given
by

(w.+, > 0)
x (w.+ =0)

Xi--qi

(3.21 Yi wi

Wn+

(i6Ie(q)),

(i6Ie(q)),

(j6Io(q)),

(jIo(q))),

lies in H- (0) fq z, where A and b are given by (3.18).
Suppose a function f is sparse or partially separable. Let Xd(q) R/,

tc X(q), and be a large piece of linearity for (3.17). We can define the graph A as
in [13], so that each pair (directed edge) (p,p’)A (p,p’Io(q)) corresponds to a
facet of

We have the following theorem.
THEOREM 2. The set of (x, y, t) lying in H-l(0) f’) is the set ofsolutions to Aw b,

C(A) w >- d (A), and Wn+l >- O. That is, if w is a solution to the latter, the point (x, y, t)
satisfying the system (3.21) lies in H-I(O)VlY., where A and b are given by (3.18), and
the vector 7r corresponds to some simplex tr of t.

4. Implementation.
4.1. Iterative steps. Suppose a point (, 97, -), with H(ff, 37, f)= 0 where the piece

is entered, is given and we have a corresponding with Aft b. Let A (B a"/l),
and assume for simplicity that B is nonsingular, although the algorithm might generate
a matrix A (of rank n) with B singular. An LU factorization of B (or in fact of A) is
preferable, not only for maintaining sparsity, but also for numerical stability [12].
However, we use the explicit inverse of B for simplicity. Then

(4.1) 6w=[B-lan+]-1
spans the null space of A, A(# + A6w) b. The critical value > 0 is found by examining
the inequalities

(4.2) C(A)(+A6w)>=d(A) or C(A)(-A6w)>-d(A);

then we obtain

=+6w or ff=-6w

and the (:, 37,) corresponding to ff is just the exit of H-(0) at L When] +, and
k n, x, where

(4.3) x 6w/6w,+ 6u/t (for all 1 -< -< n),

is an approximate solution to the system (3.3).
The iterative steps of a major cycle of our algorithm are as follows.

Step 1. Set q=(0,0,...,0), Io(q)=, Ie(q)={1,2,...,n}, dim6=k=0, A=
(mmz... m"g(O)), w=0, A" (n+2, p), (p, n+3) (for all l<-p<-_n).

A METHOD FOR SPARSE/PARTIALLY SEPARABLE EQUATIONS 213

Step 2. Compute 6w by (4.1) and find > 0 by examining (4.2). If < +c, we
obtain a critical edge (p, p’) and let if+ 6w and then go to Step 3. Otherwise we
obtain an approximate solution x by (4.3) and a major cycle is completed.

Step 3. Update information about , including q, A, B-1, A, , etc., and return
to Step 2.

4.2. Updating large pieces. Now we discuss the updating technique in various
critical cases. Because the updating of A is similar to that in [13], except that (n + 1, i)
and (i,n+2) are replaced by (n+2, i), (i,n+3) and there do not exist (0, n+l),
(n + 1, n + 2) here, it is unnecessary to go into details.

We store Io (q) in a doubly linked list, so that if p, p’ Io (q) and (p, p’) A, p is
placed before p’ in the list. We need not use the vectors p (p 1, 2,. ., n + 1) which
are used in 13] because new columns of A are easily generated by updating the order
of Io (q). The technique for updating information in various critical cases is as follows.

Case 1. Ie(q) and +.
Then x=(xi)=(6wi/6wn/), where i= 1,2,..., n, is an approximate solution to

the system g(x)= 0 and a major cycle is completed.
Case 2. The critical edge is (n + 2, p) for some 1 <- p -< n. Then dim t k, dim t

k + 1 (t follows in the iterative process).
Set Sp 1, k k + 1. Because

xk-=x+e , sie i, g(xk-1) =g(x)+e E siai.
ie lo(q) ie lo(q)

Evaluate g(xk)=g(xk-+esee p) and set aP=(g(xk)--g(xk-))/eSp and a"+=
an+-aPxp; then update B-. Set qe=qp+esp and replace e=Op by fie, where
Up- Xpn+ Finally, we update A in a similar way to that in [13], set lo q Io q U {p},
and make p be the last element in Io(q).

Case 3. The critical edge is (p, n + 3) for some 1 _-< p _-< n. Proceed exactly as in
Case 2, but with Sp =-1.

Case 4. The critical edge is (p, n + 1) for some 1-< p <= n. This is the reverse of
Case 2 or 3. Then dim k, dim t k-1.

Set k= k-1 and replace a n+l by an+l+ aPxp and a p by m p’, then update B-1.
Set qp =qp- eSp and replace p tp by Sp, where 6p =qp- eSp (the new qp). Finally,
we update A in a way similar to that in [13] and set Io(q) Io(q)\{p}, keeping the
order of the remaining indices unchanged.

Case 5. The critical edge is (0, p) for some 1 =< p =< n. Then dim t dim t k. Set
god g(x), x= x+2espe p and evaluate g(x). Set Sp -sp and aoPd a p, and replace
a p =--(aPold+(g(xO)--god)/eSp), a n+l= an+ +(aPold--aP)(Xp+ 8Sp); then update B-1.
The other information does not change.

Case 6. The critical edge is (p, p’) for some 1 _-< p, p’ n. Then dim t dim t k.
First, we update A in a way identical to that in [13], and obtain the ordered lists Bp,,
Bp,, and Ap,"

Bp, { i: is in io (q) and there is a path from to p’},

Bp,= {i: is between p and p’ in Io(q) and Bp,},
Ap, { i" is between p and p’ in Io(q and

_
Bp,}.

aPo, a p’, x’= x+ e Y sie x"= x’+ Sp,e
p’ g(x’) g(x)+ e Z siai

i Bp, i Bp,

Next, we update Io(q) and A as follows:
Change the partial list p... p’ of io(q) to Bp,p’pAp,.
Set

214 YANG BING AND GAO LIN

Evaluate g(x") and set

a P’ (g(x") g(x’))/ esp,

aP= aP + (aPo;a-aP’)sp,/Sp,
an+l-- an+l+ (aoPld aP’)(xp,-(sp,/sp)xp).

Finally, we update B-I.
In various cases we can easily update B-1 as follows
Cases 2-5. The p’th and the n + l’th columns of A have changed Denote B of

and B of as

and

(44)

B=(alaE...ap...an),

B=(ala.. p. a"),

B-l=(blb2. bp. b,) r

Because B-1/ (ele2. B-llp" e"), -I can be obtained by pivoting in B-1, using
(B-llP)p as the pivot element.

Case 6. The p’th, p"th, and n + l’th columns of A have changed and

B=(ala2.’’ a p... ap’... a"),
(4.5)

=(ala2... aP+(sp,/Sp)aP’-(sp,/Sp)d p’... dp’.., an).

Denote

(4.6)

If

(4.7)

then

B-l=(blb2... bp. bp’. bn) .
B,=(a’a. aP+(sp,/Sp)aP’. ap’. a n)

-1

=B
+ Sp,/ Sp 1

p p’

(4.8)
-s,,,Is,, 1

B

=(bib2... bp. bp’-(sp,lsp)bP. bn) r.

A METHOD FOR SPARSE/PARTIALLY SEPARABLE EQUATIONS 215

Now the inverse

(4.9)

of BE, where

B-’= (g, g2... p... p’.’’ n)T

B2=(alaE. aV+(sv,/Sp)aP’. dv’. a n)

can be obtained by using the same method as in Cases 2-5. Then, as in (4.7) and (4.8),
we find that

j-,__ (glg2... gp... gp’_}_(Sp,/Sp)gp.., gn)T.

We now have Theorem 3.
THEOREM 3. In Case 6, updating B- can be performed as follows"
Step 1. Obtain B-(by replacing the p"th row of B- by bP’-(Sp,/sv)b p.
Step 2. Obtain B by pivoting in B-(using (B-(EtP’)p, as the pivot element.
Step 3. Obtain the new B- by replacing the p"th row ofB by
Here P’, b p, b p’, B, BE, gP, gP’ are defined by (4.4)-(4.7) and (4.9).

4.3. Some revisions. In 3 of [13], in order to update large pieces, I=
{i: r-(i)<j+l} is stored in a doubly linked list, so that if r is the permutation
corresponding to the ordered list I, then j((y, 1), or, s) is contained in the current piece. For generating new columns of A, the vector p of O’s and +l’s is used. If
1-<_ 7r-l(p)<j, then aP--(f(y+etP+espeP)--f(y+etP))/eSp and

a n+l =f(y+ etn+l)-f(y+ etn+l).

From our computational experience, some details about updating p and A are
suspected to be mistaken.

First, we found that the updating of the order of I in Case 6 was lost. We cannot
correctly update the graph A without the correct list I.

Next, suppose that the order of I is correct. Because of the special structure of
f, in Case 4, there may be some nodes k between p and n + 1 in I and all these k’S,
not only /n+l, need to be updated. In Case 6, the updating of IP’s is more complex.
If the critical edge is (p, q), there may be three kinds of nodes between p and q"

Ap { i" is between p and q in I and there is a path from p to i},

Bq {i" is between p and q in I and there is a path from to q},

S { i" is between p and q in I, : Ap, : Bq}.

In the list I of the adjacent large piece t, Bq must be kept before q. Thus we should
not only update q and p but also update g for all k /q. Clearly, the computations
of o and corresponding a q, as reported in [13], are mistaken. In some of the iterative
steps, for example, the subgraph not including nodes n + 2 and n + 3 of A might be as
in Fig. 4.1. Then t is a complex consisting of two simplices which correspond to the
subgraphs shown in Fig. 4.2, and the p must be corresponding to the 7r of one of the

(0) """’
(4) %,,,..,,,...

"’ (1)
(2) (n+l)

FIG. 4.1

216 YANG BING AND GAO LIN

(0) (4) (1) (2) (n+l)

(0) (1) -----(4) (2) (n+l)

FIG. 4.2

two. If the critical edge is (4, 2), the subgraph of the adjacent large piece t is as in
Fig. 4.3. Suppose that sl 1, s2 -1, s4 -1, and that 1, 2, and 4 are

tl (0, 0, 0, -1, 0, ,0),
t2=(1, O,O,-1, O, .,0) ,
4: (0, 0, 0, 0, 0," ", 0)T;

then they should become

tl=(O,O,O,O,O, .,0) r,
t2= (1, 0, 0, 0, 0, ,0) ,
t4= (1, -1, 0, 0, 0, ,0) r,

not t2< 4 and t4 t4+s2e2, according to q - p and p <-- tP+Sqe", as reported in [13].
It seems to us that the mistakes can be corrected as follows. Do not store the P’s,

but correctly update the list I. Cases 1-5 are the same as in [13], except that a p has
the wrong sign in Case 5. In Case 6, remove ordered list [Bq q] to before p. That is,
the order I may be of the form:

I: pBqSApq ,
where the elements in Bq, S, Ap may be reordered to some extent. We change I to

I BqqpSAp...

and change A accordingly. Let J be the set of indices in up to but not including q.
Then we know that

f(y+e sjej) =f(y)+e sja ,
jJ jeJ

and we evaluate f(y + e ,jj se + sqeq). Set

aqold=a q, a q =(f(y+e Y sjeJnt-Sqeq) -f(y+e se))/eSq,
j6J j6J

a p a p + (aoq,d aq)sq/Sp.

(0) (1) (2)(4) (n+l)

FIG. 4.3

A METHOD FOR SPARSE/PARTIALLY SEPARABLE EQUATIONS 217

5. Computational results. In order to prove how efficient our method is, we have
made a program of the method in FORTRAN 77. For the examples we used, Problems
1-7 and 11 are chosen from those in the MINPACK collection [7], but the forms of
Problems 1 and 3 are slightly changed. Problem 8 is from [5], and Problems 9-10 are
original.

PROBLEM 1. Rosenbrock function:

f,(x)=lO(x,-x),

fz(x)=x2-1.

PROBLEM 2. Freudenstein and Roth function:

f(x) -13 + x, + ((5 x2)x2- 2)x.,

f2(x) -29+ x, + ((x + 1)x- 14)x2.

PROBLEM 3. Extended Rosenbrock function:

f2i_l(X) 10(x2i_,- x2i),

fzi(x)= x:zi-1.

PROBLEM 4. Discrete boundary value function:

f(x) 2x- xi_ -xi+ + h2(xi + ti + 1)3/2

where h 1 / (n + 1), ti ih, and Xo x.+ 0.

PROBLEM 5. Discrete integral equation function:

f(x):xi+h[(1-ti) tj(xj+tj+l)3+ti (1-tj)(xj+tj+l)3]/2
j:l j:i+l

where h 1 / (n + 1), ti ih, and x0 X,+l 0.

PROBLEM 6. Broyden tridiagonal function:

f(x) (3 2xi)x xi_ 2xi+ + 1

where Xo xn+ 0.

PROBLEM 7. Broyden banded function:

f(x)=x,(2+5xi) +1- E xj(l+xj)
JJi

where Ji={j:j/,max (1, i-m)<-j<-_min (n, i+ mu)} and m1=5, mu= 1.

PROBLEM 8. Separable cubic function:

f(X) X i+ xj
j=l

PROBLEM 9. Nearly separable function:

i3fi(x) X + Xj + COS (Xi_ + Xi+l)
j:l

where Xo Xn+l O.

218 YANG BING AND GAO LIN

PROBLEM 10. Tridiagonal function"

fi(x) X -exp (cos i(xi-1 / Xi / Xi+l)))
where Xo xn+ 0.

PROBLEM 11. Trigonometric function"

f(x) n- cos xj + i(1 -cos xi)-sin xi.
j=l

In all runs, we used M I throughout and fixed ek+l--ek/2. We stopped the
computations when we obtained an approximate solution, x, satisfying IIf(x)ll <-10-8
(except that it was 10-4 in Problem 11). The computational results for all the problems
obtained in two ways--considering and not considering the structure off--are shown
in Tables 5.1-5.7. In these tables, the numbers to the left of "/" are the numbers of
pivoting operations and the numbers to the right of "/" are the numbers of evaluations
of the functions. From these results we can see that the algorithm considering the
structure of f greatly saves the number of pivoting operations and the number of
evaluations of the functions. But we also know that the complexity of our large-piece
implementation depends on the number of facets of such a piece, t, or, equivalently,
that it depends on the number of edges of a graph A. In [13] it is proved that the
number can be no more than 0(n3/2). For our examples, because Problems 1-8 and
11 are separable, the numbers are 2n, and the total numbers of facets for Problems 9
and 10 are listed in Tables 5.5 and 5.6 as "total ratios" columns. We can see that their
averages per pivot are generally no more than 2n. In the case not considering structure,
has 2n k / 1 faces. From these results we can conclude that the algorithm exploiting

the structure off often greatly saves the computations, in particular, the computations

TABLE 5.1
Computational results for Problems and 2.

Problem W

(1.0,-1.2)

(10.0, -12.0)

(100.0, -120.0)

(0.5, -2.o)

(5.0, -20.0)

(50.0, -200.0)

0.5
1.0
2.0

5.0
10.0
20.0

50.0
100.0
200.0

0.5
1.0
2.0

5.0
10.0
20.0

50.0
100.0
200.0

Not considering
structure

22/20
15/14
11/11

99/78
61/49
33/27

966/724
590/445
297/209

63/50
37/30
20/17

87/87
64/71
65/74

78/85
71/82
74/87

Considering
structure

17/15
12/11
10/10

77/56
49/37
30/24

735/493
451/306
277/189

47/34
28/21
16/13

65/65
49/56
49/58

60/67
54/65
55/68

A METHOD FOR SPARSE/PARTIALLY SEPARABLE EQUATIONS 219

TABLE 5.2
Computational results for Problem 3 (w2i_l 1, wi -1.2).

2
4
6
8
10
12
14
16
18
20

=0.5

Not considering Considering
structure structure

22/20 17/15
59/53 32/26
115/107 47/37
189/175 62/48
286/283 77/59
387/365 92/70
519/493 107/81
665/635 122/92
823/789 137/103
1002/964 152/114

=2.0

Not considering
structure

11/11
24/22
42/38
65/59
93/85
126/116
164/152
207/193
255/239
308/290

Considering
structure

10/10
18/16
26/22
34/28
42/34
50/40
58/46
66/52
74/58
82/64

TABLE 5.3
Computational results for Problems 4-7 (e 0.5).

5
10
15
20
25
30

5
10
15
20
25
30

Not considering Considering
structure structure

= tj(b-1))Problem 4 (wj

34/39 30/35
89/93 57/61
130/132 68/70
215/216 90/91
327/327 112/112
433/432 134/133

Not considering
structure

Considering
structure

t#(t#- I))Problem 5 (w#

33/38 30/35
61/66 55/60
93/98 80/85
126/131 105/110
160/165 130/135
200/205 155/160

Problem 6 (w 1)

55/62 43/50
94/101 78/85
145/152 113/120
185/192 148/155
234/241 183/190
270/277 218/225

Problem 7 (ws 1)

67/75
171/179
384/392
764/772
1317/1325
2022/2030

50/58
90/98
130/138
170/178
210/218
250/258

TABLE 5.4

--0.5(n+l--i)/(n+l)).Computational results for Problem 8 (e 0.5, w

5
10
15
20
25
30

Total operation

Not considering
structure

Considering
structure

51/57
121/127
216/222
336/342
481/487
651/657

41/47
76/82
111/117
146/152
181/187
216/222

First major cycle

Not considering
structure

21/22
66/67
136/137
231/232
351/352
496/497

Considering
structure

11/12
21/22
31/32
41/42
51/52
61/62

220 YANG BING AND GAO LIN

TABLE 5.5
0.5(n+l--i)/(n+l)).Computational results for Problem 9 (el 0.5, wj

5
10
15
20
25
30

Not considering
structure

87/95
413/407
562/562
1536/1504
1436/1436
3121/3077

Considering Total
structure ratios

53/61 567
185/179 3,832
193/193 5,412
387/355 14,859
362/362 15,722
581/537 30,623

TABLE 5.6
-0.5(n+l-i)/(n+l)).Computational results for Problem 10 (el 0.5, wj

4
5
6
7
8
9
10

Total operation

Not considering
structure

Considering
structure

81/82
155/153
248/243
711/642
1338/1218
3384/3057
4673/4285
4174/3899

81/82
140/138
197/192
549/480
893/773

2048/1714
2484/2096
2112/1837

First major cycle

Not considering
structure

Considering
structure

38/31
78/70
127/115
360/304
894/796

2439/2184
3450/3142
2675/2464

38/31
71/63
99/87
280/224
585/487
1393/1138
1739/1431
1238/1027

Total
ratios

442
989

1,926
6,789
11,839
31,633
42,885
40,282

TABLE 5.7
l/n).Computational results for Problem 11 (w

0.25

0.5

Not considering
structure

6/9
2 501/387
3 55902/44488

8/2
2 660/509
3 18252/14557

Considering
structure

6/9
386/372

14808/10088

8/12
507/356

11629/7934

The solutions

(.927212D+ 00)
(-.628318D + 01, 125664D + 02)

(-.501268D+ 02, -.752458D+ 02, 100063D+ 03)

(.927243D + 00)
(-. 125664D + 02, -.251327D+ 02)

(-.501268D+ 02, -.752458D + 02, 106346D + 03)

of the first major cycle (see Tables 5.4 and 5.6). The higher the dimension, the more
remarkable the improvement. Obviously, if we use a technique saving the number of
major cycles, such as Saigal’s acceleration technique [8] or joining a quasi-Newton
method ([14]), the computational efficiency will be more greatly improved.

Acknowledgments. We are most grateful to Professor M. Kojima, Professor
M. J. Todd, and the referees for several very helpful comments concerning this work.
Particularly, the corrections shown at the end of 4.3 were suggested by Professor
Todd. We are also grateful to Liu Chao-yang and Professor Li He for their kind help
with this paper.

A METHOD FOR SPARSE/PARTIALLY SEPARABLE EQUATIONS 221

REFERENCES

E. ALLGOWER AND K. GEORG, Simplicial and continuation methodsfor approximatingfixed points and
solutions to systems of equations, SIAM Rev., 22 (1980), pp. 28-85.

[2] R. FREUND, Variable-dimension complexes with applications, Math. Oper. Res., 9 (1984), pp. 479-497.
[3] M. KOJIMA, On the homotopic approach to systems of equations with separable mappings, Math.

Programming Stud., 7 (1978), pp. 170-184.
[4] M. KOJIMA AND Y. YAMAMOTO, Variable dimension algorithms: Basic theory, interpretations and

extensions of some existing methods, Math. Programming, 24 (1982), pp. 177-215.
[5] A unified approach to several restart fixed point algorithms for their implementation and a new

variable dimension algorithm, Math. Programming, 28 (1984), pp. 288-328.
[6] G. VAN DER LAAN AND A. J. J. TALMAN, A restart algorithm for computing fixed point without extra

dimension, Math. Programming, 17 (1979), pp. 74-84.
[7] J. J. MORI, B. S. GARBOW, AND K. E. HILLSTROM, Testing unconstrained optimization software, ACM

Trans. Math. Software, 7 (1981), pp. 17-41.
[8] R. SAIGAL, On the convergence rate of algorithms for solving equations that are based on methods of

complementarity pivoting, Math. Oper. Res., 2 (1977), pp. 108-124.
[9] M. J. TODD, Fixed-point algorithms that allow restarting without an extra dimension, Tech. Report No.

379, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY,
September 1978.

10] , Traversing large pieces of linearity in algorithms that solve equations byfollowing piecewise-linear
paths, Math. Oper. Res., 5 (1980), pp. 242-257.

11 ,Exploiting structure in piecewise-linear homotopy algorithmsfor solving equations, Math. Program-
ming, 18 (1980), pp. 233-247.

12], Numerical stability and sparsity in piecewise-linear algorithms, in Analysis and Computation of
Fixed Points, S. M. Robinson, ed., Academic Press, New York, 1980, pp. 1-24.

13], Piecewise-linear homotopy algorithms for sparse systems ofnonlinear equations, SIAM J. Control
Optim., 21 (1983), pp. 204-214.

14] B. YANG AND M. KOJIMA, Improving the computational efficiency offixed point algorithms, J. Oper.
Res. Soc. Japan, 271 (1984), pp. 59-76.

[15] H. SCARF, The approximation offixed points ofa continuous mapping, SIAM J. Appl. Math., 15 (1967),
pp. 1328-1343.

SIAM J. OPTIMIZATION
Vol. 1, No. 2, pp. 222-251, May 1991

EXPERIMENTS WITH CONJUGATE GRADIENT
ALGORITHMS FOR HOMOTOPY CURVE TRACKING*

KASHMIRA M. IRANI, MANOHAR P. KAMAT$, CALVIN J. RIBBENS,
HOMER F. WALKER, AND LAYNE T. WATSON

()1991 Society for Industrial and Applied Mathematics
005

Abstract. There are algorithms for finding zeros or fixed points of nonlinear systems
of equations that are globally convergent for almost all starting points, i.e., with probability
one. The essence of all such algorithms is the construction of an appropriate homotopy map

and then tracking some smooth curve in the zero set of this homotopy map. HOMPACK is a

mathematical software package implementing globally convergent homotopy algorithms with

three different techniques for tracking a homotopy zero curve, and has separate routines for

dense and sparse Jacobian matrices. The HOMPACK algorithms for sparse Jacobian matrices

use a preconditioned conjugate gradient algorithm for the computation of the kernel of the

homotopy Jacobian matrix, a required linear algebra step for homotopy curve tracking. Here
variants of the conjugate gradient algorithm are implemented in the context of homotopy
curve tracking and compared with Craig’s preconditioned conjugate gradient method used in

HOMPACK. The test problems used include actual large scale, sparse structural mechanics

problems.

Key words, globally convergent, homotopy algorithm, nonlinear equations, precondi-
tioned conjugate gradient, homotopy curve tracking, sparse matrix, matrix splitting, bordered
matrix

AMS(MOS) subject classifications. 65F10, 65F50, 65H10, 65K10

1. Introduction. The fundamental problem motivating this work is to solve a

nonlinear system of equations F(x) 0, where F En - En is a C2 map defined on

real n-dimensional Euclidean space En. The homotopy approach to solving F(x) 0 is

to construct a continuous map H(A, x), the "homotopy," deforming a simple function

s(x) to the given function F(x) as varies from 0 to 1. Starting from the easily
obtained solution to H(0, x) s(x) 0, the essence of a homotopy algorithm is to
track solutions of U(A,x) 0 until a solution of H(1, x) F(x) 0 is obtained.
The theoretical and implementational details of such algorithms are nontrivial, and
significant progress on both aspects has been made recently [37], [52].

* Received by the editors December 12, 1989; accepted for publication (in revised form)
October 15, 1990.

Department of Computer Science, Virginia Polytechnic Institute and State University,

Blacksburg, Virginia 24061. The work of these authors was supported in part by Depart-
ment of Energy grant DE-FG05-88ER25068, National Aeronautics and Space Administration

grant NAG-l-1079, National Aeronautics and Space Administration contract NAS1-18471-24,
National Science Foundation grant CTS-8913198, and Air Force Office of Scientific Research

grant 89-0497.

School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia

30332.
Department of Mathematics and Statistics, Utah State University, Logan, Utah 84322.

The work of this author was supported in part by Department of Energy grant DE-FG02-

86ER25018, Army grant DAAL03-88-K, and National Science Foundation grant DMS-8800995.

222

SPARSE HOMOTOPY CURVE TRACKING 223

Homotopies are a traditional part of topology, and only recently have begun to
be used for practical numerical computation. The (globally convergent probability-
one) homotopies considered here are sometimes called "artificial-parameter generic
homotopies," in contrast to natural-parameter homotopies, where the homotopy vari-
able is a physically meaningful parameter. In the latter case, which is frequently of
interest, the resulting homotopy zero curves must be dealt with as they are, bifurca-
tions, ill-conditioning, etc. The homotopy zero curves for artificial-parameter generic
homotopies obey strict smoothness conditions, which generally will not hold if the ho-
motopy parameter represents a physically meaningful quantity, but they can always
be obtained via certain generic constructions using an artificial (i.e., nonphysical)
homotopy parameter. Not just any random perturbation will suffice to create a glob-
ally convergent probability-one (generic) homotopy, e.g., the perturbation implied by
discretization is generally not sufficient to produce a probability-one homotopy map.

If the objective is to solve a "parameter-free" system of equations, F(x) 0,
then extra attention can be devoted to constructing the homotopy, and the curve-

tracking algorithm can be limited to a well-behaved class of curves. The goal of
using these globally convergent probability-one homotopies is to solve fixed-point and
zero-finding problems with homotopies whose zero curves do not have bifurcations
and other singular and ill-conditioned behavior. The mathematical software package
HOMPACK, used here for comparative purposes, is designed for globally convergent
probability-one homotopies.

The theory and algorithms for functions F(x) with small dense Jacobian matrices

DF(x) are well developed, which is not the case for large sparse DF(x), the topic of
this paper. Solving large sparse nonlinear systems of equations via homotopy methods
involves sparse rectangular linear systems of equations and iterative methods for the
solution of such sparse systems. Preconditioning techniques are used to make the
iterative methods more efficient.

Section 2 discusses the zero-finding problem and the normal flow homotopy al-
gorithm. Section 3 introduces iterative methods for solving invertible linear systems.
Section 4 discusses the linear algebra details of homotopy curve tracking and vari-

ous algorithmic possibilities for that. Section 5 presents the numerical results of the
implementation of the various algorithms on several test problems. Some general
conclusions from these results are drawn in 6.

2. Globally convergent homotopy algorithms. The philosophy of globally
convergent probability-one homotopy algorithms is to create homotopies whose zero

curves are well behaved with well-conditioned Jacobian matrices and that reach a

solution for almost all choices of a parameter. These homotopies are used to solve
fixed-point and zero-finding problems.

Let B be the closed unit ball in n-dimensional real Euclidean space En, and let

f B -- B be a C2 map. The fixed-point problem is to solve x f(x). Define

Pa :[0, 1) x B En by

(1) p,(), x) A(x- f(x)) + (1 A)(x- a).

The fundamental result [10] is that for almost all a in the interior of B, there is a zero

curve c [0, 1) B of Pa, along which the Jacobian matrix Dpa(,,x) has rank n,

224 IRANI, KAMAT, RIBBENS, WALKER, AND WATSON

emanating from (0, a), and reaching a point (1, 2), where 2 is a fixed point of f. Thus
with probability one, picking a starting point a E int B and following 3’ leads to a fixed

point 2 of f. An important distinction between standard continuation and modern
probability-one homotopy algorithms is that for the latter A is not necessarily mono-

tonically increasing along 3’. Indeed, part of the power of probability-one homotopy
algorithms derives from the lack of a monotonicity requirement for A.

The zero-finding problem

F(x) -0,

where F En E is a C2 map, is more complicated. Suppose that there exists

C2 map
p Em x [0, 1) x En En

such that
(a) the n x (rn + 1 + n) Jacobian matrix Dp(a, A, x) has rank n on the set

p-l(0) {(a, A, eTM, o <_ < 1, x G en, p(a, ,X, x) 0},

and for any fixed a e ETM, letting pa(,k,x) p(a,/,x),
(b) pa(O, x) p(a, 0, x) 0 has a unique solution x0,

(c) pa(1, x)-- _F(X),
(d) /921(0) is bounded.

Then for almost all a E there exists a zero curve 3’ of pa along which the Jacobian
matrix Dp has rank n, emanating from (0, x0) and reaching a zero 5: of F at A 1.

3’ does not intersect itself and is disjoint from any other zeros of p. The globally
convergent homotopy algorithm is to pick a ETM (which uniquely determines x0),
and then track the homotopy zero curve starting at (0, x0) until the point (1,) is

reached.
There are many different algorithms for tracking the zero curve ; the mathemat-

ical software package HOMPACK [52], [53] supports three such algorithms: ordinary
differential equation-based, normal flow, and augmented Jacobian matrix. Small dense
and large sparse Jacobian matrices require substantially different algorithms. Large
nonlinear systems of equations with sparse symmetric Jacobian matrices occur in many
engineering disciplines (the symmetry in the problems of interest here is due to the
fact that the Jacobian matrix is actually the Hessian of a potential energy function).
In this paper, we consider only the zero finding problem F(x) 0, the normal flow
curve tracking algorithm, and large sparse symmetric Jacobian matrices DF(x) stored
in a packed skyline data structure.

Consider the homotopy map

pa(X, /) /F(x) + (1 A)(X a).

The matrix Dxpa (x, A) ADF(x)+(1 A)I is symmetric and sparse with a "skyline"
structure. Such matrices are typically stored in packed skyline format, in which the
upper triangle is stored in a one-dimensional indexed array. An auxiliary array of
diagonal indices is also required. Assuming that F(x) is C2, a is such that the Jacobian

SPARSE HOMOTOPY CURVE TRACKING 225

matrix Dpa(X, A) has full rank along 3‘, and 3‘ is bounded, the zero curve 3’ is C and
can be parameterized by arc length s. Thus x x(s), A A(s) along 3‘, and

identically in s.

The zero curve 3‘ given by (z(s), X(s)) is the trajectory of the initial value problem

(4) -sPa(X(S), ,X(s)) [Dxpa(X(S), /X(s)), DApa(X(S), ,X(s))] \d//ds]
O,

dx dA)ds ds

(6) x(0) a, A(0) 0.

Since the Jacobian matrix has rank n along 3‘, the derivative (dx/ds, dA/ds) is uniquely
determined by (4), (5) and continuity, and the initial value problem (4)-(6) can be
solved for x(s), A(s). From (4) it can be seen that the unit tangent (dx/ds, dA/ds) to

3‘ is in the kernel of Dpa.
The normal flow curve tracking algorithm has four phases: prediction, correction,

step size estimation, and computation of the solution at A 1. For the prediction
phase, assume that two points p(1) (x(81),/(81)) p(2) (x(82),/(82)) on 3‘ with

corresponding tangent vectors (dx/ds(sl), dA/ds(sl)), (dx/ds(s2), dA/ds(s2)) have
been found, and h is an estimate of the optimal step (in arc length) to take along 3‘.
The prediction of the next point on 3‘ is

(7) Z() p(s2 + h),

where p(s) is the Hermite cubic interpolating (x(s), A(s)) at 81 and s2. Precisely,

p’(81) (dx/da(81), dA/ds(sl)),
p’(s2) (dx/ds(s2), dA/ds(s2)),

and each component of p(s) is a polynomial in s of degree less than or equal to 3.

Starting at the predicted point Z(), the corrector iteration is

(8) Z(k+l) Z(k) [Dpa (Z(k))] + pa(Z(k)), k-- 0,1,

where [Dpa(Z(k))]+ is the Moore-Penrose pseudoinverse of the n x (n + 1) Jacobian
matrix Dpa. Small perturbations of a produce small changes in the trajectory 3‘,

and the family of trajectories 3‘ for varying a is known as the "Davidenko flow."
Geometrically, the iterates given by (8) return to the zero curve along the flow normal
to the Davidenko flow, hence the name "normal flow algorithm."

226 II:tANI KAMAT I:tIBBENS WALKEI:t AND WATSON

A corrector step AZ is the unique minimum norm solution of the equation

(9) [Dpa] /kz --Pa.

Fortunately AZ can be calculated at the same time as the kernel of [Dpa], and with
just a little more work. The numerical linear algebra details for solving (9), the optimal
step size estimation, and the endgame to obtain the solution at A 1 are in [52], [53].

The calculation of the implicitly defined derivative (dx/ds, dA/ds) is done by com-

puting the one-dimensional kernel of Dpa, i.e., by solving the n (n + 1) linear system
[Dpa]y O. This can be elegantly and efficiently done for small dense matrices [47],
[51], but the large sparse Jacobian matrix presents special difficulties. The difficulty
now is that the first n columns of the Jacobian matrix Dpa(x,)) involving DF(x)
are definitely special, and any attempt to treat all n / 1 columns uniformly would
be disastrous from the point of view of storage allocation. Hence, what is required
is a good algorithm for solving nonsquare linear systems of equations (9) where the
leading n n submatrix Dxpa of Dp is symmetric and sparse. This paper considers
various iterative methods for solving such linear systems of equations.

3. Iterative methods for invertible linear systems. Nonsquare systems of
the form (9), involved in the tangent vector and normal flow iteration calculations,
are converted to equivalent square linear systems of the form

(10) AY=(B fd)ct y b,

where the n n matrix B is bordered by the vectors f and c to form a larger system
of dimension (n + 1) (n + 1). In the present context B Dxp(x,) is symmetric
and sparse, but A is not necessarily symmetric.

Iterative methods are used for solving these linear systems. (If B has only a

couple nonpositive eigenvalues, direct methods are a viable alternative; this issue is
addressed later.) Iterative methods compute a sequence of approximate solutions {xi}
which converge to the exact solution x by some algorithm of the form

Xi+l Fi(Xo, Xl, xi),

where x0 is an arbitrary initial guess and Fi may be linear or nonlinear.
Iterative methods require the coefficient matrix A in the algorithm, generally

only to compute matrix-vector products. Since matrix-vector computations are quite
inexpensive for sparse problems, iterative methods have low computational cost per
iteration. Iterative methods are also attractive because they have low storage require-
ments, due to the fact that at each iteration, only a small number of vectors of length
N n+ 1 need to be computed and stored to calculate the next iterate Xi+l, and A it-
self can be generated or stored compactly. Thus iterative methods are sometimes more

attractive than direct methods for solving large sparse linear systems of equations.
Iterative methods such as the successive over-relaxation (SOR) algorithm [43]

and the alternating direction implicit (ADI) algorithm [57] require the estimation of
scalar parameters. The conjugate gradient procedure [24] is an efficient algorithm

SPARSE HOMOTOPY CURVE TRACKING 227

for solving symmetric positive definite systems which requires no such estimates. For
many years, the only iterative methods known to converge for general nonsymmetric
problems were the conjugate gradient method applied to the normal equations [24]
and Lanczos’ biconjugate gradient algorithm [29]. Other early conjugate gradient-like
methods for nonsymmetric problems which avoided the use of the normal equations
were the generalized conjugate gradient method of Concus and Golub [11]-[12] and
Widlund [56], and Orthomin by Vinsome [44]. These methods apply only to matri-

ces with positive definite symmetric part, although with preconditioning they can in

principle be used to solve more general problems [18]. Other conjugate gradient-like
methods for more general problems were proposed by Axelsson [1]-[3]; Eisenstat, El-
man, and Schultz [17]; Jea [251; Saad [391; Young and Jea [58]-[59]; and Saad and
Schultz [41]. Preconditioning techniques that have been effective for symmetric, pos-
itive definite systems include the incomplete LU factorization [30], [31], the modified
incomplete LU factorization [15], [22], and the SSOR preconditioning [57]. Most of
these extend naturally to nonsymmetric problems. A lot of work has also been done
comparing these various iterative methods and the preconditioning techniques [9],
[14], [18], [41]. Unfortunately very little of this existing theory is directly applicable
to the sparse linear systems arising from homotopy curve tracking, because they are

nonsquare, generally indefinite, and lack special structure typical of PDE problems.
The rate of convergence of conjugate gradient-type methods depends on the sym-

metry, inertia, spectrum, and condition number of the coefficient matrix. There are

efficient conjugate gradient algorithms for solving linear systems with symmetric pos-
itive definite coefficient matrices, whereas no comparable theory exists for general
systems with nonsymmetric or indefinite A. This paper compares the relative perfor-
mance of conjugate gradient-type algorithms for solving nonsymmetric or indefinite
linear systems of the form Ax b arising from globally convergent homotopy algo-
rithms, in terms of execution time, storage requirements, and the number of iterations

required to converge.
Let Q be an N N nonsingular matrix. The solution to Ax b can also be

obtained by solving the system

x (Q-1A)x Q-lb- .
The use of such an auxiliary matrix is known as preconditioning. The goal of precon-
ditioning is to decrease the computational effort required to solve linear systems of
equations by increasing the rate of convergence of an iterative method. For precon-
ditioning to be effective, the faster convergence must outweigh the costs of applying
the preconditioning, so that the total cost of solving the linear system is lower. The
preconditioned coefficient matrix A is usually not explicitly computed or stored. The
main reason for this is that although A is sparse, . may not be. The extra work of
preconditioning, then, occurs in the preconditioned matrix-vector products involving
Q-1. The main storage cost for preconditioning is usually for Q, which typically is

stored, so that one extra array is required to handle the preconditioning operation.
As mentioned above, one iterative method known to converge for general nonsym-

metric problems is the conjugate gradient method applied to the normal equations.

228 IRANI KAMAT RIBBENS WALKER AND WATSON

Given any nonsingular matrix A, the system of linear equations Ay b can be solved

by considering the linear system (normal equations)

A Ay A b,

or the similar system

AA z b, y A z.

Since the coefficient matrix for the latter system is both symmetric and positive defi-

nite, the system can be solved by the conjugate gradient algorithm. Once a solution

vector z is obtained, the vector y from the original system can be computed as y Atz.
The drawback of this technique is that, while the coefficient matrix is symmetric and

positive definite, the convergence rate depends on cond(AAt) (cond(A))2 rather

than on cond(A); see [18] for a precise statement.

An implementation of the conjugate gradient algorithm in which y is computed
directly, without reference to z, any approximations of z, or AA is due to Craig [13]
and is described in [19] and [23]. (Of course, the convergence rate still depends on

cond(AAT) -(cond(A))2 in general.) Craig’s preconditioned algorithm is:

choose Y0, Q;

set r0 b Ay0;

set r0 Q-lro;
set po AtQ-tZo;
for 0 step 1 until convergence do

begin

ai (pi,pi),

Yi+l Yi nt- aiPi;

+ r5 aiQ-1Api;

bi
(i+1, ?i+1)

Pi+l At(-ti+l + biPi;

end

Here (x, y) denotes the inner product of x and y. For this algorithm, a minimum of

5(n + 1) storage locations is required (in addition to that for A). The vectors y, ,
and p all require their own locations; (-t can share with Ap; (-lAp can share with

AtQ-t. The computational cost per iteration of this algorithm is:

(a) two preconditioning solves (Q-iv and Q-tv);
(b) two matrix-vector products (Av and Atv);
(c) 5(n / 1) multiplications (the inner products (p,p) and (,), ap, bp, and

aQ-1Ap).

SPARSE HOMOTOPY CURVE TRACKING 229

3.1. Alternatives for solving (10). There are three main approaches to

solving (10):
(1) In the block factorization approach to the problem, a block elimination algo-

rithm is used instead of working with the whole matrix A directly. Such an algorithm
would take advantage of the special properties of the submatrix B.

(2) The general approach works directly with the whole matrix A without taking
any special advantage of the fact that the submatrix B contained in A is symmetric.

(3) The splitting approaches lie somewhere between (1) and (2). Here A is split

into the sum of a symmetric matrix M and a low rank correction L. These methods

also take advantage of the fact that the leading submatrix B is symmetric and can

use conjugate gradient algorithms requiring a symmetric coefficient matrix.

APPROACH 1 (block factorization methods). The linear system (10) can also be

written as

B y b

A block-elimination algorithm [5] would be:

factor B;
solve By f;

solve Bw b;
compute y" (b" ctw)/(d ctv);
compute y w- y’v.

With such block factorization methods, the work consists mainly of one factorization

of B (assuming that is possible) and two backsolves with the factors of B. Observe
that block elimination will frequently fail in the homotopy context, because even

though rank A n + 1 and rank (B f) rank Dp n, it may very well happen
that B D:p is singular (rank B n- 1). Singular B can be handled by deflation

techniques [5]-[8], resulting in a direct algorithm very similar to other direct algorithms
discussed below under matrix splittings. If the deflated systems were solved iteratively,
this would constitute yet another iterative algorithm with no apparent advantage over

the other iterative algorithms considered here. Deflation and block elimination will

not be considered further.

APPROACH 2 (general methods). These algorithms work on the nonsymmetric A
directly. If Y0 is an initial approximation of y, and r0 the corresponding residual vector

ro b- Ayo, then the Krylov subspace methods consist of finding an approximate

solution belonging to the affine subspace Y0+Kj, where Kj is the Krylov subspace gen-

erated by r0, Aro,... AY-lro There are several such methods besides Craig’s method

known as Orthomin(k) [44], Orthodir and Orthores [59], the Incomplete Orthogonal-
ization Method [40], the GCR method [18], and the GMRES method [42]. Typical of

230 IRANI, KAMAT, RIBBENS, WALKER, AND WATSON

these methods is the preconditioned Orthomin(k) algorithm, given by:

choose Y0;

set ro b- Ayo;
set r0 Q-it0;
set p0 r0;

for i- 0 step 1 until convergence do

begin

(Zi, Q-1Api)
ai (Q-Api, Q-Api)
yi+ yi + aipi;

i+1 i aiQ-Api;

(i) (Q-1Ai+i, Q-1Apj)
bj (Q_IApj,Q_iApj)

j max{O,/- k 4- 1},...i;

pi+l iq-1 4- E bjpj;
j--(i-k+l)+

end

where (i- k + 1)+ max(O, i- k + 1}. As for the storage costs, Apj is overwrit-

ten by Q-1Api and A by Q-1A. Thus storage is required for y, , {Pi}ii-a+l)+,
and Q-IA.{Q lApj}(i_k+l)+,

However, Orthomin(k) is guaranteed to converge only for positive definite coeffi-
cient matrices A (equivalently, A with positive definite symmetric part (A 4- At)/2).
(Some authors define positive definite only for symmetric matrices, while others say
A is positive definite if xtAx > 0 for all x 0 in En, whether A is symmetric or

not. This latter meaning is used here.) More general systems Ax b, where A is

not positive definite, can be solved by applying Orthomin(k) to the transformed sys-
tem ZAx Zb, where Z is nonsingular and ZA is positive definite. The matrix Z
must be known and used explicitly in the iteration, a major obstacle to the general
applicability of Orthomin(k).

The GCR method may also break down if the coefficient matrix is not positive
definite. Although Orthodir does not break down in this case, it is observed to have
stability problems [40]. GMRES, on the other hand, although equivalent to GCR
for positive definite coefficient matrices, can be used to solve systems for which the
coefficient matrix is not positive definite, and requires half as much storage as GCR.
However, GMRES requires storage of the order of the number of iterations performed
for convergence. Hence, the algorithm is used iteratively, i.e., it is restarted every k
steps, where k is a fixed parameter, leading to the following GMRES(k) algorithm

choose yo, tol;

set ro b- Ayo;
while IIr011 > tol do

SPARSE HOMOTOPY CURVE TRACKING 231

begin

for j- 1 step 1 until k do

begin

for i-- 1 step 1 until j do hi,j (Avj, vi);
J

)j+l Avj E hi,jvi;
i-1

Vj+)j+ / hj+1,j

end

Solve min [I I]roll el kxll for xk where /k is described in [42];

set Yo Yo / Vkxk; set ro b- Ayo
end

In practice the algorithm calculates]]rj[(llrj]] can be calculated without forming yj
or rj b- Ayj explicitly) at each iteration of the j loop, and breaks the j loop if

Ilrj]] < tol [42], [45]. Also, it is important in practice that the classical Gram-Schmidt
process in the inner j loop be replaced by the modified Gram-Schmidt process to
ensure stability. GMRES(k), like Orthomin(k), is guaranteed to converge when the
coefficient matrix is positive definite. However, for an indefinite coefficient matrix,
GMRES(k), while it does not break down, may fail because the residual norms at
each step, although nonincreasing, do not converge to zero.

APPROACH 3 (coefficient matrix splittings). There are several ways of splitting
the coefficient matrix A in (10) as the sum of a symmetric matrix M and a low rank
matrix L. The choice (ct, d) as the last row of M gives the splitting

(11) M ct d 0

where en+l is a vector with 1 in the (n + 1)st component and zeros elsewhere. There
are many reasonable choices for (ct, d), discussed later (recall that (ct, d) can be almost
any, in the sense of Lebesgue measure, vector for which (10) produces a solution to the
true problem (9) or [Dpa]y 0). The linear system Ay b is then solved by applying
iterative techniques to two linear systems with coefficient matrix M followed by the
Sherman-Morrison formula; the algorithmic details of this are in the next section.
Another possibility would be to compute a symmetric indefinite factorization of M,
and not use iterative methods at all. However, this destroys the skyline data structure
containing M, and a tacit assumption here is that the skyline data structures must
be preserved. If it were acceptable to destroy the skyline data structure, this direct
approach would likely be the most efficient of all for skyline sparsity patterns, but
would not generalize to arbitrary sparsity patterns (which the iterative methods will).

Another way of splitting up the coeificient matrix A is

(12) A D- AL Au,

232 IRANI KAMAT RIBBENS WALKER AND WATSON

where D is the diagonal of A, AL is the strict lower triangle of-A, and Au is the strict
upper triangle of-A. The symmetric successive over-relaxation (SSOR) iterative
method [57] is the following two stage algorithm:

(D wAn)x,+1 [(1 w)D + wAv]x, + wb,

(D wAv)xi+l [(1 w)D + wAL]Xi+ll2 + wb,

where w is a real scalar parameter between 0 and 2. With

1
Q (D -wAL)D-I(D --wAG),

this method can be formulated as a one step algorithm

QXi+l (Q A)xi + b.

In the homotopy context, D-1 frequently does not exist, and a diagonal matrix E
such that [diag (A + E)] -1

does exist may not be of low rank (meaning that the
solution for A cannot be easily recovered from the solution for A + E). Consequently,
SSOR and methods based on similar splittings are of limited utility in the homotopy
context; in fact, SSOR failed for all the test problems in 5. A few experiments were

also tried with SSOR (w 1) as a preconditioner, but it was not competitive, and is
not considered further here.

3.2. Some preconditioning techniques. This section considers some pre-
conditioning techniques to be used in conjunction with the algorithms just described.
Preconditioning matrices constructed from approximate factorizations of the coeffi-
cient matrix are considered first. A lower triangular matrix L and an upper triangular
matrix U that are in some sense approximations of the factors in the LU factorization
of A, but that are also sparse, are constructed. The preconditioning matrix is the
product Q LU. The heuristic used to insure that the preconditioning is inexpensive
to implement is to force the factors to be sparse by allowing nonzeros only within a

specified set of locations.

(i) The incomplete LU factorization (ILU). Let Z be a set of indices contained in

{(i,J) 1 _< i,j <_ N, j}, typically where A is known to be zero. The incomplete
LU factorization is given by Q LU, where L and U are lower triangular and unit
upper triangular matrices, respectively, that satisfy

Lj Uj O,
Qij Aij,

The incomplete LU factorization algorithm is:

for 1 step 1 until N do

for j 1 step 1 until N do

if ((i, j) Z) then

begin

end

min{i,j}--i

8ij Aj E LitUtj
t=l

if (i >_ j) then Lij 8ij else Uij 8ij/Lii;

SPAI:tSE HOMOTOPY CUI:tVE TI:tACKING 233

It can happen that Lii is zero in this algorithm. In this case Li is set to a small

positive number, so that Q Ai.
(ii) The modified incomplete LU factorization (MILU). Let Z be the set of indices

that determine the zero structure, and assume that (i,i) Z, 1 <_ _< N. The

modified incomplete LU factorization is given by Q LU, where L and U are lower

triangular and unit upper triangular matrices, respectively, that satisfy

Lj Uj 0,
Qij Aij,

E-I (QiJ Aj)

(i, j) E Z,
(i, j) Z, # j,

l<_i<_N,

where a is a scalar. The modified incomplete LU factorization algorithm is:

for i- 1 step 1 until N do

begin

Lii a;

for j- 1 step 1 until N do

begin

min{i,j}--i

sij Aij E
t--1

if ((i,j) Z) then

begin

end

Lit Utj

if (i > j) then Lij 8ij

if (i j) then L Li + s
if (i < j) then Uj sj

end

else Lii L + sj;

end

forj-i+l step 1 untilndo

U ij/L;

Since LU factorizations preserve a skyline sparsity structure, the MILU factorization

is the same as the ILU factorization for c 0. The motivation for the MILU fac-

torization is to control the elements of Q where it does not match A, at least in an

average sense. In the homotopy context here with skyline A and a > 0, Q can be

construed as an approximation to A that is closer to (or more) positive definite than

A.

234 IRANI KAMAT RIBBENS WALKER AND WATSON

4. Algorithms for computing ker[Dpa]. As discussed in 2 for the normal flow

algorithm, a corrector step AZ is the unique minimum norm solution of (9), which

uses the solution of the rectangular linear system [Dpa]y 0. This section describes

various algorithms for the solution of such linear systems.
Let (2,) be a point on the zero curve -y, and the unit tangent vector to "y at

(2,) in the direction of increasing arc length s. Then the matrix

A DxPa(X,,k) Dipa(X, ,k)(13) c d J

where (c d) is any vector outside a set of measure zero (a hyperplane), is invertible

at (2,) and in a neighborhood of (2,). Thus the kernel of Dpa can be found by
solving the linear system of equations

(14) Ay- Oen+l b,

where (c d)l c.

The coefficient matrix A in the linear system of equations (14) has a very special
structure which can be exploited in several ways. Note that the leading n n submatrix

of A is Dxpa, which is symmetric and sparse, but possibly indefinite. Since symmetry
is advantageous for some algorithms, A can be made symmetric and invertible by
choosing c Dpa. If rank Dxp n- 1, then Dpa is not a linear combination of
the columns of DxPa, because rank [DxPa Dpa] n by the homotopy theory. Thus

c (Dixpa) is not a linear combination of the rows of the symmetric matrix Dxp,
and the

(15) row rank (Dpa)t n.

Finally,

is not a linear combination of the first n columns of A, so the column rank A n + 1

for any choice of d. Now suppose that rank Dxpa n. Then

(16) rank (D)pa)t-n,
and it suffices to choose d to make the last column of A independent from the first

n columns. Dp is a unique linear combination of the columns of Dp, and any

choice of d other than this combination of the components of (Dpa) will make the

(n / 1)st column independent. Let A denote A at (g,,/k). Since dim[ker(A)] < 1,
y 0 implies y ag, and thus with t (gt,gn+l) (DApa(2,))tl _+_ dln+l O.

Choosing any 0 and solving (Dpa(2,))t9 + dgn+l for d (gn+l - 0 since

rank Dpa(2, ,k) n) gives a d such that rank(A) n + 1 for (x, A) near (2,

SPARSE HOMOTOPY CURVE TRACKING 235

Observe also that if Dxpa is positive definite, choosing d > 0 sufficiently large
guarantees that

is also positive definite.

Proof. Since A is symmetric, by Sylvester’s Theorem A is positive definite if and
only if all its leading principal minors are positive. Since Dxpa is positive definite,
the first n leading principal minors are positive, and it suffices to show det A > 0.
Expanding det A along the last column,

det A d. det Dpa + terms not involving d > 0

for d > 0 sufficiently large. [-]

Another approach is to attack (14) indirectly as follows. Write

(17) A M + L,

where

(18) M I Dxpa(’2’ dC)

Observe that for almost all choices of (c d) the symmetric part M is also invertible.
Then using the Sherman-Morrison formula, the solution y to the original system
Ay b can be obtained from

M-1]Uen+ M-lb(19) y- I-
(M_lu)ten+ + 1

which requires the solution of two linear systems Mz u and Mz b with the
sparse, symmetric, invertible matrix M. The scheme (17)-(19) was proposed in [27],
and further investigated by Chan and Saad [9]. First, the HOMPACK approach to
the solution of these linear systems will be discussed.

Let Ikl- maxi Iil define the index k. In HOMPACK, (c d) e, where ek is
a vector with 1 in the kth component and zeros elsewhere. Hence (13) becomes

A (Dp(x"))"
The kernel of Dp can be found by solving the linear system of equations

Ay ken+l b.

Again, splitting the coefficient matrix as

A=M+L

236 IIANI, KAMAT IIBBENS, WALKER, AND WATSON

gives a symmetric

Uen+l, it
0 ek(1 5k,n+l).

(The Kronecker 5k,+1 takes care of the special case k n + 1.) Then the Sherman-
Morrison formula (19) is used for the solution y of the linear system (14). Craig’s
preconditioned algorithm is used for solving the systems Mz u and Mz b. The

preconditioning matrix Q is taken as a positive definite approximation of M (the Gill-

Murray preconditioner, described in detail in [21] and [52]). The details are intricate,
but essentially Q is computed as a Cholesky factorization of M + E, where E is a

positive semidefinite diagonal matrix chosen to guarantee that Q is well conditioned.
This algorithm is not especially well matched to the skyline data structure.

If M had only one or two negative eigenvalues, then after several rank one updates
making M positive definite, a direct Cholesky factorization could be obtained, and
then the solution to (14) recovered after several more applications of (19). This direct

algorithm for solving (14) would be effective for such M, but since only one or two

negative eigenvalues for M cannot be assumed in general (the M for a large shallow
dome problem has many negative eigenvalues along the unloading portions of the

equilibrium curve), a direct rank one update/Cholesky scheme would not be suitable

for HOMPACK.
There are several other schemes which could be used instead of the one in HOM-

PACK for finding the kernel of Dp, for example,

(i) using different last rows for the augmented coefficient matrix A of (13), i.e.,
other vectors (c d) instead of e;

(ii) using other preconditioners on M;

(iii) using other algorithms for the solution of the linear systems Mz u and

Mz b, e.g., Orthomin(k), SSOR, etc., instead of Craig’s algorithm;

(iv) doing (i), (ii), or (iii) on the nonsymmetric A directly instead of on the

symmetric M in the splitting A M + L.

Combining the preconditioning techniques with the algorithms for solving linear

systems with different last rows for A produces a large number of possible methods.
The next section focuses on a subset of these possible methods and compares their

efficiency.

5. Numerical experiments. Of the various algorithmic possibilities mentioned
in the previous section, those considered further are given short names in the list below.
Some possibilities do not make sense or are impractical in the homotopy context, and
thus are not considered. Of the almost all mathematically valid choices for the last
row (c d)of A, only e (the easiest to implement), c- Dp(2, A) (the easiest

symmetrization of A), and the tangent vector t at the previous point on the zero

curve (the optimal choice for conditioning, since it is orthogonal to the top n rows of
A at (2,))) are used.

SPARSE HOMOTOPY CURVE TRACKING 237

SC
SCGM

A M / L splitting, Craig’s method with M, no preconditioning;
A M/L splitting, Craig’s method with M, Gill-Murray preconditioning
from HOMPACK;
A M / L splitting, Craig’s method with M, incomplete LU precondi-
tioning;
A M / L splitting, Craig’s method with M, modified incomplete LU
preconditioning;
no splitting, Craig’s method with A, no preconditioning;

-no splitting, Craig’s method with A, Gill-Murray preconditioning from
HOMPACK;
no splitting, Craig’s method with A, incomplete LU preconditioning;

-no splitting, Craig’s method with A, modified incomplete LU precondi-
tioning.

SR A M / L splitting, GMRES(2) with M, no preconditioning;
SRGM A M / L splitting, GMRES(2) with M, Gill-Murray preconditioning

from HOMPACK;
SRILU A M/L splitting, GMRES(2) with M, incomplete LU preconditioning;
SRMILU- A M / L splitting, GMRES(2) with M, modified incomplete LU pre-

conditioning;
R no splitting, GMRES(2) with A, no preconditioning;
RGM no splitting, GMRES(2) with A, Gill-Murray preconditioning from HOM-

PACK;
RILU no splitting, GMRES(2) with A, incomplete LU preconditioning;
RMILU no splitting, GMRES(2) with A, modified incomplete LU preconditioning.

The test problems are now described in detail, beginning with the shallow arch
structural response problem.

5.1. Shallow arch. The equations of equilibrium of the arch are obtained from
the principle of the stationary value of the total potential energy, according to which,
of all the kinematically admissible displacement fields, the one that makes the total
potential energy of a structure stationary also satisfies its equations of equilibrium.
The total potential energy of a structure is given by the sum of its strain energy
and the potential of external loads.

The shallow arch of Fig. 1 is discretized by an assemblage of straight p-q frame
elements such as those described in [26]. A frame element is a structural compo-
nent that is initially straight and undergoes axial, bending, and torsional deformation
resulting from finite displacements and rotations of its ends (nodes) p and q. The
displacements of the end q relative to the end p are

SCILU

SCMILU

C
CGM

CILU
CMILU

[Tip Yq 0

G- G o
+ [Tip Vq

where L is the initial rigid body length, and Ui, V, Wi (i p or q) denote the
global displacements of the nodes. The matrix [Tip can be shown to be [26] [Tip
IT1 (bx, Cy, Cz)] IT1 (Oxp, Oyp, Ozp)] with

CyCz Cy8z --Sy I--Cx8 / 8xSyCz CxCz / 8xSySz 8xCy
8xSz / CxSyCz --SxCz / CxSySz CxCy

238 IRANI, KAMAT, RIBBENS, WALKER, AND WATSON

ci cos ci and si sin ci for x, y, and z. Angles Cx, by, and Cz are the initial

orientation angles and angles Oxp, Oyp, and Ozp are the rigid body rotations of the end
p. In the equation for IT]p, Euler angle transformations are implied with the order of
the rotations being cz, cy, and c.

FIG. 1. Shallow arch.

Similarly, with the restriction of small relative rotations within the element, the
rotations , , of the end q relative to the end p are

Oq Ozp

With the relative generalized displacements (Su, 5v, 5w) and (, Cy, Cz) known,
the usual deformation patterns of the reference axis of the beam element in the coro-

tational coordinate system are assumed to be

1
v() (32 23)(5v zs) + ((3 2)z,

1
w() (32 23)(5w + ysCx) (3 2),

where x/L and y and z are the coordinates of the shear center of the cross

section of the beam. The strain at any point (y, z) on the cross-section of the frame
element can be shown to be

L r/ (1 2)(v- z) + 2(3- 1)z

[]Z(1 2)(6w + y) 2(3- 1)y

with r] y/L and z/L. In these equations it is implicitly assumed that the lateral
displacements and twists are referenced to a longitudinal axis through the shear center,
while the axial displacements and rotations are referenced to the centroidal axis.

The total potential energy of such a discretized model of the arch can be expressed
as

m

7r E Ue qtQ,
e=l

SPARSE HOMOTOPY CURVE TRACKING 239

where U is the strain energy of the eth element, e 1, ..-, rn, q is the vector of nodal
displacement degrees of freedom of the entire model and Q is the vector of externally
applied loads. The strain energy U of the eth frame element is given by

e2dA dx- dv -where e is the strain of a point (x, y, z) of the beam, which was derived above. Sub-
stituting for and doing the integration gives

{ 12[1 1U Up_q-
E

A(Su)2 + /z (Sv) 2 + L222z LSvCz2L 2
+ + +

where A is the cross-sectional area, and I and I are the cross-sectional moments
of inertia about the and z axes, respectively. It is evident that the potential energy

of the model is a highly nonlinear function of the nodal displacements. The equa-
tions of equilibrium of the model are obtained by setting the variation to ero, or

equivalently by
V=0.

Closed form analytical expressions for V can be obtained with some diculty, but
obtaining the Jacobian matrix of V analytically seems out of the question. Hence
the Jacobian matrix of the equilibrium equations is obtained by finite difference ap-
proximations.

By symmetry only half the arch need be modelled, and the results here are for
the arch parameters used in [28], with a full arch load of a000 lbs. This is just below
the limit point. To go through the limit point and along the unloading portion of the
equilibrium curve apparently requires very accurate Jacobian matrices and numerical
linear algebra, and none of these iterative linear equation solvers used in HOMPACK
were able to go past the limit point without tweaking the HOMPACK step size control
parameters.

g.2. Shallow dome. The shallow dome of ig. 2 is built up from space truss
elements with three global displacement degrees of freedom (,, a) at each of the
two nodes. or an element of original length between its two nodes p and q, the

change in length 5L is given by

where xij uij, p, q; j 1, 2, 3 are the global coordinates and displacements of the
two nodes. This can be simplified to

5L- L 1 + r + r
i=1

240 IRANI, KAMAT, RIBBENS, WALKER, AND WATSON

FIG. 2. Triangulation for 21 degree of freedom shallow dome.

where A is the difference operator for the q and p values. Accordingly, the axial strain

in the eth element is

--= I+E L: + L

1/2

The strain energy of the eth element in a purely linearly elastic response is given by

EJ EALe(ee)2u:-2
v

where E and A are the Young’s modulus and cross-sectional area, respectively, of the
eth element.

The total potential energy of the dome is then given by

71"

e=l

where Ui, 1,.--,6 are the six components Uqk, upk, k 1,2,3, and Q is the
generalized force vector. The equations of equilibrium of the model are then obtained
by setting

Vrr E EAeLVe Q O.
e:l

Both the gradient of r as well as its Hessian can be evaluated explicitly without

resorting to finite differencing operations as in the case of the frame element used to
model the shallow arch.

SPARSE HOMOTOPY CURVE TRACKING 241

The effect of modelling the shallow dome with truss elements in concentric rings
is that changing the number of truss elements changes the model and its behavior.
Thus the dome problems with different degrees of freedom reported in the tables are

qualitatively different, with different buckling loads and bifurcation points. The results
reported here are for shallow domes with base radius 720 and sphere radius 3060, and
a point load at the very top.

5.3. Artificial turning point problem. The turning point problem is derived
from the system of equations

F(x) (FI (x), F:(x),..-, 0

where

XiT1)
Fi(x) tan-1 (sin[xi(i mod 100)]) 2O

i-- 1,-..,N,

and x0 XN+I 0. The zero curve " tracked from A 0 to A 1 corresponds
to pa(x, A) (1 -.SA)(x- a)+ .8AF(x), where a was chosen artificially to produce
turning points in /. HOMPACK had no difficulty going through numerous turning
points using iterative linear equation solvers.

Tables 1-6 show some timing results for these three test problems. An asterisk
indicates either that the iterative linear equation solver stalled, was lost because of
inaccurate tangents from the linear equation solver, or the time was at least an order
of magnitude larger than anything else in the table. The times are for tracking the
entire zero curve and thus represent the solution of many linear systems of varying
degrees of difficulty. The experiments were done in double precision using a single
processor of a Sequent Symmetry $81 multiprocessor. The major headings are the

acronyms for the algorithms, and the subheadings denote the choice (c d) for the
last row of A. The MILU algorithms used a 1. There is asymmetry in the tables
because some possibilities do not make sense. For instance, there is no CGM with ek

because the Gill-Murray preconditioner requires a symmetric matrix, and there are

no S* with D)pa since the choice c (D)pa) makes A symmetric so there is no

need to split off a symmetric matrix M from A.

6. Discussion and conclusions. The convergence rate of conjugate gradient
iterative methods for linear systems depends on the spectrum and the condition num-
ber of the coefficient matrix, and therefore one would predict t should be a better
choice for the last row of A than e. Since is orthogonal to the rows of Dpa(,
a good approximation to the first n rows Dpa(x,) of A, one expects A with to be
better conditioned than with ca. Tables 1, 3, and 5 show that apparently this better
conditioning does not compensate for the extra work involved in using . Although
is sometimes better than ek, there seems to be no strong evidence that is worth the
trouble.

Figure 3 shows the condition numbers of A and Q-1A along /for the shallow arch
problem with n 29 (CGM). The shallow arch problem is indeed a hard problem, but
Fig. 3 alone would not suggest that--see the discussion of the shallow arch problem’s
spectra later. The Jacobian matrix Dxp becomes indefinite near .88, at which

242 IRANI KAMAT RIBBENS WALKER AND WATSON

TABLE 1
Execution time in seconds for shallow arch problem.

SC

29 1108 947
47 16904 17593

SR
29 * *
47 * *

SCGM

e t
468 818
7322 10105
SRGM

461 *
5314 *

SCILU

599 470
5674 5957
SRILU
559 443

5796 6332

8CMILU

908 975
11538 12390
SRMILU

TABLE 2
Execution time in seconds for shallow arch problem.

n

29
47

29
47

C

e t Dxp

856 884 919
14205 13591 14606

R

CILU

e t Dxpa

533 458 443
5794 5807 6776

RILU
443 431 5O6
5355 5304 5697

CMILU CGM

e t Dxpa Dpa

841 845 900 464
9943 10968 10135 6921

RMILU RGM
* * * 429
* * * 5260

TABLE 3
Execution time in seconds for shallow dome problem.

SC

21 57 86
546 3127 4803
1050 5615 8553

SR
21 * *

546 * *
1050 * *

SCGM

108 57
2710 1787
5107 3177
SRGM

,

SCILU

21 25
492 630
887 1133
SRILU
14 15

299 335
559 625

SCMILU

92 141
4892 6687
8259 11672
SRMILU

TABLE 4
Execution time in seconds for shallow dome problem.

C
n e t DApa

21 46 47 47
546 2495 2545 2573
1050 4504 4691 4690

R
21 * * *

546 * * *
1050 * * *

CILU

e t Dpa
16 16 16

355 369 365
632 665 651

RILU
11 12 11

230 241 232
425 446 430

CMILU CGM

e t Dxpa Dpa

68 79 69 89
3037 3585 3094 2233
5536 6327 5570 4313

RMILU RGM

SPARSE HOMOTOPY CURVE TRACKING 243

TABLE 5
Execution time in seconds for turning point problem.

n

2O
6O
125
25O
50O
1000

20
60
125
250
500
1000

28 36
266 356
1635 2310
3026 3767
6279 7783

141,50 17768
SR

1301 *

SCGM

12 13
41 50
127 170
228 267
448 501
1077 1174
SRGM
13 18
47 *

SCILU

6 6
20 22
54 65
95 109
189 207
434 490
SRILU
4 4
13 14
36 40
60 69
119 131
274 296

SCMILU

39 47
163 213
568 795
1032 1335
2130 2656
4874 6052
SRMILU
120

TABLE 6
Execution time in seconds for turning point problem.

C

20 17 19
60 167 176
125 1117 1132
250 2296 1925
500 4741 3899
1000 11577 9335

a
20 * *
60 * *
125 * *
250 * *
500 * *
1000 * *

Dpa

21
186

1384
3873
8352

20375

CILU

1263

e t Dxpa

4 7 4
13 22 13
38 64 42
66 110 74
129 210 148
323 493 353

RILU
3 3 3
9 10 9

26 31 28
45 51 46
88 98 88
199 225 202

24
109
412
765
1573
3605

CMILU
t
26
112
421
699
1381
3031

Dpa

118
446
726
1465
3308

RMILU
43 70 75
* * 2016

CGM
D)pa

5
22
85
134
260
617

RGM
6

point the Gill-Murray preconditioner ceases being nearly perfect. This figure is typical
for the Gill-Murray preconditioner. (During the course of the experiments it was
observed that points far from frequently generate much worse conditioned problems.
This has important implications for curve tracking strategy, because large steps along

7 will be offset by expensive numerical linear algebra to return to /.)
Tables 2, 4, 6 show that there is no clear winner between e, , and Dpa, and

further that there is little correlation between the algorithm and the best choice for c.

One is tempted to pick CGM with c (Dxpa) over SCGM with c e, based on

Tables 5, 6, and the fact that CGM only solves one linear system per tangent vector
computation, as opposed to two linear systems with M for the splitting algorithms.

244 IRANI KAMAT RIBBENS WALKER AND WATSON

condition number

i0

i0

3.
i0

i0

i0

i0

Qo

0.2 0.4 0.6 0.8
lambda

FIG. 3. Condition numbers for A (black dots) and Q-1A (grey
dots) against A along /; shallow arch, n 29, CGM.

However, from Tables 1 and 2, SCGM with ek is substantially better than CGM
with Dpa. This demonstrates that only counting the number of linear system solves
can be dangerously misleading. The results do indicate that for a given choice of ct,
when no preconditioning is used or when MILU preconditioning is used, it is slightly
more efficient to use the no-splitting strategy than the splitting. However, with ILU
preconditioning the differences between corresponding splitting and no-splitting cases

are not at all significant.
Tables 1-6 seem to strongly support an argument for CILU as the best Craig

method, even though the ILU factorization fails to exist at turning points, and is

unstable whenever A is indefinite. What is not indicated in the tables, though, are all
the homotopy curve tracking runs which failed because the ILU preconditioner failed

to exist or generated an overflow, or the difficulty caused HOMPACK by inaccurate

tangents resulting from the ILU. Because of this potential catastrophic failure or

instability, the ILU preconditioner would never be seriously considered for robust
homotopy algorithms. Still, the tables do show why numerical analysts’ paranoia
about unstable algorithms is not shared by engineers.

The algorithms SSOR and Orthomin(k), discussed earlier, are not shown in the
tables because they totally fail at turning points and along unloading portions of
equilibrium curves (for reasons stated in 3). When these methods do work, they

can be very efficient (e.g., Orthomin(1)on A with c (Dpa) took 443 (6092)
seconds for the shallow arch problem with n 29 (47)), but that is no consolation for
homotopy curve tracking.

GMRES(k) has a solid theoretical justification [42], and has been used very suc-

cessfully in a variety of contexts [4], [42], [45], [46]. Nevertheless, GMRES(k) with
k < n performed unacceptably on the test problems here without preconditioning.

SPARSE HOMOTOPY CURVE TRACKING 245

For the shallow arch problem with n 29 and tol 10-12, GMRES(29) on A with

c (Dpa) took 591 seconds, somewhat better than C or SC and comparable to
CGM and SCGM. For k 1, 3, 25, GMRES(k) took over a day of CPU time. Relaxing
the tolerance to 10-6, GMRES(25) took 18,330 seconds. This is especially noteworthy
because the A matrices are symmetric and positive definite up to A .88, and mildly
indefinite from there to A 1. For the turning point problem with n 20, tol 10-12,
c (Dpa) t, the performance degradation from the full GMRES to GMRES(k) was

dramatic. With k 20, 19, 18, 15, 10, 8, GMRES(k) took, respectively, 19, 117, 154,
375, 338, 420 seconds. Thus for these problems, without preconditioning, only the full
GMRES method is competitive.

The tables also show results for GMRES(2), implemented with all the same pre-
conditioners and choices of (c d) as was Craig’s method, k 2 was chosen because
a preconditioned GMRES(2) requires exactly the same amount of storage as the pre-
conditioned Craig’s method, although, of course, the storage penalty for k 5, say, is

not significant. Numerous other runs were made with k 1, 3, 5, or 10, but there was
no substantial difference from k 2 on the larger problems. In virtually all cases the
asterisks in the tables correspond to a stalled residual norm somewhere along . It
was noted, though, that many of the linear systems along /were solved efficiently by
GMRES(2). Perhaps the most disappointing failure was that of RGM on the shallow
dome problem even for n 21, because the Gill-Murray preconditioner was fairly
good there. It is evident from the tables that GMRES(2), without nearly perfect pre-
conditioning (ILU), is unsuitable for use in a general, robust homotopy curve tracking
code like HOMPACK.

There are some theoretical results concerning the convergence of GMRES(k) given
by Saad and Schultz [42]. These results give worst-case bounds on the rate of residual
norm reduction which are determined by the distribution of eigenvalues of A. For
the shallow arch and turning point problems, the eigenvalues of A were determined
numerically along the homotopy curve, and the resulting bounds were often (although
not in every case) found to guarantee only hopelessly slow residual norm reduction,
indeed often to guarantee no residual norm reduction at all even when k n.

Tables 7-12 show the average, maximum, and minimum number of conjugate
gradient iterations per linear system solution along the homotopy zero curve for
the same algorithms as Tables 1-6. Such iteration statistics give an intuitive feel
for how the algorithms behave, and are sometimes very revealing. Tables 7 and 8
show that symmetry does improve the algorithms’ efficiency, and that all other things
being equal, achieving symmetric coefficient matrices is worthwhile. (The S* algo-
rithms based on symmetry are not uniformly better, because all other things are not
equal.) Note that in all cases for Craig’s method the maximum number of conjugate
gradient iterations is less than or equal to eight times the average, which says that
the convergence behavior is fairly consistent. On the other hand the range between
the minimum and maximum (for the C* algorithms) is as great as 3 to 536 (C for
n 1000 in Table 12), showing that there is a wide variation in the difficulty of the
linear systems encountered along ". The convergence behavior of GMRES(2) is not
as consistent as for Craig’s method, with the maximum being as much as 70 times the
average (SRGM for n 47 in Table 7).

246 IRANI KAMAT, RIBBENS WALKER AND WATSON

TABLE 7
Average, maximum, and minimum number of conjugate gradient itera-

tions per linear system along homotopy curve for shallow arch problem.

n

29
47

29
47

SC

66,109,1
190,313,1

t
66,101,1

194,291,1
SR

SCGM

4,10,1 28,40,1
5,10,1 37,53,1
SRGM

4,92,1 *
2,140,1 *

SCILU

2,3,1 3,3,1
2,3,1 3,3,1
SRILU

1,2,1 1,2,1
1,2,1 1,2,1

SCMILU

39,63,1 39,58,1
64,103,1 65,97,1

SRMILU

TABLE 8

Average, maximum, and minimum number of conjugate gradi-
ent iterations per linear system along homotopy curve for shallow
arch problem.

n etk
29 99,127,51
47 265,360,109

t
91,107,38

239,305,133
CMILU

Dpa

98,120,52
265,355,105

29 56,68,30
47 87,119,48

56,65,35
91,102,53

55,65,30
87,131,48

29 *
47 *

R

RMILU
29 *
47 *

CILU

et f]t Dpa

3,3,2 4,5,2 3,3,2
3,3,2 4,4,2 3,3,2

cGM
6,7,2
6,7,2

RILU
1,1,1 1,2,1 1,1,1
1,1,1 1,2,1 1,1,1

RGM
2,2,1
2,2,1

TABLE 9

Average, maximum, and minimum number of conjugate gradient itera-

tions per linear system along homotopy curve for shallow dome problem.

21 17,31,1 24,36,1
546 38,75,1 54,87,1
1050 38,76,1 53,91,1

SR
21 * *

546 * *
1050 * *

SCGM

16,115,1 7,46,1
15,113,1 9,63,1
16,114,1 8,101,1

SRGM

SCILU

e t
2,3,1 2,3,1
2,3,1 3,2,1
2,3,1 3,3,1
SRILU

1,2,1 1,2,1
1,2,1 1,2,1
1,2,1 1,2,1

SCMILU

14,30,1 21,32,1
24,45,1 37,71,1
24,47,1 36,61,1

SRMILU
,
,

SPARSE HOMOTOPY CURVE TRACKING 247

TABLE 10

Average, maximum, and minimum number of conju-
gate gradient iterations per linear system along homotopy
curve for shallow dome problem.

n

21 26,36,14
546 58,81,17
1050 58,87,18

26,36,14
57,82,17
59,91,18

26,36,14
58,82,18
58,83,18

CMILU
21 19,25,8

546 34,47,12
1050 34,49,12

22,28,8
38,52,12
38,50,12

19,24,8
34,45,11
34,49,13

R
21 *

546 *
1050 *

RMILU
21 *

546 *
1050 *

CILU

2,3,2 2,3,2
2,3,2 2,3,2
2,3,2 2,3,2

CGM

1,1,1
1,1,1
1,1,1

Dpa

2,3,2
2,3,2
2,3,2

23,113,2
22,111,2
23,113,2

RILU
1,1,1
1,1,1
1,1,1
RGM

1,1,1
1,1,1
1,1,1

TABLE 11

Average, maximum, and minimum number of conjugate gradient itera-

tions per linear system along homotopy curve for turning point problem.

n

20
6O
125
250
5OO
1000

20
60
125
250
500
1000

SC

21,28,1
60,100,1

127,261,1
139,302,1
149,314,1
151,312,1

24,29,1
69,87,1

154,264,1
150,246,1
164,281,1
162,289,1

SR
732,4446,1

SCGM

4,6,1 5,7,1
4,8,1 5,8,1
5,9,1 6,11,1

5,11,1 5,10,1
5,11,1 5,10,1
5,11,1 5,11,1

SRGM
6,58,1 8,75,1
6,54,1 *

SCILU

2,2,1 2,2,1
2,3,1 2,3,1
2,3,1 2,3,1
2,2,1 2,3,1
2,2,1 2,3,1
2,2,1 2,3,1
SRILU

1,1,1 1,1,1
1,1,1 1,1,1
1,1,1 1,1,1
1,1,1 1,1,1
1,1,1 1,1,1
1,1,1 1,1,1

SCMILU

17,27,1 19,26,1
21,37,1 25,39,1
26,51,1 31,51,1
27,60,1 30,55,1
28,62,1 31,53,1
28,64,1 31,56,1
SRMILU

49,315,1 *

The Gill-Murray preconditioner is clearly excellent, as shown by the average num-
ber of iterations in Tables 7-12 and Fig. 3. It is more robust than the ILU and MILU
preconditioners in the presence of turning points and indefinite DxPa. However, the
shallow dome problem (Tables 3, 4, 9, and 10) shows that the Gill-Murray precon-

248 IRANI, KAMAT, RIBBENS, WALKER, AND WATSON

TABLE 12

Average, maximum, and minimum number of conjugate gradi-
ent iterations per linear system along homotopy curve for turning
point problem.

C

etk 9 Dpa

20 24,29,1
6O 70,86,1
125 159,292,1
250 196,404,1
500 216,427,1
1000 224,446,1

24,28,1
69,84,1

151,232,1
150,246,1
165,337,1
164,323,1
CMILU

26,31,1
74,91,2

179,328,3
231,407,3
268,489,3
285,536,3

20 20,23,1
60 26,36,1
125 33,49,1
250 36,61,1
500 38,74,1
1000 39,75,1

20,23,1
25,34,1
31,48,1
30,45,1
31,53,1
31,50,1

20,26,3
26,36,2
33,53,3
32,48,1
33,53,3
33,54,3

20 *
60 *
125 *
250 *
500 *
1000 *

R
1905,21000,2

,
RMILU

20 47,110,2
60 *
125 *
250 *
500 *
1000 *

61,200,2 79,226,2
568,12486,2

,
,
,

CILU

e t Dpa

2,2,1 4,5,1 2,3,1
2,3,1 4,7,1 2,3,2
2,3,1 4,5,1 2,3,2
2,3,1 4,5,1 2,3,2
2,3,1 4,6,1 2,3,2
2,3,1 4,5,1 3,3,2

CGM
3,9,2

3,12,1
5,15,2
4,15,2
5,16,2
5,16,2.

RILU
1,1,1 1,2,1 1,1,1
1,1,1 1,2,1 1,1,1
1,1,1 1,2,1 1,1,1
1,1,1 1,2,1 1,1,1
1,1,1 1,2,1 1,1,1
1,1,1 1,2,1 1,1,1

RGM
4,92,1

,
,

,

ditioner may do a very poor job indeed on strongly indefinite matrices (which occur

on the unloading parts of the shallow dome equilibrium curve). While reducing the

average number of iterations, the Gill-Murray preconditioner actually increases the

maximum number of iterations compared to the unpreconditioned algorithm.

It would be possible to test separately each aspect of the iterative linear system
solving algorithms, such as convergence rate, sensitivity to starting point, cost of

preconditioning, storage cost, computational complexity per iteration, etc. What

ultimately matters, however, is the combined performance of the total algorithm on a

wide range of typical realistic problems. Measuring the performance along homotopy
zero curves for nontrivial problems is an attempt to measure the overall performance
in situ.

SPARSE HOMOTOPY CURVE TRACKING 249

A succinct, albeit oversimplified summary of the discussion is that ILU precondi-
tioning is the most efficient but it may completely fail for some cases, while the Gill-
Murray preconditioner rarely fails but is somewhat slower, especially for very large
or strongly indefinite problems. With somewhat imperfect preconditioning, Craig’s
method is more robust than GMRES(k) for k << n for homotopy curve tracking.

Acknowledgments. The authors are indebted to the referees for excellent sug-
gestions, and to Tony Chan, Dianne O’Leary, Philippe Toint, and David Young for
comments on this work.

REFERENCES

[1] O. AXELSSON, Conjugate gradient type methods for unsymmetric and inconsistent systems of linear

equations, Linear Algebra Appl., 29 (1980), pp. 1-16.

[2] Solution of linear systems of equations: iterative methods, in Sparse Matrix Techniques,

Springer-Verlag, New York, 1976, pp. 1-51.

[3] O. AXELSSON, S. BRINKKEMPER, AND V.P. ILIN, On some versions of incomplete block-matrix

factorization iterative methods, Linear Algebra Appl., 58 (1984), pp. 3-15.

[4] P. N. BROWN AND A. C. HINDMARSH, Reduced storage matrix methods in stiff ODE systems, J.
Appl. Math. Comp., 31 (1989), pp. 40-91.

[5] W. F. CHAN, Deflation techniques and block-elimination algorithms for solving bordered singular sys-

tems, Tech. Report 226, Department of Computer Science, Yale University, New
Haven, CT, 1982.

[6] Deflated decomposition of solutions of nearly singular systems, Tech. Report 225, De-
partment of Computer Science, Yale University, New Haven, CT, 1982.

[7] On the existence and computation of LU-factorizations with small pivots, Tech. Report
227, Department of Computer Science, Yale University, New Haven, CT, 1982.

[8] W. F. CHAN AND D. C. RESASCO, Generalized deflated block-elimination, Tech. Report 337,
Department of Computer Science, Yale University, New Haven, CT, 1985.

[9] W. F. CHAN AND Y. SAAD, Iterative methods for solving bordered systems with applications to con-

tinuation methods, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 438-451.

[10] S. N. CHOW, J. MALLET-PARET, AND J. A. YORKE, Finding zeros of maps: Homotopy methods that
are constructive with probability one, Math. Comp., 32 (1978), pp. 887-899.

[11] P. CONCUS AND G. H. GOLUB, A generalised conjugate gradient method for nonsymmetric systems

of linear equations, in Lecture Notes in Economics and Mathematical Systems, 134,
R. Glowinski and J. L. Lions, eds., Springer-Verlag, Berlin, 1976, pp. 56-65.

[12] P. CONCUS, G. H. GOLUB, AND D. P. O’LEARY, A generalised conjugate gradient method for the

numerical solution of elliptic partial differential equations, in Sparse Matrix Computations,
J. R. Bunch and D. J. Rose, eds., Academic Press, New York, 1976, pp. 309-352.

[13] E. J. CRAIG, Iteration procedures for simultaneous equations, Ph.D. thesis, Massachusetts Insti-

tute of Technology, Cambridge, 1954.

[14] J. E. DENNIS, JR. AND K. TURNER, Generalized conjugate directions, Linear Algebra Appl.,

88/89 (1987), pp. 187-209.

[15] T. DUPONT, R. P. KENDALL, AND Z. Z. RACHFORD JR., An approximate factorization procedure

for solving self-adjoint elliptic difference equations, SIAM J. Numer. Anal., 5 (1968), pp.

559-573.

[16] S. C. EISENSTAT, Efficient implementation of a class of conjugate methods, SIAM J. Sci. Statist.

Comput., 2 (1981), pp. 1-4.

[17] S. C. EISENSTAT, g. C. ELMAN, AND M. H. SCHULTZ, Variational iterative methods for non-

symmetric systems of linear equations, SIAM J. Numer. Anal., 5 (1983), pp. 345-357.

[18] H. C. ELMAN, Iterative methods for large, sparse, nonsymmetric systems of linear equations, Ph.D.

thesis, Computer Science Department, Yale University, 1982.

250 IRANI, KAMAT, RIBBENS, WALKER, AND WATSON

[19] D. K. FADEEV AND V. N. FADEEVA, Computational Methods of Linear Algebra, W. H. Freeman,
London, 1963.

[20] R. FLETCHER, Conjugate gradient methods for indefinite systems, in Numerical Analysis Dundee

1975, G. A. Watson, ed., Springer-Verlag, New York, 1976, pp. 73-89.

[21] P. E. GILL AND W. MURRAY, Newton-type methods for unconstrained and linearly constrained opti-

mization, Math. Programming, 28 (1974), pp. 311-350.

[22] I. GUSTAFSSON, A class offirst order factorizations, BIT, 18 (1978), pp. 142-156.

[23] M. R. HESTENES, The conjugate gradient method for solving linear equations, in Proc. Sympos.
Appl. Math., 6, Numer. Anal., AMS, New York, 1956, pp. 83-102.

[24] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, J. Res.
Nat. Bur. Standards, 49 (1952), pp. 409-435.

[25] K. C. JEA, Generalised conjugate gradient acceleration of iterative methods, Ph.D. thesis, Mathe-

matics Department, University of Texas, Austin, TX, 1982.

[26] M. P. KAMAT, Nonlinear transient analysis by energy minimization-theoretical basis for the ACTION
conputer code, NASA Report CR-3287, National Aeronautics and Space Administra-

tion, 1980.

[27] M. P. KAMAT, L. T. WATSON, AND J. L. JUNKINS, A robust and eJficient hybrid method for
finding multiple equilibrium solutions, in Proc. Third Internat. Symposium on Numerical

Methods in Engineering, Paris, France, 1983, pp. 799-808.

[28] H. H. KWOK, M. P. KAMAT, AND L. T. WATSON, Location of stable and unstable equilibrium
configurations using a model trust region quasi-Newton method and tunnelling, Comput.
Structures, 21 (1985), pp. 909-916.

[29] C. LANCZOS, Solution of systems of linear equations by minimized-iterations, J. Res. Nat. Bur.
Standards, 49 (1952), pp. 33-53.

[30] J. A. MEIJERINK AND H. A. VAN DEP VORST, An iterative solution method for linear systems of which
the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148-162.

[31] Guidelines for the usage of incomplete decompositions in solving sets of linear equations as

occur in practical problems, Tech. Report 550, Koninklijke/Shell Exploratie on Produk-

tie Laboratorium, 1980.

[32] D. P. O’LEARY, Hybrid conjugate gradient algorithms, Ph.D. thesis, Computer Science Depart-
ment, Stanford University, Stanford, CA, 1976.

[33] The block conjugate gradient algorithm and related methods, Linear Algebra Appl., 29

(1980), pp. 293-322.

[34] J. M. ORTEGA, Efficient implementations of certain iterative methods, SIAM J. Sci. Statist. Corn-
put., 9 (1988), pp. 882-891.

[35] W. C. RHEINBOLDT, Numerical analysis of continuation methods for nonlinear structural problems,
Comput. Structures, 13 (1981), pp. 103-113.

[36] Numerical Analysis of Parametrized Nonlinear Equations, Wiley-Interscience, New York,
1986.

[37] W. C. RHEINBOLDT AND J. V. BURKARDT, Algorithm 596: A program for a locally parameterized
continuation process, ACM Trans. Math. Software, 9 (1983), pp. 236-241.

[38] J. K. RED, On the method of conjugate gradients for the solution of sparse systems of linear equations,

in Large Sparse Sets of Linear Equations, J. K. Reid, ed., Academic Press, New York,
1971, pp. 231-254.

[39] Y. SAAD, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp., 37

(1981), pp. 105-126.

[40] Practical use of some Krylov subspace methods]’or solving indefinite and unsymmetric linear

systems, Tech. Report 214, Department of Computer Science, Yale University, New
Haven, CT, 1982.

[41] Y. SAAD AND M. H. SCHULTZ, Conjugate gradient-like algorithm for solving nonsymmetric linear

systems, Math. Comp., 44/170 (1985), pp. 417-424.

[42] GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,
SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.

[43] R. S. VARGA, Matrix iterative analysis, Prentice-Hall, New York, 1962.

SPARSE HOMOTOPY CURVE TRACKING 251

[44] P. K. W. VINSOME, Orthomin, an iterative method for solving sparse sets of simultaneous linear

equations, in Proc. Fourth Symposium on Reservoir Simulation, Society of Petroleum
Engineers of the American Institute of Mechanical Engineers, 1976, pp. 149-159.

[45] H. F. WALKER, Implementations of the GMRES method, Comput. Phys. Comm., 53 (1989),
pp. 311-320

[46] Implementation of the GMRES method using Householder transformations, SIAM J. Sci.

Statist. Comput., 9 (1988), pp. 152-163.

[47] L. T. WATSON, A globally convergent algorithm for computing fixed points of C maps, Appl. Math.
Comput., 5 (1979), pp. 297-311.

[48] An algorithm that is globally convergent with probability one for a class of nonlinear two-point

boundary value problems, SIAM J. Numer. Anal., 16 (1979), pp. 394-401.

[49] Solving finite difference approximations to nonlinear two-point boundary value problems by
a homotopy method, SIAM J. Sci. Statist. Comput., 1 (1980), pp. 467-480.

[50] Numerical linear algebra aspects of globally convergent homotopy methods, SIAM Rev., 28

(19s), . 9-4.

[51] Globally convergent homotopy methods: A tutorial, Tech. Report TR-87-13, Depart-
ment of Industrial and Operations Engineering, University of Michigan, Ann Arbor,
MI, 1985.

[52] L. T. WATSON, S. C. BILLUPS, AND A. P. MORGAN, HOMPACK: A suite of codes for globally
convergent homotopy algorithms, ACM Trans. Math. Software, 13 (1987), pp. 281-310.

[53] L. T. WATSON AND D. FENNER, Chow-Yorke algorithm for fixed points or zeros of C maps, ACM
Trans. Math. Software, 6 (1980), pp. 252-260.

[54] L. T. WATSON AND M. R. SCOTT, Solving spline-collocation approximations to nonlinear two-point

boundary-value problems by a homotopy method, Appl. Math. Comput., 24 (1987), pp.
333-357.

[55] L. T. WATSON AND L. R. SCOTT, Solving Galerkin approximations to nonlinear two-point boundary
value problems by a globally convergent homotopy method, SIAM J. Sci. Statist. Comput.,
8 (1987), pp. 768-789.

[56] O. WIDLUND, A Lanczos method of a class of non-symmetric systems of linear equations, SIAM J.
Numer. Anal., 15 (1978), pp. 801-812.

[57] D. M. YOUNG, Iterative solution of large linear systems, Academic Press, New York, 1971.

[58] D. M. YOUNG AND K. C. JEA, Generalised conjugate gradient acceleration of iterative methods. Part
2: the nonsymmetrizable case, Tech. Report CNA-163, Center for Numerical Analysis,
University of Texas, Austin, TX, 1981.

[59] Generalised conjugate gradient acceleration of nonsymmetrizable iterative methods, Linear

Algebra Appl., 34 (1980), pp. 159-194.

SIAM J. OPTIMIZATION
Vol. 1, No. 2, pp. 252-267, May 1991

()1991 Society for Industrial and Applied Mathematics
OO6

A LOGARITHMIC BARRIER FUNCTION ALGORITHM FOR
QUADRATICALLY CONSTRAINED CONVEX QUADRATIC

PROGRAMMING*

DONALD GOLDFARBf, SHUCHENG LIUf, AND SIYUN WANGf

Abstract. An interior point method for quadratically constrained convex quadratic program-
ming is presented that is based on a logarithmic barrier function approach and terminates at a
required accuracy of an approximate solution in polynomial time. This approach generates a se-
quence of unconstrained optimization problems, each of which is approximately solved by taking a
single step in a Newton direction.

Key words, logarithmic barrier function, interior point method, Newton’s method, quadrati-
cally constrained convex quadratic programming

AMS(MOS) subject classifications, primary 65K05; secondary 90C30

1. Introduction. Consider a quadratically constrained convex quadratic pro-
gramming problem of the form:

(QCP) minimize q(x)
subject to q(x) 1/2xTGx + cx + b >_ O, 1,

where x and ci, 1,..., m E Rn, G, 1, m, are symmetric negative semidef-
inite matrices and q(x) is a convex quadratic function. Without loss of generality, we
assume that q(x) cTx, where c E Rn, since otherwise, we can introduce an additional
variable z and an additional constraint z >_ q(x) and minimize over z. We shall also as-
sume that the interior of the feasible region S (x Rn qi(x) >_ O, 1,..., m}
of (QCP), which we denote as int S, is nonempty and bounded (hence m >_ 1). In
particular, we shall assume that S is contained within some large sphere of radius R
centered at the origin.

Since the publication by Karmarkar [8] of a practical polynomial-time interior
point algorithm for linear programming, there have been several papers applying Kar-
markar’s algorithm and related interior point algorithms to more general classes of
problems. For example, for solving convex quadratic programming, Ye and Tse [17]
proposed an extension of Karmarkar’s projective algorithm; Ben Daya and Sherry [2],
Goldfarb and Liu [5], Monteiro and Adler [13], and Ye [18] extended the logarithmic
barrier function method of Kojima, Mizuno, and Yoshise [9] and Monteiro and Adler
[12]; and Mehrotra and Sun [10] extended Renegar’s [14] method of analytic centers.

Recently, Mehrotra and Sun [11] and Jarre [7] proposed two interior point al-
gorithms for solving (QCP) that terminate in a number of iterations which is a
polynomial function of m and the logarithm of the accuracy required of an approx-
imate solution. These algorithms are based upon applying Renegar’s [14] and Son-
nevend’s [15] analytic center approach to (QCP). Prior to the development of these
two path-following interior point methods, several other algorithms, which do not have

*Received by the editors September 18, 1989, accepted for publication (in revised form) August
24, 1990. This research was supported in part by National Science Foundation grants DMS 85-12277
and CDR 84-21402 and Office of Naval Research contract N-00014-87-K0214.

fDepartment of Industrial Engineering and Operations Research, Columbia University, New
York, New York 10027.

252

A LOGARITHMIC BARRIER FUNCTION ALGORITHM 253

"polynomial-time" worst-case bounds, were proposed for solving problem (QCP) (e.g.,
see Fang and Rajasekera [3] for references). In this paper, we develop a path-following
algorithm for (QCP) using a logarithmic barrier function approach. Specifically, our
method solves a sequence of unconstrained optimization problems:

m

(P) min f(x; e.k) cTx ek Z ln(qi(x))
xEintS

i=1

where the positive barrier parameter ek satisfies ek 0 as k - . Note that f(x; ek)
is a function of x which is parameterized by ek. This logarithmic barrier function
approach has previously been used to develop polynomial-time algorithms for linear
programming and convex quadratic programming (e.g., see [1], [2], [5], [6], [16]).

From the theory of barrier function methods (e.g., see Fiacco and McCormick [4]),
it is well known that under our assumptions on S, P has a unique optimal solution
xok and that xok converges to an optimal solution of the original (QCP) as ek O. In
general, however, the minimizer x cannot be found in "polynomial time." Hence, to
develop an algorithm which can be solved up to a required accuracy in polynomial
time for (QCP), for each ek > 0 we will find the point xk, which is the minimizer of a
quadratic approximation to P subject to an ellipsoidal steplength constraint, instead
of obtaining xok. By decreasing ek slowly and using a "small" steplength ellipsoid, we
generate points xk which are "close to" xo in the sense that

(1.1) o <_ y .f <_

for some constant a > 0, and all k. From (1.1), since f(x;) f(xo; e) is a strictly
convex function on int S (see Lemma 2.1 below) and ek -, 0 as k -, c, it follows that
limk-_, xt limk-, Xo x*, where x* is an optimal solution of (QCP).

This paper is organized as follows. The next section deals with some preliminaries
and presents the basic algorithm. In 3, we analyze the convergence of our algorithm
by showing that (1.1) is true for all k under some initial assumptions. The last
section shows how to find a starting point x0 and an initial penalty parameter e
so that these initial assumptions are satisfied. It is then shown that the algorithm
will obtain a feasible solution whose objective value is within of the optimal value
in O(v/-ln (e/)) iterations. The development of our algorithm and our proof of its
convergence were greatly influenced by the algorithms and proofs in [1], [2], [6], [7],

2. The algorithm. We define the normalized barrier function for all x E int S
as

F(x;) f(x;) f(xo;),
where f(x; e) cTx Yim=z ln(qi(x)) and Xo argminxEints f(x;). Substituting,
we obtain

m

F(x;) cT(x Xo) In q,(x)
q (xo)

Therefore,

and

g -= VF(x;e) c- e

m

(Vqi(x)Vqi(x)TH V2F(x; e) e .= (qi(x))2
Viqi(x))

254 D. GOLDFARB, S. LIU, AND S. WANG

Furthermore, we have Lemma 2.1
LEMMA 2.1. Let F(x; e) be the function defined above and int S be nonempty and

bounded. Then
(1) F(x; e) is strictly convex on int S, and
(2) C-- im__l Vqi(x,)

q(zo)
Proof. (1) Clearly, V2F(x; e) is at least positive-semidefinite for all x E int 5’.

If, for some x E int S, V2F(x; e) is not positive-definite, there exists a nonzero vector
d such that dVV2F(x; e)d 0, which implies that Vqi(x)Td 0 and dTGid 0 for
all i- 1,...,m. Hence

,2
qi(x + Ad) qi(x) + AVqi(x)Td + -dTGid qi(x)

for all 1,..., m, which means that the line x / Ad (-oc < A < +oc) lies entirely
in int S. This contradicts the boundedness of S.

(2) Since F(x; e) is minimized at xo,

m
Vqi (Xo)VF(xo;) c- --. =0. n

.= qi(xo)

We now present our basic algorithm. Values for the parameters , 5, and a used
in the algorithm are specified in Theorem 3.9 and one way to obtain an appropriate
starting point x and an initial barrier parameter eo is discussed in 4.
ALGORITHM 2.1

Step O. Given a point x int S, eo > 0 and c > 0 such that F(x; eo) _< ceo,
choose a, 5 (0, 1) and _< e/m, and set k 1.

Step 1. Set ek (1- (a/V/-))ek-1. Determine the Newton direction hk- by

solving

Hkhk-1 ---gk,

Step 2.

where Hk and gk are the Hessian and gradient of F(x; ek) evaluated at

xk-, respectively.

Set

Xk Xk-1 -- Ak-hk-,where the steplength

Ak-= hk_IT Hh}_

Step 3. If ek g , STOP! else set k :- k + 1, goto Step 1.

We now give several lemmas which will be useful in proving the convergence of
Algorithm 2.1 in 3. First let us define

E(y, {x I(x- y)TV F(y; y)< >0.

A LOGARITHMIC BARRIER FUNCTION ALGORITHM 255

Note that the ellipsoid E(y, 5) does not depend upon e since 1/eV2F(y; e) does not.
LEMMA 2.2. If x E E(y,) f S, where y int S, then

.= qi(y)
< + 2

(2.2) E In qi(x) < IVqi(y)T(x Y)I < 6v/--
i=1

qi(y)
i=

qi(Y)

Furthermore,
E(y,6) C_ int S if 0<6<0.7.

Proof. Let u (u,ug.,...,um)T, v (v,’",v,)T, and w (w,...,w,)T,
where

q(x) q(v) Vq(v)(x v) (x v)r(x)
ui qi(Y) vi wi() ()

Then (2.1) and (2.2) can be stated as

ilull2 _< + 1/22 and IIVII1 _< V/.

Since x E(y,), we have from the definition of E(y,) and H that

e
Vqi(y)T(x y) 2

i=
qi(Y)

(x y)TGi(x y) < 52e
qi(Y)]

e>O,

which implies that

(2.3) Ilvl12 < 6 and Ilwll < 6,

Note that, for 1,..., m,

qi(x) qi(Y) Vqi(y)T(x y) 1 (x y)TGi(x y) 1
Ui Vi - Wi.qi(y) qi(y) 2 qi(y)

Therefore, u v + 1/2w, and it follows from the triangle inequality and the well-known
fact that Ilzl12 _< IIzlll _< x/llzll2, for all z e Rm, that

Ilul12 < Ilvl12 + 1/211wl12 < 6 + 1/211Will < 6 + 1/262

and

To verify the first inequality in (2.2) we note that

In
qi(x) In (1 + qi(x) qi(y) < qi(x) qi(y)
qi(Y) \ qi(Y)] qi(y)

Vqi(y)T(x--Y)<
qi(Y)

256 D. GOLDFARB, S. LIU, AND S. WANG

Furthermore, since u{ I- (I q(x)-q(y)I)/q{(Y) -< Ilul12 -< ti + 1/252, for any
x E E(y,), where 0 < ti < 0.7, we have, for 1,..., m,

(2.4)
q(x)

1 + q(x) q(y) > 1 5 152
() () > O,

and hence that x E int S. Therefore,

E(y, 5) C_ int S if0<5<0.7.

In Step 2 of Algorithm 2.1, the steplength Ak-1 is chosen so that the point xk

lies on the boundary of E(xk-l,). Therefore, it immediately follows from Lemma
2.2 that we have Corollary 2.3.

COROLLARY 2.3. Let xk- int S. If xk is obtained from xk- as in Algorithm
2.1 and 0 < 5 < 0.7, then xk int S. r

The proof of the following lemma can be found in Gonzaga [6].
LEMMA 2.4. Assume that Ilul12 < 1, u Rm, and p(x) m__ lnx. Then

(+) -u + 1/2 I111 + o(u),

hr Io()1 _< (11u11/3(1 -I111.)) and e (1,..., 1)T e Rm D
Now, consider the quadratic Taylor series approximation to F(x; e) at a point y E

int S

Qy(x; e) F(y; e) + VF(y; e)T(x y) + 1/2(x y)TV2F(y; e)(x y).

The next lemma gives a bound for the difference between Qv(x; e) and F(x;).
LEMMA 2.5. If X E(y, 5), where y int S and 0 < 5 < 0.7, then

IF(x; e) Qv(x;)1 <- K(5)e,

where

(.a/ g(e/= - + - + a(1- e- 1/2e.l"

Furthermore, K(5) <_ 53, if 5

_
-.

Proof. Let u, v, and w Rm be defined as in the proof of Lemma 2.2. Since
qi(x)/qi(y) 1 + (qi(x)- qi(Y))/qi(Y)= 1 + ui where Ilul12 g ti + 1/252 < 1 by Lemma
2.2 and

qi(x) qi(y) Vqi(y)T(x y) + 1/2(x y)TG,(x y),

A LOGARITHMIC BARI:tIEI:t FUNCTION ALGORITHM 257

it follows from Lemma 2.4 that

where
((
_

1/2(2)3Io(u)l < Ilull <
3(- I111:) 3(- - 1/2)

Consequently, by (2.3),

The following lemma shows that the closeness of x and xok can be measured by
the value of the normalized barrier function.

258 D. GOLDFARB, S. LIU, AND S. WANG

LEMMA 2.6. Let 0 < < 1/2 and F(x;e-k) <_ ((52/2) (5))e-k, where () is

defined by (2.6). Then
x e E(xko,).

Proof. First note that (52/2) > /(5) for 0 < 5 < . Since F(x;e) is strictly
convex on int S and achieves its minimum value at x, the center of E(x,5), it is
sufficient to show that

for all points x on the boundary OE(x,) of E(x,). But for any such x, by Lemma
2.5, we have

where the last equality follows from the facts that
VF(xok; e-k) =0.

0 and

3. Convergence analysis. As indicated in 1, if F(xk; e-k) <_ ae-k for all k,
then the sequence {xk} converges to an optimal solution of (QCP). We now show
that there are positive values a, 5, and a such that given a feasible point xk-1 and
penalty parameter e-k-l, satisfying F(xk-1; e-k-l)

_
ce-k-1, Algorithm 2.1 generates

a feasible point xk and penalty parameter e-k satisfying F(xk; e-k) <_ ae-k. First we
show in Lemma 3.1 below that F(xk; e.k) can be written as the sum of three terms.
Then we provide bounds for the first two of these terms in the following two sections
and combine them and bound the third term to give the desired bound on F(xk; e-k)
in 3.3.

LEMMA 3.1. Let e-k (1 -((:r/V/’?))e-k-1 0 < (:r < 1. Then
m

a
e-k-1 In qi xk

F(xk; e-k) F(xk; e-k-i)+ F(xko-1; e-k)+

__
’= qi(xko -1)

Proof. The identity (3.1) is easily verified from the definition of F(x; e-). [3

3.1. Bounding F(xk; e-k-l). The following lemma and corollary are preparatory
for bounding F(xk; e-k-l).

LEMMA 3.2. Let x E E(xko-l,51), where 0 < 51 < 1/2. Then

(3.2) VF(x; e-k-1)T(x Xko -1) >_ 52(X xko-1)TV2F(x; e-k-1)(x xko-1),
where 52 1 -.

Proof. From the definition of VF(x; e-k-l) and Lemma 2.1, we have
m m

VF(x; e-k-l) c e-k-1 Z Vqi(x)
e-k-1 Z Vqi(xk-1)

i=1
qi(x)

i=1 qi(xk-l)

m
Vqi (x)e-k-1/Z.= qi(x)"

Letting xo Xok-l, /x z- zo, and ri qi(x)/qi(xo), we can write the above
gradient as

m

(3.3) VF(x;
i=1

A LOGARITHMIC BARRIER FUNCTION ALGORITHM 259

where

Pi
Vqi(x) riVqi(xo) Vqi(x) (ri 1)Vqi(x) riGiAx

qi(xo) qi(x) qi(x) qi(x)

since

Vqi(x) Vqi(x0) + GiAx.

From (2.7), with x replaced by x0 and y by x, we have that

qi(x) qi(xo) Vqi(x)T/kx 1/2/kxTGi/kX
ri 1 ri riqi(x) qi(x)

Hence,

Vqi (x)T /kx)
2

p/kx ri q(x)

iVqi(x)T/kx 2 /kxTGi/kx
(3.5) ,

\ :..]
z,

q,()

ri
AxTGi/kx I l Tqi(x)T/kx)qi(x)

1 + - qi(x)

where, using (2.7) with y replaced by x0 and (3.4),

i ri (l + Vqi(x)T/kx qi(x) + Vqi(x)T/kx +

Now, it follows from (2.3) and (2.4) in the proof of Lemma 2.2 that r _> 1- 51-- 2 51 52 52, for 1, Therefore, after combining51 _> 52 and/i _> 1- m.
(3.3) and (3.5)we obtain

/kXTGi /kx
qi(x))

/XxTGi/kx)qi(x)

From the above lemma, we immediately have the following corollary.
COROLLARY 3.3. Let x e E(xko-l,51), where 0 < 51 < 1/2. Then

VF(x; ek-1)T(x xko -1) >_ 62F(x; ek-1)(x Xo-1)TV2F(x; e-l)(x

r = (-) > o.
Proof. Since F(xok-1; ek-1) 0 and F(.; ek-l) is convex, we have

0 <_ F(x; ek-1) F(x; ek-l) F(xko-1; ek-1) <_ VF(x; ek-1)T(x

Combining this inequality with (3.2) in Lemma 3.2, we get the required result.

260 D. GOLDFARB, S. LIU, AND S. WANG

From the definitions of VF(x; e) and V2F(x; e), and the relation

we have for all x E int S,

k
(3.6) V2F(x;

m
a

ek_ Vqi(x)
(3.7) VF(x; ek) VF(x; ek-l) + -- .= qi(x)

Now, we are ready to give a bound on F(xk; ek-).
THEOREM 3.4. Let 0 < 6 < 0.7, 0 < 6 < 1/2 and c < (62/2)-/(6), where

K(.) is defined by (2.6). Assume that F(xk-; ek-) < cek-l, xk- E int S and xk is
obtained from xk-, as in Algorithm 2.1. Then

F(xk; ek-) <_ F(xk-; ek-) V/k-ltV/52F(xk-1; ek-1) _+....+. 2r(-+-/(() ek-1

where 2 1 -.
Proof. Since F(xk-; ek-) < cek- < ((52/2)-/(5)) ek-, by Lemma 2.6, we

have that xk- E(xko-,), and hence, from Corollary 3.3, we obtain

(.8)

VF(xk-; ek-)T(xk- xko-)
> /62F(xk-; ek-)(Xk- xo-)TV2F(xk-; ek-)(Xk- xo-)

Because xk is the minimizer of VF(xk-;ek-)Ty over E(xk-,6) and 0 < 6 < 0.7,
we have, from Lemma 2.5 and (3.6), that

F(xk; ek-) <_ F(xk-; ek-) + VF(xk-; ek-)r(xk Xk-)
(3.9) + 1/2(X x-)TVF(x-; e-)(x x-) + [(5)e-.

< F(xk-; ek-) + VF(xk-; ek-)T(xk Xk-) + 1/262ek- + R(6)ek-

Moreover, from (3.7) and Lemma 2.2, it follows that

m

= qi(xk-)

< VF(x-;)r(x x-) + a-.

The next step is to estimate VF(xk-1;ek)T(xk- Xk-1). Suppose now that
Xko- xk- since, otherwise, from (3.9), F(xk; ek-) < 1/262ek- + fi[(6)ek-, which
implies that the theorem holds. Let Y be the point where the semi-infinite ray
(x x xk- + A(xok-- xk-),A >_ 0} intersects the boundary of the ellipsoid
E(x-, 6). Since Y E(x-,), by using Lemma 2.2 once more, we have

m

y IVq(x-)T(Yc- x-)l

= q(_)
_< ev.

A LOGARITHMIC BARRIER FUNCTION ALGORITHM 261

Due to the fact that VF(xk-1;ek)Txk g VF(xk-;ek)T., it follows from (3.7) and
the above bound that

Since 5: xt- (xok- xt-l), where

((Xko- xk-)TV2F(xk-; ek))(Xko- xk-)/2

it then follows from (3.6) and (3.8) that

(3.11) V F(xk-; ek)T(xk xk-) <_ --V/ek-SV/52F(xk-; ek-) + a&k-.

Combining (3.9), (3.10), and (3.11) yields the required result. D

3.2. Bounding F(xo-;ek). We first need to prove Lemma 3.5 below which
is a slight generalization and extension of Lemma 2.5 in Gonzaga [6]. Let us de-
fine /(x;) F(x;)/ and (y(X;) Qy(x; e)/e, where Qy(x;) is the quadratic
Taylor series approximation (2.5) to F(x; e) at the point y E int S. Furthermore, let
[[XlIH (xT_HyX)I/2, where Hv V2/(y; e), and let xN =-- y + hN argmin (v(x; e)
and y / h argmin F(x; e) for x E int S. We have the following result.

LEMMA 3.5. /f 0 < IlhgllH 5 < 5 < (1/18), then

I1 XNIIH --IIh- hNIIH < IIhNIIH.
and

II , YlIH IlhllH <-- (1 /

where v/lSllhvll. < 1.

Proof. First note that y XN + hN; hence the second result of the lemma
follows from the first result by the triangle inequality. Also, since XN E(y,) C_
E(y,), it follows from Lemma 2.5 that

(3.12) F(xg;) <_ Qu(xN; e) + K(5),

where/(5) <_ 53. Since Qy(x; e) is minimized at xg, V0u(xg; e)= 0, and

(3.13) O,(z;) O,,(xr;,) + 1/2 I1 11Hy

for any point z. Now, by contradiction, suppose that lift: xNIIH IIh hNIIH >
llhgllgv. Then we can choose a point z on the line segment joining xg and such
that

(3.14) I1 XNIIH IIhNIIH.

262 D. GOLDFARB, S. LIU, AND S. WANG

Let d z- xg. Then IIhN + dllH <_ (1 + ()llhNIIH, 5 < (1/9). Hence, from
Lemma 2.5, we have that

Qy(z;) K(6o) <_ F(z;

where/(o) _< o3. Moreover, (xg; e) >_ ’(z; e), since /(x; e) is minimized at and
F(x; e) is strictly convex. From this and (3.12)-(3.15) we then obtain

-211hgll2 + Q(xg;) (z;) _< (z;) + R(5o)
< (;)+ R(eo) < (;1 + R() +

which, since a < 1, implies that

-211hNll/ < R(x)+ R(eo) < 53 + 53 < IIhNll[1 + (x +)3] < 911hNIl/
But }2IIhNll/ 911hNll/; hence our assumption that II- XNIIH > llhNlIH is
false.

LEMMA 3.6. If 0 < a < 1, then

where hkg-1 XkN- Xko- and XkN- =_ argmin (o-1 (x; ek) argmin Q-I (x; ek).
Proof. Since hv- satisfies 72F(xok-1; e.k)hkN-1 -VF(xok-;

Hk-

@- (-)v,(x-)
v = (-)

VF(xok-1 ek)

where the last equality follows from (3.7) and the fact that VF(xok-; ek-) 0.

Let yi ((hkg-)Tvqi(xko-1))/qi(xko-), for 1,...,m. Then since Gi,
1,..., m, are negative semidefinite

and it follows that

and hence that

COROLLARY 3.7. If 0 < a < (1/19), then Xo e E(xo-, 53), where

,53= l+vl_--Z--a- l-or

A LOGARITHMIC BARRIER FUNCTION ALGORITHM 263

Proof. Since a/(1- (r) < (1/18) for 0 < a < (1/19), and hkN-1 # 0, it follows
from Lemma 3.6 and Lemma 3.5, with 2, y, and hN replaced by Xok, xok-l, and hkN-1,
respectively, that Ilxko xko-lllH < 53 [-I

ZO--i
Now, we are ready to prove the main theorem of this section.
THEOREM 3.8. /f 0 < a < (1/19), then F(xko-; ek) <_ (r53ek-, where

5a= l+vl_a 1-(7

Proof. From Lemma 2.1,

m

cT (xko- xko) k- E Vqi (xo -I)T (Xko- xko)
q (x o

So, from the definition of F(xko-; ek) and the fact that ln(1 + x) _< x for x > -1 and
qi(x), 1,..., m, are concave, we obtain

<

m

xo) + ek E In qi (Xok)
q (xo

m

xk + ek i
qi (XkOqi(xkoqi (xko-)

m

ek E Vqi(xk-)T(xk-

= qi(xko -1)

where the last inequality is a consequence of Corollary 3.7 and Lemma 2.2.

3.3. Bounding F(xk; ek). Using the bounds developed in the previous two sec-
tions, we show in Theorem 3.9 below that we can specify values for the parameters
a, 5, a such that the condition

F(xk; ek) <_ aek

is always satisfied.
THEOREM 3.9. Let xk be generated by Algorithm 2.1, with a 0.005, 5 0.06,

and a 0.007. Then
F(xk; k) < a

Proof. For k 0, F(x; e) < ae is satisfied by assumption. Now, assuming that
F(x-i;ek-) <_ ae-, we shall show that F(xk;ek) <_ aek. From Lemma 3.1, we
know that

(3.16)
m

a
ek-F(xk; ek) F(xk; ek-) + F(xk-1; ek) + E= In

qi(xko_

264 D. GOLDFARB, S. LIU, AND S. WANG

Since 0.005 a _< (52/2) -/(5) for 5 0.114, it follows from the assumption that
F(xk-; ek-) <_ aek- and Theorem 3.4 that

F(x’; ek-l) < F(x’-l; e’-1) SV/e-lV/52F(xk-1; ek-1 + - + 20"5

(3.17) < aek-1 0.0541V/-ek-1 + 0.002834ek-1

< 0.00402ek- 1.

For a 0.007, 3 0.0096, hence from Theorem 3.8, we have that

(3.8) F(x-; ’) < 0.00007-.

Moreover, since 0.00402 _< (2/2)-/(), for 0.1002, it follows from (3.17) and
Lemma 2.6 that

xk e E(xko-,).
Therefore, from Lemma 2.2 we have that

(3.19)
m

--ek-1 .= In qiXo-ljqi(xk)tk_ --< aek- < 0"0008ek-

Substituting (3.17), (3.18), and (3.19) into (3.16), we get that

0.00489
ek < 0.00493ek < aekF(xk; ek) < 0"00489ek- <
1 a

Hence, by the induction, the theorem holds.

4. Initialization and complexity of the algorithm. In Algorithm 2.1, it
is assumed that we are given an initial feasible point x and barrier parameter eo
such that F(x; e) < ae. We now discuss one way of getting such an x and co.
Specifically, we will show that by choosing eo large enough we can use the initialization
procedure in Mehrotra and Sun [11] to find such an x.

Let g(x) .m= ln(q(x)) and w argmax {g(x) lx G int S}. By using Mehro-
tra and Sun’s [11] initialization procedure, we can obtain a point , in O(m2nL)
arithmetic operations, where L is the length of the input data for (QCP), such that

(4.1) ()- () _< o.oo.

Since, for x E int S, f(x; o) =_ cTx_ eo Em=l ln(qi(x)) cTx- cOg(x) and F(x; e)
f(x; e) f(w; e), where w argmin f(x; o), we have that

(4.2) F(; e) f(; o) f(o; o)
cr(o) + ,o(a() a() + (o) a()).

From the definition of w, we have that g(wo) -g(w)

_
0, which when combined with

(4.1) and (4.2)imply that

(4.3) F(; e) < cT(wo) + 0.002e

< (Icr(-o), +o.oo2) o0

A LOGARITHMIC BARRIER FUNCTION ALGORITHM 265

Hence, by choosing x and e > IcT(x --wO)l/(a- 0.002), for a > 0.002, it
follows from (4.3) that

F(xO; o) _< aeo.
We can now prove the main complexity result of the paper.
THEOREM 4.1. Let Algorithm 2.1, with a 0.005, 5 0.06, a 0.007, and

0 < < (e/m), be applied to (QCP) starting from a point xo satisfying (4.1) and
with an initial penalty parameter o 2R]1c11/0.003. Then the algorithm terminates
in O(x/ln (e/)) iterations with a feasible solution xk which satisfies

(4.4) vTxk cTx*

__ .
Proof. Since

Ir(x)1 < I111" IlxO oll < :RIIII o,
a- 0.002 0.003 0.003

it follows from our analysis above .that F(x; e) < ae; hence x, co, and a satisfy the
initialization requirements of Algorithm 2.1. Hence from Theorem 3.9 F(xk; ek) <_ oek
for all k. Also, since 0.005 a <_ (52/2) -/(51) for 51 0.114 < 1/2, it follows from
Lemma 2.6 that xk E E(xko,51), and therefore from Lemma 2.2 that

m

(4.5) E IVqi(xk)T(xk

= q()

Recalling from Lemma 2.1 that

m

(4.6) c ek y Vqi(xk)

i=1
qi(x)

it follows from (4.5) that

(4.7)

Also, since 0 < qi(x*) qi(xk) + Vqi(xko)T(x* Xko) + 1/2(X* Xko)TGi(x* Xk), it
follows from (4.6) that

(4.8)

266 D. GOLDFARB S. LIU AND S. WANG

where the inequality above is a consequence of the nonnegativity of q(x*) and the
negative semidefiniteness of G, for all i. Combining (4.7) and (4.8) yields

cTxk cTx* <_ (0.114V / rn)ek.

Since In ek In e0 / k ln(1 < In 0 k(a/v), it follows that both ek and
cTxk --cTx will be reduced below in O(v/-ln(e/)) iterations.

It immediately follows from Theorem 4.1 and the computational cost of each
iteration that the total number of arithmetic operations required by Algorithm 2.1 is
bounded by O (min{ml.Dn2 In (e0/), m.5n3 In

5. Final remark. The approach presented here can be applied to the general
convex programming. This is the subject of a forthcoming report.

REFERENCES

[1] M. BEN DAYA AND C. M. SHETTY, Polynomial barrier function algorithms for linear pro-
gramming, School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA, 1987.

[2] , Polynomial barrier function algorithms for convex quadratic programming, School of
Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 1988.

[3] S. C. FANG AND J. R. RAJASEKERA, Controlled perturbations for quadratically constrained
quadratic programs, Math. Programming, 36 (1986), pp. 276-289.

[4] A. V. FIACCO AND G. P. McCORMICK, Nonlinear programming: Sequential unconstrained
minimization techniques, John Wiley, New York, 1968.

[5] D. (OLDFAI:tB AND S. LIU, An O(n3 L) primal interior point algorithm for convex quadratic pro-
gramming, Tech. Report, Department of Industrial Engineering and Operations Research,
Columbia University, New York, 1988; Math. Programming, to appear.

[6] C. C. GONZAGA, An algorithm for solving linear programming problems in O(n3L) operations,
in Progress in Mathematical Programming, N. Megiddo, ed., Springer-Verlag, Berlin, 1989,
pp. 1-28.

[7] F. JARIE, On the convergence of the method of analytic centers when applied to convex
quadratic programs, manuscript, Institut fiir Angewandte Mathematik und Statistik, Univer-
sitt Wurzburg, Am Hubland, 8700 Wurzburg, West Germany, 1987; Math. Programming,
to appear.

[8] N. KARMARKAR, A new polynomial time algorithm for linear programming, Combinatorica, 4
(1984), pp. 373-395.

[9] M. KOJIMA, S. MIZUNO, AND A. YOSHISE, A primal-dual interior point method for linear
programming, in Progress in Mathematical Programming, N. Megiddo, ed., Springer-Verlag,
Berlin, 1989, pp. 29-47.

[10] S. MEHROTRA AND J. SUN, An algorithm for convex quadratic programming that requires
O(n3"bL) arithmetic operations, Math. Oper. Res., 15 (1990), pp. 342-363.

[11] , A method of analytic centers for quadratically constrained convex quadratic programs,
Tech. Report 88-01, Department of Industrial Engineering and Management Science, North-
western University, Evanston, IL, 1988.

[12] R.C. MONTEIRO AND I. ADLER, Interior path following primal-dual algorithms. Part I: Linear
programming, Math. Programming, 44 (1989), pp. 27-41.

[13] , Interior path following primal-dual algorithms. Part II: Convex quadratic programming,
Math. Programming, 44 (1989), pp. 43-66.

[14] J. RENEGAR, A polynomial-time algorithm based on Newton’s method for linear programming,
Math. Programming, 40 (1988), pp. 59-93.

[15] G. SONNEVEND, An "analytical centre" for polyhedrons and new classes of global algorithms
for linear (smooth, convex) programming, Proc. 12th IFIP Conference on System Modelling
and Optimization, Budapest 1985, Lecture Notes in Control and Information Sciences 84,
Springer-Verlag, Berlin, 1986.

[16] P. VAIDYA, An algorithm for linear programming which requires O(((m + n)n - (m - n)l"5)L)
arithmetic operations, Math. Programming, 47 (1990), pp. 175-201.

A LOGARITHMIC BARRIER FUNCTION ALGORITHM 267

[17]

[18]

Y. YE AND E. TSE, An extension of Karmarkar’s projective algorithm for convex quadratic
programming, Math. Programming, 44 (1989), pp. 157-179.

Y. YE, Interior algorithms .for linear quadratic and linearly constrained convex programming,
Ph.D. thesis, Department of Engineering-Economic Systems, Stanford University, Stanford,
CA, 1987.

SIAM J. OPTIMIZATION
Vol. 1, No.2, pp. 268-279, May 1991

() 1991 Society for Industrial and Applied Mathematics
007

LARGE STEP PATH-FOLLOWING METHODS FOR LINEAR
PROGRAMMING, PART I: BARRIER FUNCTION METHOD*

CLOVIS C. GONZAGA
Abstract. The algorithm proposed in this paper is the classical logarithmic barrier function

method with Newton-Raphson steps for the internal minimization of the penalized function. Poly-
nomial behavior is obtained by stopping each internal cycle when the iterates approach the central
trajectory. Each master iteration updates the penalty parameter by a constant factor, and the overall
complexity bound depends on this factor: O(L) Newton iterations for an arbitrary constant, and
O(v/-L) iterations for a constant dependent on V/.

Key words, interior point methods, linear programming, barrier function methods, path fol-
lowing methods

AMS(MOS) subject classification. 49D

1. Introduction. This is the first of two papers in which we study large step
path-following algorithms for linear programming. Path-following algorithms are
based on the central trajectory for the problem, first studied by Sonnevend [20], Bayer
and Lagarias [1], and Megiddo [12]. This trajectory is the common set of optimizers
for several auxiliary functions based on the logarithmic barrier function, introduced
in optimization by Frisch [3]. Each auxiliary function gives rise to a different param-
eterization p x(p) of the path. In this paper the auxiliary function is the classical
logarithmic barrier penalized function; in Part II we study the potential function.

Path-following methods have two levels: a master algorithm updates the param-
eter value and calls an internal minimization algorithm that reduces the auxiliary
function until it generates a point that satisfies a proximity criterion in relation to the
desired point on the path. The distinction between short and large steps is related
to the parameter variation at each master iteration: typical short steps are such that
all intermediate points are near the trajectory; typical large steps use large param-
eter variations at the master level, and the intermediate iterates may wander quite
far from the path. Typical short step algorithms advance carefully along the path,
with a worst-case complexity of O("dL) internal iterations, where n is the number
of variables and L is the bit length of the input data. Large step methods are bolder
but loose in worst-case complexity (typically O(nL) internal iterations).

The algorithm described in this paper is the classical barrier function method,
with a proximity criterion used to stop the internal iterations after each update of the
penalty parameter. The logarithmic barrier function was first used in optimization
by Frisch [3], and was extensively studied by Fiacco and McCormick in their cele-
brated book [2]. The barrier function method as developed by them adds a penalty
function #p(.) to the criterion f(.) of a constrained nonlinear programming problem,
and performs a sequence of unconstrained minimizations of this penalized function
f(.) f(-) + #p(.) for decreasing values of the parameter #.

A master iteration consists of an update of the penalty parameter and a call to the
internal algorithm, responsible for the minimization of the penalized function. The
traditional way of updating the parameter is by a constant factor, # #/(1 /),

Recieved by the editors January 10, 1990; accepted for publication (in revised form) December 5,
1990. This paper was first presented at the Second Asilomar Workshop on Progress in Mathematical
Programming, Monterey, CA, February 5-7, 1990.

COPPE, Federal University of Rio de Janeiro, C. Postal 68511, 21945 Rio de Janeiro, RJ, Brazil
clov@lncc. bitnet).

268

LARGE STEP PATH-FOLLOWING METHODS: BARRIER FUNCTION METHOD 269

and one assumes that the internal minimization ends with an exact solution of the
unconstrained penalized problem. Elegant proofs of asymptotic convergence were
obtained for this scheme, with mild assumptions on the barrier functions (see Polak
[1).

The first study of implementable algorithms (i.e., without the assumption that the
internal algorithm obtains an exact solution) was made by Polak, and later published
in his book [16]. He stops each internal cycle whenever the norm of the gradient of
the penalized function becomes smaller than a constant. This constant must decrease
as the number of master iterations increases, to guarantee asymptotic convergence.
Polak was actually using a proximity criterion to stop the internal iterations: an
improvement of his stopping rule will make the algorithm polynomial for linear pro-
gramming problems.

The connection between Karmarkar’s algorithm [9] and barrier function methods
was pointed out very soon after Polak by Gill et al. [4], but no clear method for
updating the penalty parameter was proposed at that time. An answer to this question
came at the end of 1986, when Renegar [17] obtained the first algorithm for linear
programming with a complexity bound of O(vfL) iterations using a method of centers
approach to trace the central path. Then Gonzaga [7] obtained the same bound for
the barrier function approach, using short steps for the penalty updates. The barrier
function approach was simultaneously studied in a primal-dual setting by Kojima,
Mizuno, and Yoshise [11], also using short steps.

Several studies were then made, either improving the proofs and presentation,
or extending the results to quadratic programming and the linear complementarity
problem (see [5], [8], [10], [13], [15], [14], [18]). All resulting algorithms solve the
linear or quadratic programming problem in O(v/’L) iterations, and all are based
on short steps. The picture is somewhat frustrating: either a method allows large
steps, like Karmarkar’s algorithm or the affine polynomial method in [6] and has a
complexity bound of O(nL) iterations, or the bound is lower but the steps are short
and inefficient.

The short step barrier function method updates the penalty parameter by a factor
1+/vf, where is a small constant, usually 0.05. With these very small changes
in the penalty parameter, and with an initial point nearly centered, we can show that
the method generates a sequence of nearly centered points, closely following the central
path. If the constant is increased, more than one Newton-Raphson step may be
needed to approach the trajectory again, after updating the penalty parameter. This
paper shows that the number of Newton-Raphson steps will then be bounded by a
fixed number for each value of and the complexity analysis still holds true.

The final result will be that the overall number of Newton-Raphson steps will be
O(,vf’di). If is a constant, then the bound is O(v/-di). If v/’ then the
bound is O(nL). This case corresponds to an update of a factor 1 / for the penalty
parameter, the common practice proposed, for instance, in Fiacco and McCormick
[2]. This last case was studied independently by Roos and Vial [19], who arrived at
the complexity O(nL) by a very elegant proof.

2. Central points and the barrier function. We consider the following linear
programming problem:

(1) minimize cx
subject to Ax b x >_ O,

where c E n, b E m, A is an m n full-rank matrix, (0 < m < n).

270 C.C. GONZAGA

We assume that the feasible set

S- (x E n Ax b,x >_ O}

of (1) is bounded, and that its relative interior S is nonempty. We also assume that
an initial interior feasible point x is available. Additional assumptions about x will
be made and commented on below.

The dual linear programming problem associated with (1) is

(2) maximize Uw
subject to Aw + z c, z >_ O.

It is well known that the duality gap is given by

x’z dx b’w,

for any feasible x, w, z.
A symmetrical statement of the primal and dual problems can be obtained by

eliminating the variables w from the dual problem by operating on the equation
Aw + z c. This equation states that the difference between z and c is orthogonal to
the null space N’(A) of A, and hence z E in is dual feasible if and only if Pz Pc,
z _> 0, where P is the projection matrix onto Af(A).

The barrier function. We begin by listing some results on the logarithm func-
tion around 1.

LEMMA 2.1. Let (-1, 1) be given. Then

(3) + <
,k2 1

(4) log(1 +)) >)
2 1 -I1’

d 1
(5) dlg(l+)= 1+ 1-+ 1+-"

Proof. The first relation is a consequence of the concavity of the logarithmic
function. The second relation is well known, and the proof can be found in Karmarkar
[9]. The last one is immediate.

The properties in Lemma 2.1 can now be extended to the barrier function.
The barrier function p" + --, is defined by

n

p(x) Elogx,,
i=1

and has derivatives

(6) Vp(x) -x-1, Vp(e) -e,

(7) V2p(x) X-2, V2p(e) I,

where x-1 represents the vector whose ith component is 1/xi, X diag(x,... ,xn),
and e [1,...,1]’.

Note that the derivatives of p(.) are very simple at e, which motivates us to study
its properties near this point. It will be easy to extend the results to any positive
point by a scaling operation.

LARGE STEP PATH-FOLLOWING METHODS: BARRIER FUNCTION METHOD 271

Effect of scaling on the barrier function. Consider a positive diagonal matrix
D. We have

n

p(Dx) p(x) E log di.
i--1

Given two points x, y > 0,

(8) p(Dy) p(Dx) p(y) p(x),

and hence scaling operations do not affect variations of p(.).
Variation of the barrier function around e.
LEMMA 2.2. Consider a vector d E Ktn such that Ildll < 1. Then

(9) p(e + d) >_ Vp(e)’d

(10) p(e + d) <_ Vp(e)’d q Ijdlj -e’d q
2 1 -IJd]l 2 1- Ildlloo

(11) Vp(e + d) Vp(e) + d + o(d),

where o(d) Kln is such that

IIo(d)ll

Proof. We have

p(e -.-I-- d) E log(1 -’1" di).

Since di (-1, 1) by hypothesis, it is enough to extend the properties (3)-(5) by
summing them over i, and taking the infinity norm in the denominators. The ex-
tensions are straightforward, and can be found in many references, including
Karmarkar [9]. [1

Extension of the results to the penalized function. The penalized functions
for the linear programming problem and its dual are defined for each value a by

(12) +

Since the penalized functions differ from p(.) only by linear factors, the approximations
obtained above can be extended to them simply by changing the linear term. We now
repeat expressions (9)-(11) for the primal penalized function, with Ilhll 1, [0, 1):

(13)

(14)

(15)

fa(e + Ah) >_ fa(e) + AVfa(e)’h,

fa(e +)h) <_ fa(e) +)Vfa(e)’h -Vfa(e + Ah) Vfa(e) + &h + o(&h),

A2 1
2 1- I.Xl’

272 C.C. GONZAGA

where o(Ah) E :tn is such that

Central points. The primal and dual central trajectories are the sets of central
points defined for each a _> 0 by

x(a) argmin {fa (x) Ax b, x > 0},
z(a) argmax (ga(z) Pz Pc, z > 0}.

To each nonnegative penalty parameter, a primal central point x(a) and a dual cen-
tral point z(ct) are associated. The central trajectory was introduced by Bayer and
Lagarias [1], and studied in several references, including [7]. Under our hypotheses the
central points are well defined and unique for each nonnegative value of the penalty
parameter.

The cost value cx(a) decreases with a and tends to the optimal value when
a --+ oo. Similarly, the dual cost associated to z(a) increases with a toward the value
of an optimal solution. Primal and dual central points are related by the following
lemma.

LEMMA 2.3. Given a >_ O, the primal and dual central points associated to a are
related by

(16) z(a) x(a)-i

(1) ()’z() -.
Proof. Let a > 0 be given, and let x(a) be the primal central point. Since, for

any dual feasible solution y, z,

the dual penalized function can be written as

g(z) -x()’z (z) ’x().

Since the last term is constant, the gradient is given by

va.(z) -.x(.)+ z-.
Substituting z x(a)-l/a, or z- ax(a), we obtain Vga(z) 0, proving the
first relation. Now, calculating x(a)’z(a), we obtain directly the second relation,
completing the proof, rq

Summarizing the results in this section, we conclude that to each nonnegative
value of the penalty parameter a, we associate a pair of primal and dual central
points x(a) and z(a) such that the primal cost decreases with a and the dual cost
increases with a. The dual cost is given by

(8) () ’() x()’z() ’x() /.

LARGE STEP PATH-FOLLOWING METHODS: BARRIER FUNCTION METHOD 273

3. Nearly centered points. Path-following methods compute a sequence of
points that are near the central trajectory by some proximity criterion. In this section
we derive properties of such points.

A point will be considered as proximal to the central point x(a) when it is well
within the region of quadratic convergence of Newton-Raphson’s method for the min-
imization of the penalized function.

Notation. Given a > 0 and x E S, the Newton-Raphson step for the function
fa(’) from x on S will be denoted by hg(x,o). The projection matrix onto the
null space of a matrix M will be denoted PM, with P PA.

LEMMA 3.1. The Newton-Raphson direction hg(x, o) is given by
(i) hg(e, a) --BArYon(e) --PA(oc e).
(ii) hg(x, a) -XPAxXVfa(x) --XPAx(aXc e).
Proof. (i) From e, the linear approximation of Vfa(’) is given by

Vfa(e + d) . Vfa(e) + V2fa(e)d Vfa(e) + Id,

using (7). The point that corresponds to the minimum of the quadratic approximation
of fa(’) on Af(A) satisfies

P(Vfa(e) + d) O.

Since d E Af(A), we get PAVfa(e) / d 0, completing the proof of item (i).
To show item (ii), remember that the result of applying the Newton-Raphson

step is not affected by a change of scale. The scaling operation x Xy takes the
point x to e, and reduces the problem to the first case.

The direction in (ii) corresponds to

hg(x, a) XhN(e, a),

where hg(e, a) is computed as in (i) after scaling, completing the proof. D
Now we are ready to define the proximity criterion.
DEFINITION 3.2. Given a > 0 and x S, the proximity of x in relation to

x(a) is given by

6(x, o) Ilx-lhN(x, o)]].

The point x will be considered nearly centered if 5(x, a) is small, where small
will normally mean 5(x, a) _< 0.1.

The Newton-Raphson direction is scale-independent, in the sense that the point
obtained by a Newton-Raphson step does not depend on the coordinate system used
in the computation. The proximity measure describes the length of the Newton-
Raphson step that would be obtained after a scaling that takes the present point
to the vector of ones. From the point e, the Newton direction coincides with the
projected gradient direction,

hg(e, a) -PVfa(e) -aPc + Pe.

Note that whenever 5(x, a) < 1, the full Newton step leads to a new interior point.
The properties associated to the proximity concept are summarized in the next

lemma.
LEMMA 3.3. Consider a point x S and let 5(x,a) be its proximity to the

central point x(a).

274 C.C. GONZAGA

(i) Proximity and distance: If 5(x,a) <_ 0.1 then IIX-l(x- x(a))ll <_ 0.115.
(ii) Proximity and function values: If 6(x,a) <_ 0.1 then fa(x)-fa(x(a)) <_ 0.012.
(iii) Proximity and cost: If 5(x,a) <_ 0.1 then Ic’x- c’x(a)l <_ 0.2/’/a.
(iv) Guaranteed descent: If 6(x, a) >_ 0.1 then fa(Y) <_ fa(x) 0.004, where

0.1
y x + 5(x, a)

hy(x, a).

Proof. All statements are related to scale-invariant concepts, and can be shown
after a scaling x Xy that takes x to e. The notation is simplified if we assume
without loss of generality that such scaling has been done, and that x e. With this
assumption,

hN(e, a) -PVfa(e) -aPc + Pc.

(i) Consider the normalized direction h (x(a)-e)/llx(a -ell and let us study
the function A e [0, 1) fa(e + Ah).

This function is convex, and has a unique minimizer at -IIx(a)- ell. We must
prove that whenever 5(x, a) <_ 0.1, <_ 0.115. The derivative of this function is

d
d-fa(e + Ah) h’Vfa(e + Ad).

It increases monotonically, crossing zero at . Using (15) and keeping in mind that
Ilhll- 1,

d A2

+ Ah) >_ h’VI (e) + A
A

A> -0.1 + A- 1-A’

since h’Vfa(e)- h’PVfa(e) >_ -IIhll(,) -0.1.
Now, substituting 0.015, we obtain d/dAfa(e +0.015h) > 0, proving that the

derivative crosses zero at A < 0.015.
(ii) Using (13) with Ilhll 1 and <_ 0.115,

f(e + Ah) >_ fc(e)- 0.1 0.115.

(iii) Define d e x(a). By (i),

0.115.

We then have

d’Vfa(e) d’PVfa(e) <_ O.11511PVfa(e)l <_ 0.0115.

Substituting Vfa(e) ac- e,

ac’d- e’d < 0.0115.

But e’d <_]ldIl <_]ldI], and hence

ac’d <_ 0.115v + 0.0115.

LARGE STEP PATH-FOLLOWING METHODS: BARRIER FUNCTION METHOD 275

Finally, since _> 1,

ac’(e x(a)) <_ (0.115 + 0.0115)V <_ 0.2v/’.

(iv) Let

y e + 0.1h, h

Then y is feasible. From (14),

fa(e + 0.1h) _< fa(e) 0.1IIPVfa(e)ll +

PVfa(e)
IIPWc(e)ll"

0.01 < fc(e) 0.004,
1.8

completing the proof, cl

The lemma above provides the tools to study the complexity of the algorithm in
the next section.

4. The algorithm. The algorithm is precisely the barrier function method as
developed in Fiacco and McCormick [2], with a special criterion for stopping the
internal iterations. A master algorithm updates the penalty parameter by a constant
factor (1 +), with /v/. An internal algorithm then executes Newton-Raphson
iterations to find an approximate minimizer for the penalized function. The internal
algorithm uses as stopping criterion the proximity to the central point associated to
the parameter.

The master algorithm stops when a point xk is found such that 5(xk, ak) <_ 0.1
and ak >_ 1.2 n 2L. At such a point we have by Lemma 2.3 that

c’x(a) < n

where is the value of an optimal solution. Using Lemma 3.3 (iii),

c,xk
_

<_ n + 0.2V/’ _< 1.2n _< 2_L

and an optimal solution can be found by purifying xk.
The initial point. We shall assume that the algorithm starts with a parameter

Ceo > 2-L, and with a point x such that 5(x, Co) <_ 0.1. This can be obtained by an
initialization procedure (see [7]) or by starting the algorithm with internal iterations
(centralization) from a point x such that p(x) < O(v/-dL). In this last case, an initial
centralization can be performed in O(x/-dL) Newton-Raphson steps (see Vaidya [21]).

ALGORITHM 4.1. Large step barrier: given 0 /v/’ with > 0 and given
x E S and ao >_ O, such that 5(x, Co) <_ 0.1.

k:=O.
REPEAT (Master iteration)

Penalty: "= (1 + O)ak.
j := 0, yO .= xk.
REPEAT (Inner iteration)

Direction: compute h hg(y j,) and i i(yJ,).
Search: solve approximately the linesearch problem

:= argmin {fa(y j + Ah) lX >_ 0}.

276 C.C. GONZAGA

yJ+ :- yJ + h.New point"
j’=j/l

UNTIL (< 0.1.
xk+l yj.
Sk+1 :--
k.=k+l.

UNTIL Sk > 1.2 n 2L

The linesearch can be any procedure with O(1) iterations that produces a result at
least as good as the steplength used by Lemma 3.3(iv).

The algorithm was stated in its Newton-Raphson format. As we have seen above,
the Newton-Raphson direction (for the specific case of the penalized function) coin-
cides with the scaling-steepest descent direction, and the algorithm may be rewritten
to use this last approach.

LEMMA 4.2. The algorithm stops in no more than ((1 /)/)O(L) master iter-
ations.

Proof. At the start of master iteration k,

sk (1+ O)kso <_ 1.2 n2L.

Taking logarithms in base 2,

k log(1 + 0) _< L + log(1.2 n) log So.

But since log(.) is concave and 0 > 0,

and it follows that

d
log(1 +0)

0
log(1 + 0) _> 0 1 + 0’

k
1+

_< L + log(1.2 n) log So.

For So > 2-L, the right-hand side is of order L, and it follows that

k<
l + t?

O(L),_
completing the proof.

Our next step is to prove that the number of internal iterations in each iteration
of the master algorithm is bounded by a fixed number. This fact will lead us directly
to polynomial bounds for the complete algorithm.

THEOREM 4.3. Consider an iteration of the master algorithm, with
and let A 0.004. The number J of internal steps satisfies

2
(19) JA _<

1 - n + OV + 1.

Proof. To simplify the notation, let
Using Lemma 3.3(iv),

f((yJ) <_ f((yO) JA.

LARGE STEP PATH-FOLLOWING METHODS: BARRIER FUNCTION METHOD 277

Since 5 (1 + O)a, for any y E S

and it follows that

Ia (u) (u) + e’u,

fa(yJ) + Oac’yJ <_ fa(y) + Oac’y JA,

or

(20) JA <_ Oac’y- Oac’yg + fa(y) fa(yJ).

But yO x was nearly centered for a, that is, 5(y, a) <_ 0.1. Hence, from Lemma
3.3(ii),

fo(y) --foz(yJ) <_ 0.012 < 1.

Introducing this in (20),

or equivalently,

JA <_ Oacy OacyJ ._ 1,

JA-1
_
oc yo oc yJ.

We can now use the fact that both yO and yJ are nearly centered to deal with points
on the central path and the duality gaps associated to them: since 5(yO, a) <_ 0.1 and
5(yJ, 5) <_ 0.1, from Lemma 3.3(iii)

o < c’z()+ - c’x()
0.

Simplifying this expression and using the definition of 5,

JA-1 (1)< ’() c’z(c) + + ..+ o 0.2v%

Now consider the dual costs associated with a and 5, defined in (18)"

(a) () >_ 0.

Adding the last two inequalities and noting that 0.2(1 + 1/(1 + 0)) <_ 1,

JA- 1 < (’() ()) (’x(a) (a)) + v.
Finally, we can use (18) to obtain

JA-1 1< n- on+J-d,0 1+

or equivalently,

02
JA 1 _< , + 0

n + OVr,

278 C.C. GONZAGA

completing the proof.
The total number K of Newton-Raphson iterations in the complete algorithm

is given by the product of the bounds in Lemma 4.2 and Theorem 4.3"

1 + O] O(L).KA_< n0+(l+0)v+ 0

Substituting

(21) KA < [v + + v+
L

There is little interest in studying the case where is too small. The short step
path-following algorithm in [7] uses 0.05 and needs only one Newton-Raphson
iteration per iteration of the master algorithm. For O(1), > 0.05, we obtain
from (21),

(22) K <_ O(x/L).

We shall consider two cases:
(1) For an arbitrary O(1), the right-hand side is O(v/L), and this is the

complexity bound for the algorithm.
(2) For an arbitrary 0 O(1), or equivalently 0v/’, substitution into (22)

immediately gives K O(nL).
The influence of in the complexity bounds seems to indicate that the compu-

tational work increases as we go from short to large steps. But with large steps, the
worst case is really worse than what we expect from the algorithm. The guaranteed
descent A is associated to points near the trajectory, and grossly underestimates the
actual descent that should be obtained at nonproximal points.

But even if we account for the better behavior far from the trajectory, the com-
plexity bound will still be O(v/-dL). The proved worst-case behavior degrades when

increases. Two things can be said about this: first, when we increase we become
bolder, trying bigger jumps and hoping for a great economy in the number of itera-
tions. If the trajectory bends very much, it may become difficult to regain the track,
and we end by increasing the work; a more conservative updating scheme is safer, but
always expensive. In worst-case studies the conservative approach will do better. The
second remark is that as increases, the method becomes more and more similar to
the affine-scaling algorithm at the beginning of each inner iteration loop. If the com-
plexity bound did not degrade, this fact could be used to establish a low polynomial
bound for the affine-scaling algorithm, a feat widely believed to be impossible.

REFERENCES

[1] D. BAYER AND J. C. LA(ARIAS, The non-linear geometry of linear programming, i. aJfine and
projective scaling trajectories, ii. legendre trans]orm coordinates, iii. central trajectories,
preprints, AT&T Bell Leboratories, Murray Hill, NJ, 1986.

[2] A. FIACCO AND G. MCCORMICK, Nonlinear Programming: Sequential Unconstrained Mini-
mization Techniques, John Wiley, New York, 1968.

[3] K. R. FRISCH, The logarithmic potential method of convex programming, memorandum, Uni-
versity Institute of Economics, Oslo, Norway, 1955.

[4] P. GILL, W. MURRAY, M. SAUNDERS, J. TOMLIN, AND M. WRIGHT, On projected Newton
barrier methods for linear programming and an equivalence to Karmarkar’s projective
method, Math. Programming, 36 (1986), pp. 183-209.

LARGE STEP PATH-FOLLOWING METHODS: BARRIER FUNCTION METHOD 279

[5] D. GOLDFARB AND S. LIU, An O(n3L) primal interior point algorithm for convex quadratic
programming, manuscript, Department of Industrial Engineering and Operations Research,
Columbia University, New York, 1988; Math. Programming, to appear.

[6] C. GONZAGA, Polynomial affine algorithms for linear programming, Internal report ES-141/88,
Programa de Eng. de Sistemas e Computa), COPPE/UFRJ, Rio de Janeiro, Brazil, 1988;
Math. Programming, 49 (1990), pp. 7-21.

[7] , An algorithm for solving linear programming problems in O(n3L) operations, in
Progress in Mathematical Programming--Interior Point and Related Methods, N. Megiddo,
ed., Springer-Verlag, Berlin, 1989, Chap. 1.

[8] F. JARRE, On the convergence of the method of analytic centers when applied to convex
quadratic programs, DFG-Report 35, Institut fiir Angewandte Mathematik und Statistik,
Universit/t Wiirzburg, Wiirzburg, West Germany, 1987; Math. Programming, to appear.

[9] N. KARMARKAR, A new polynomial time algorithm for linear programming, Combinatorica, 4
(1984), pp. 373-395.

[10] M. KOJIMA, S. MIZUNO, AND A. YOSHISE, A polynomial-time algorithm for a class of linear
complementarity problems, Math. Programming, 44 (1989), pp. 1-26.

[11] , A primal-dual interior point method for linear programming, in Progress in Mathemat-
ical Programming--Interior Point and Related Methods, N. Megiddo, ed., Springer-Verlag,
Berlin, 1989, Chap. 2.

[12] N. MEGIDDO, Pathways to the optimal set in linear programming, in Progress in Mathematical
Programming--Interior Point and Related Methods, N. Megiddo, ed., Springer-Verlag,
Berlin, 1989, Chap. 8.

[13] S. MEHROTRA AND J. SUN, An algorithm for convex quadratic programming that requires
O(n3"5L) arithmetic operations, Tech. Report 87-24, Department of Industrial Engineering
and Management Science, Northwestern University, Evanston, IL, 1987.

[14] R. C. MONTEIRO AND I. ADLER, Interior path-following primal-dual algorithms, part I: Linear
programming, Math. Programming, 44 (1989), pp. 27-41.

[15] , Interior path-following primal-dual algorithms, part II: Convex quadratic programming,
Math. Programming, 44 (1989), pp. 43-66.

[16] E. POLAK, Computational Methods in Optimization, Academic Press, New York, 1971.
[17] J. RENEGAR, A polynomial-time algorithm based on Newton’s method for linear programming,

Math. Programming, 40 (1988), pp. 59-94.
[18] C. Roos AND J.-P. VIAL, A polynomial method of approximate centers for linear programming,

Report 88-68, Faculty of Technical Mathematics and Informatics, Technische Universiteit
Delft, Delft, the Netherlands, 1988.

[19] , Long steps with the logarithmic penalty barrier function in linear programming, report,
Faculty of Technical Mathematics and Informatics, Technische Universiteit Delft, Delft,
the Netherlands, 1989.

[20] G. SONNEVEND, An analytical centre for polyhedrons and new classes of global algorithms for
linear (smooth, convex) programming, in Lecture Notes in Control and Information Sciences
84, Springer-Verlag, New York, 1985, pp. 866-876.

[21] P. VAIDYA, A locally well-behaved potential function and a simple Newton-type method for
finding the center of a polytope, in Progress in Mathematical Programming--Interior Point
and Related Methods, N. Megiddo, ed., Springer-Verlag, Berlin, 1989, Chap. 5.

SIAM J. OPTIMIZATION
Vol. 1, No. 2, pp. 280-292, May 1991

() 1991 Society for Industrial and Applied Mathematics
O08

LARGE STEP PATH-FOLLOWING METHODS FOR LINEAR
PROGRAMMING, PART II: POTENTIAL REDUCTION METHOD*

CLOVIS C. GONZAGAt

Abstract. The algorithm proposed in this paper is the affine polynomial potential reduction
method, with new procedures for updating the lower bounds for an optimal solution of the linear
programming problem. A method is developed for updating the lower bounds by large steps, with
strict control over the duality gaps associated with each iterate. Two algorithms are obtained by
this approach: the first one has complexity O(nL) iterations, and a very simple updating procedure;
the second one updates the lower bounds at points very near the central trajectory and achieves a
complexity of O(v/’L) iterations.

Key words, interior point methods, linear programming, potential reduction methods, Kar-
markar’s algorithm

AMS(MOS) subject classification. 49D

1. Introduction. This is the second of two papers in which we study large step
path-following algorithms for linear programming, the first based on penalty functions
and this one based on the potential function. The approaches are very similar in both
papers, but the complexity analyses are quite different. The potential function is
not convex, and proximity to a central point is not so easy to characterize as for the
penalized function. Although we tried to make this paper self-contained, thereader
would benefit from reading 1-3 of Part I.

The first potential reduction method, Karmarkar’s algorithm [9], used a special
formulation for the linear programming problem and started with the hypothesis that
the value of an optimal solution was known. This assumption can be eliminated by
using lower bounds to the value of an optimal solution, and by improving these bounds
iteratively.

The first nice method for updating the lower bounds was developed by Todd and
Burrell [14], based on duality arguments. A lower bound v for the optimal value)
is used by the algorithm until a condition is satisfied, and then it is updated. This
condition was also studied in Gonzaga [4] and amounts to PVf(e, v) > -e, where
f(., .) is Karmarkar’s potential function computed at e, the vector of ones, after a
scaling operation (the notation will be introduced in 2). Here (only) P stands for
the projection onto the null space of the constraint matrix for the special format used
in Karmarkar’s algorithm. The point we want to make is that this criterion looks
like a proximity measure from the central path, the set of minimizers of the potential
function for varying v. It is, in fact, a very loose proximity criterion, and gives rise
to a simple method for updating v: increase v until the proximity criterion is no
longer satisfied. There is no way of controlling the improvement of the lower bound,
and the method may result in short steps (although practical evidence seems to deny
this fact).

Some extra flexibility in the manipulation of lower bounds can be obtained for
the polynomial affine potential reduction algorithm [5]. This method works on the
problem in standard formulation, and also departs from the assumption that the

Recieved by the editors January 10, 1990; accepted for publication (in revised form) December 5,
1990. This paper was first presented at the Second Asilomar Workshop on Progress in Mathematical
Programming, Monterey, CA, February 5-7, 1990.

COPPE, Federal University of Rio de Janeiro, C. Postal 68511, 21945 Rio de Janeiro, RJ, Brazil
clov@incc. bitnet).

280

LARGE STEP PATH-FOLLOWING METHODS: POTENTIAL REDUCTION 281

optimal value is zero. The method uses the potential function

n

f (x, v) q log(c’x v) log xi,

i--1

with q >_ n+v/-. The main result is that at x e, IIPVf(e, v)l > 1 whenever v is not
a lower bound to 3. It follows that v can be increased whenever IIPVf(e, v)l < 1,
until equality is obtained. This method of updating lower bounds was studied by
Freund [3] and can be seen as similar to the one by Todd and Burrell, but uses a
much stronger proximity criterion to the central point that minimizes f(., v). The
procedure is not efficient, since the projected gradient will always have a norm of one
after an update, and this is very small in relation to what can be obtained, for instance,
by Todd and Burrell’s procedure. The variation in v will be small, characterizing a
short step method, and the complexity is O(nL) iterations.

The first potential reduction algorithm to achieve a complexity of O(V/L) iter-
ations was proposed by Ye [16], using the primal-dual potential function devised by
Todd and Ye [15]. The method makes use of explicit dual variables, which are updated
at points near the central path. The method as originally written by Ye generates
short steps, but it can easily be modified to enlarge the steps (see Anstreicher and
Bosch [1]) and obtain the same properties as we obtain in the present paper.

Ye’s complexity analysis, based on properties of the primal-dual potential function
on the central path, is extremely simple and elegant. Freund [3] wrote an algorithm
that is very similar to Ye’s method, showing that the lower bound updates can be
computed from primal information only.

Influenced by Ye’s analysis of the primal-dual potential function, Kojima, Mizuno,
and Yoshise [10] developed a primal-dual algorithm that works effectively with primal
and dual variables with no resort to proximity criteria, and achieves a complexity
bound of O(x/-dL) iterations without following the central path. Their method per-
forms at each iteration a primal-dual scaling that does not take the present iterate
to the vector of ones. Recently, Gonzaga and Todd [7] devised a "primal or dual"
algorithm with independent scaling for the primal and dual problems with similar
properties.

This paper develops a new way of controlling the lower bounds in the affine
potential reduction algorithm. As in other path-following algorithms, the proximity
to the central path is used to update v, but now this is done in such a way as to reduce
the duality gap by a predetermined arbitrary ratio. Two algorithms will be presented:
the first one uses very loose proximity criteria and very flexible updates, and has a
complexity of O(nL) iterations; the second one is stricter, and has a complexity bound
of O(v/-L) iterations.

It turns out that our method is also very similar to Ye’s algorithm. The main
differences are in the predetermined gap reduction at each update, in the possibility
of using higher values of q while keeping the complexity low, and mainly in the
complexity analysis, done in the primal path-following framework.

2. The problem. We consider the linear programming problem:

(1) minimize c’x
subject to Ax b, x > O,

where c E in b E im, A is an m n full-rank matrix, (0 < m < n)

This only became clear during the refereeing process.

282 C.C. GONZAGA

We assume that the feasible set S is bounded and that a point x in its relative
interior S is available.

Notation. The projection matrix onto Af(A) will be denoted P. We also use
the notation Cp and ep for Pc and Pe, respectively.

The dual linear programming problem associated to (1) is

(2) maximize b’w
subject to Aw + z c, z >_ O.

The duality gap is given by xz cx- bw for any feasible x,w,z, and (see Part I)
z E i7 is dual feasible if and only if Pz Pc, z >_ 0.

The following functions are associated to the problem.
The barrier function is defined as

n

(3) x e Kt p(x) E log xi.
i=1

The penalized function is defined for each real a as

(4) x e +
The potential function is defined for each v <_ 3 as

e s f (x, q v) +
where q > n is a fixed number.

The barrier function and the penalized function are strictly convex in S and
the potential function, although not convex, has a unique minimizer for any value
of v for q > n. This is a consequence of the strict convexity of the multiplicative
potential function (the antilogarithm of the potential function), as was proved by Imai
[8]. Besides this, fq(., v) is unimodal along any feasible direction.

We shall study the relationship between these functions. Since all algorithms will
begin each iteration by a scaling operation that takes the present iterate to the point
e [1, ..., 1], it is sufficient to study differential properties of the functions at this
point. It is well known that scaling operations do not affect the variations of the
functions under study. We then have

(6) Vp() -, V() ,
(7) V() , V() ,

q
c- e V2fq(e v)

q
(8) Vfq(e, v) a’e--v (c’e v)2

co’ -+- I.

The central path. The central trajectory, first studied for the linear program-
ming problem by Sonnevend [13], Bayer and Lagarias [2], and Megiddo [11], can be
defined in several equivalent ways. It is the set of minimizers of ga(’) for varying a,
and equivalently the set of minimizers of fq(., v) for varying v, with q > n.

The point e is the central point associated to the penalty multiplier a >_ 0 if
and only if

PVga(e) OCp-ep O.

The point e is the central point associated to the lower bound v if and only if

q
Cp--ep O.PVfq(e, v) c’e v

LARGE STEP PATH-FOLLOWING METHODS: POTENTIAL REDUCTION 283

It is apparent that and v define the same central point e if and only if

(9) a
(e V

Primal-dual properties. Assume that e is the central point associated to a
by the penalized function. Then aCp ep, and it follows that

R
e

Hence e/a > 0 is a feasible dual slack, and the duality gap is

We conclude that if e is the central point associated to a, then z e/a is a feasible
dual slack, and the duality gap is given by n/a. The dual objective value is

n
v ce----).

The conclusion is very interesting, and is central to our development: given a central
point, this relationship immediately gives us a value for a lower bound.

To illustrate the usefulness of this fact, let us examine the potential function and
assume that e is the central point associated to v:

(i) If q n, then from (9),

(te V

and v is the lower bound associated to a.
(ii) Assume now that q > n, and that the central point associated to v

been (exactly)found. Then from (9),
has

cte Vl

By the analysis above, there exists v2 _< such that

(te V2

It follows that

ce V2 n
de vl q

We conclude that after minimizing the potential function fq(., vl), a new lower bound
v2 can be found such that v2 is the dual objective value at a dual-feasible point,
and the duality gap is reduced by the ratio n/q.

(iii) A third way of using the relationship will be useful in the future. Consider
the numbers q > r _> n, and assume that e is the minimizer of fq(., v). Then we
can write

q r
Ol ce Vl c/e V2

284 C.C. GONZAGA

that is, there exists a lower bound v2 such that e minimizes fr (’, v2) on S. Again,
this defines a new lower bound v2 such that

CPe V2 r
de vl q

A conceptual algorithm. If we assume that exact minimizations can be easily
computed, then the following algorithm will follow the central path from a given initial
lower bound Vo.

ALGORITHM 2.1. Conceptual path-following: given q > n, Vo < .
REPEAT

UNTIL

Find xk+ argmin {fq(X, vk) x e S}.
:=

q
k’=k+l.
cxk vk 2-L.

3. Lower bounds at nearly central points. In Part I, we defined the proxim-
ity criterion that characterizes nearly central points. At x e, the proximity measure
for a given a is given by 5(e, a)- IIVga(e)ll.

Now we extend the primal-dual properties to points resulting from an imper-
fect minimization. This will provide tools to build methods like Algorithm 2.1 with
implementable computations.

Initially, let us extend the results of the previous section by means of a lemma
that seems to be interesting in itself: it provides a feasible dual slack for points near
the central path. Note that the duality results are applicable to points satisfying
PVga(e) > -e, a condition weaker than near centrality.

LEMMA 3.1. For given a > O, assume that PVg(e) > -e. Then

z
e + PVga(e)

is a dual feasible slack, and the duality gap is

(11) e’z < n (1+O V/

Proof. Obviously z > 0. We must show that Pz Cp"

Pz ep -b OZCp ep

The gap is given by

n + e’PVga(e) n +etZ

completing the proof.
This lemma can be rephrased for the potential function.
LEMMA 3.2. For given q > n and vl < assume that PVfq(e, v) > -e. Then

e + PVfq(e, Vl)(c’e Vl)(12) z
q

LARGE STEP PATH-FOLLOWING METHODS" POTENTIAL REDUCTION 285

is a dual feasible slack, and the duality gap ce v2 ez satisfies

(13) c’e-v2 g n_ (1+ IIPVfq(e’vl)ll)V/_d (c’e-vl).

Proof. The proof is immediate, by using a q/(c’e v). 0
The updating rule. Let us rephrase the conclusions once more, to obtain clear

rules for updating lower bounds. Now we shall impose the stricter proximity condition
on IIPVfq(e, v)l I. Let v <) be a known lower bound, and assume that (after scaling)
IIPVfq(e, v)l <_ e, where q > n and e e (0, 1]. Let r be such that

Then,

r_> 1+ n.

r
(14) v2 =c’e- -(c’e v)

q

is a valid lower bound, and the following relations hold:

(15)
c’e v2 r__
de vl q

(16) Vfq(e, Vl) Vfr(e, v2).

The maximum increase in the lower bound is obtained with

r= 1+ n,

and this will lead to an O(nL)-iteration algorithm in the next section. A more cautious
increase in the lower bound will give us an O(vL)-iteration algorithm in 5" there,
we choose q > r >_ 2n, with q- r O(v/).

4. O(nL) algorithms. The algorithm in this section is an exact reproduction
of the polynomial affine method in Gonzaga [5], with an added rule for updating
the lower bounds. We shall save some space by merely indicating the technique for
proving the complexity. Our main effort will be in clearing the process for updating
the lower bounds.

Expression (14) provides the updating rule for the algorithm. Each iteration of the
algorithm begins by a scaling that transports xk to the point e. The scaling matrix
is Xk "= diag(x,..., xk), and the scaled problem is obtained by the transformation
x Xky. We shall simplify the presentation by keeping the same notation after
scaling. The scaling procedure is clearly carried on in [5].

ALGORITHM 4.1. Large step potential path-following: given q > n+/’, e E (0, 1],
x SVo<,

REPEAT
Scaling: redefine the problem after scaling by xk Xky. Compute the pro-
jected vectors Cp and ep.

q__Direction: h "= -PVfq(e, vk de Vk
Cp -" ep.

286 C.C. GONZAGA

If Ilhll < e (or alternatively Iihll < e)then

r:=n I+-
r

v+ := ce -(ce v),
q

h :=-
q

Cp + ep.CP Vk+

Else vk+l := vk.
Linesearch: find an approximate solution for

"= argmin{fq(e + ,h, vk+)lA > 0, e + Ah > 0}.

y := e +
Scaling:
k’=k+l.

xk+l := Xky.

UNTIL c xk
vk 2-L.

The linesearch procedure can be any method with O(1) iterations that produces a
descent at least as good as the descent guaranteed by the theoretical results used in
the complexity analysis below.

In the algorithm above, we used as proximity criterion either Ilhl{ < e or I{hlloo < e.
In the first case, a sound decrease in duality gap at each update of v is guaranteed
by q > n + vf. In fact, when vk is updated we get

(17) Vk+l < 1+ < 1,
C’e--Vk q

if q > n / V/.
In the second case, using a proximity based on the infinity norm, a decrease in

duality gap will be guaranteed by using q > (1 / e)n.
A large step algorithm is obtained if we use, for instance, q 5n, and either of

the proximity criteria. If we want large steps, there seems to be no reason to use e
smaller than 1, for any norm.

Complexity. If the projected gradient satisfies]]PVfq(e, v)]] _> e > 0, then the
potential function decreases along h by at least a constant that depends only on e.
We shall prove this for a specific value of e in the next section. For e 1, we proved
in [5] that

fq(e + 0.3h, v) fq(e, v) < -0.1.

If the projected gradient is not large enough, then the lower bound is updated, and
log(de v) changes according to (17)"

log(c’e v+) log(c’e v) <_ log - 1 +

It is easy to check tha if q/n >_ ee/(1 + 1//-), then

<

The condition above is very easily obtained: take, for instance, q 2n and 5 0.5
for n > 2.

LARGE STEP PATH-FOLLOWING METHODS: POTENTIAL REDUCTION 287

We conclude that in any iteration the potential function decreases by at least a
constant value (the minimum between 0.1 and 5). If q O(n), then this fact leads to
a termination in no more than O(nL) iterations, as is proved in [5].

Remark. The complexity analysis is still simpler if we use q _> n +v and add to
the algorithm the following procedure: after changing the lower bound, check whether
now IIPVfq(e, Vk+l)ll _> 1. In the event that this is not true, increase Vk+ until the
norm is equal to 1. In this case the algorithm will have a complexity bound of O(nL)
iterations with any q _> n + v/-, as Freund proved in reference [3]: the update rule
simply improves that method.

5. A low complexity algorithm. The complexity bound of O(vL) will be
obtained for Algorithm 4.1 by limiting the improvement of the lower bound in each
iteration. The complexity analysis is more involved, and will be carried out in detail.

The algorithm uses two numbers, q and r 2n such that q > r, and the update
rule will reduce the gap by

(18)
c’e v+ r__
de vk q

The choice r 2n will be very helpful, because it yields very well conditioned Hessians
for the potential function near a central point. This gives consistency to the measure-
ment of proximity through the projected gradients. The analysis can be adapted to
use any value r _> 2n such that r O(n) instead of r 2n, but this seems to have
little interest.

Instead of repeating the algorithm, we simply indicate the particularizations.
ALGORITHM 5.1. Large step potential path-following: given q > r 2n, Vo < ,

x E S.
In Algorithm 4.1, set e 0.03 and suppress the definition of r.
The lower bounds. Since r 2n > (1 + 0.03/V/)n, the lower bounds are well

defined.
The rest of the paper will be dedicated to showing that if q r O(v/’), and x

is conveniently chosen, then the algorithm solves the linear programming problem in
no more than O(x/L) iterations.

Complexity analysis. We must now clarify the proximity criterion. We must
show that for q >_ 2n the condition IIPTfq(e, v)[< really implies that e is near the
central point Xq(V) associated with v. This sort of analysis is easy for the penalized
function, because its Hessian matrix at e is the identity matrix (see Part I, Lemma
3.3). In our case this is not true, and we must examine the conditioning of the Hessian,
in Kantorovich tradition.

The choice of q and r. Here we make some comments that will not be used in
the actual proofs, but that we believe to be very interesting.

Let h E A/’(A) be such that Ilhll 1, and assume that e is the central point
associated to v. Then, using elementary properties of orthogonal projection,

q ch-eh 0Vfq(e, v)’h c’e v

or equivalently,

ch eh
(19) c’e v q

288 C.C. GONZAGA

From the expression for the Hessian matrix (8),

h’V2fq(e, v)h -q
c’e v

Using (19), we obtain

ch
<_1.1-q

de-v

n-1

since Ile’h[I g v/n- 1, because h has at least one negative component for a bounded
feasible set.

It follows that the Hessian is positive definite on Af(A) for q > n- 1. Some
possible choices for q are"

q=n with h’VIq(e,v)h e [1/n, 1]
q n + with e [/v,]
q 2n with h’V2fq(e,v)h e In+ 1/2n, 1].

In the last case, q > 2n, we have

h’V2fa(e, v)h e [0.5, 1],

and the potential function is very well behaved near the central point. This will allow
us to prove that in this case the condition that IIPVfq(e, v)l is small assures that e
is near the central point; if this projection is large, then a good improvement in the
value of f(.) can be expected from a steepest descent step.

Let us then derive the explicit relationship between proximity and distance to a
central point. Part (i) of the next lemma is similar to Lemma 3.3(iv) in Part I, and
is a standard result. Part (ii) is similar to Lemma 3.3(i) in Part I, and is new.

LEMMA 5.2. Let h e A/’(A) be a direction such that]lh]l 1, and assume that
q > 2n. Then

(i) (guaranteed descent)" IfVfq(e, v)’h < -0.03 then fq(e+O.O4h, v) g fq(e, v)-
0.00024.

(ii) (maximum descent) If IIVfq(e, v)ll < 0.03 then fq(e, v) fq(Xq(V), v) g

0.0011.
Proof. Initially, let us recall some differential properties of the potential function.

For any A E (-1, 1),

These relations are obtained from the Taylor series for the logarithm around 1. The
third inequality was used by Karmarkar. Adding these inequalities and using obvious
simplifications (see, for instance, Karmarkar [9] or Part I), the results are extended
to the barrier function:

(20) p(e + Ah) >_ -Ae’h AVp(e)’h,

LARGE STEP PATH-FOLLOWING METHODS: POTENTIAL REDUCTION 289

(2)

(22)

p(e + Ah) > AVp(e)’h H

p(e + Ah) < AVp(e)’h H

2 3’
A2 1
2 1- IAl"

Now consider the first term of the potential function,

fl(x) q log(a’x v).

This can be rewritten as

fl (e + Ah) q log(c’e v) + q log (1 + A

Defining now a c’h/(c’e- v) (note that a (1/q)Vfl(e)’h),

fz(e + Ah) fz(e) + qlog(l + Aa).

Using the properties of the logarithm,

(23) f (e + Ah) < Ii(e) + ,7fl ()th,
,2a2

(24) fl(e + Ah) > fz(e) + AVfz(e)’h qT
1

We are ready to develop the approximations for the complete potential function and
prove the lemma.

(i) (guaranteed descent): assume that Vfq(e, v)’h <_ -0.03 along the normalized
feasible direction h.

Adding the inequalities (23) and (22),

fq(e + Ah, v) f (e + Ah) + p(e + Ah)
A2 1<_ fq(e,, v)+)Vfq(e_,, v)’h + 2 1-

A2 1<_ fq(e, v) O.03A H
2 1- I),1"

Substituting A 0.04 in this expression, we obtain the conclusion of the lemma,
completing the proof of item (i).

(ii) (maximum descent)" assume that []Vfq(e, v)[[< 0.03, and define the normal-
ized direction to the central point,

h
Xq(V) e

Ilxq(v) -ell"
Then Xq(V) e_, "+ Ah for some A > 0. Adding (24) and (21),

(25) fq(e + 2 3

By definition of a,

Vfq(e, v)’h qa e’h.

A2a2 i
2 1 -IXal"

290 C. C. GONZAGA

Using the assumptions and the definition of h, IVfq(e, v)’h N 0.03. It follows that

qlal <_ le’hl / 0.03.

But the normalized direction h has at least one negative component (because S is
compact), and hence lePhl _< x/’n- 1. From the last inequality,

la _< v/n- 1 + 0.03
q

The right-hand side decreases with n, for q 2n. Since n >_ 2, we get for q >_ 2n,

and also

la < v/n- 1 + 0.03 < 0.26
2n

qa2 < (v/- + 0.03) 2

< O.52.
2n

The bound is obtained by expanding the numerator and doing obvious simplifications.
Introducing this into (25),

fq(e + Ah, v)- fq(e, v) >_ -0.03A - 0.26
2 3 1 0.26A"

Using elementary algebra, or by plotting the function, it is easy to see that the right-
hand side p(A) assumes a local minimum at a point near A 0.073, it is positive for
A 0.18, and for any A E [0, 0.18], p(A) _> -0.0012.

The left-hand side is unimodal, as we have seen above, decreases at A 0, and
is positive at A 0.18. We conclude that it must have an absolute minimum at some
A e [0, 0.18], satisfying

fq(e + Ah, v) fq(e, v) >_ -0.0012,

completing the proof. D
We can finally prove the main result, showing the improvement in gap during each

cycle of iterations between two lower bound updates. The proof of the complexity
bound will then follow trivially.

In the complexity analysis we shall use q 2n+ uv, where u

_
1. Smaller values

of u can be used as well, but there is no interest in studying very short steps.
LEMMA 5.3. Let q 2n + ux/, where u >_ 1, and define 0.00024. Let k and

k + J be two consecutive iterations in which the lower bound is updated, 0

_
j

_
J.

Then

< * v,)

Proof. By construction, after scaling at xk,

IIPVfq(e, vk)ll <_ 0.03.

Again by construction (see (16)),

PVfr(e, v+j) PVfq(e, vk).

LARGE STEP PATH-FOLLOWING METHODS: POTENTIAL REDUCTION 291

Hence,

IIPVfr(e, vk+j)ll <_ 0.03.

It follows from both items of Lemma 5.2 that

q log(c’xk+j vk+j) + p(xk+j) g q log(c’xk vk+j) + p(xk) jh,
r log(c’xk+j vk+j) + p(x+) > r log(c’xk vk+j) + p(xk) A,

where A --0.0011. Subtracting the inequalities,

(27) uv/ log(c’xk+j vk+j) g uV/- log(c’xk Vk+j) + A jh.

From the bound update on iteration k, the gap changes by

dxk
vk+j r 2n

c’xk vk q 2n + uX/

Taking logarithms and simplifying,

log(c’xk vk+j) log(c’xk vk) log (1 +
Substituting into (27) and simplifying,

log(c’xk+j vk+j) log(c’xk vk) <
zx-je (v)vv/_

-log 1+
It is easy to.check that for u _> 1 and n _> 2, log(1 + u/2v/-d) >_ 0.4/x/-, and it follows
that

1log(c’xk+j vk+j) log(c’xk vk) <_ uvf(A 0.4u ji)

< -Jvv’-’
completing the proof.

The convergence proof is now an application of this lemma. We need some hy-
pothesis about the initial point x, and the simplest one is: assume that x e is
nearly central, that is,

IIPfq(e, vo)lt < 0.03.

The problem can be manipulated to enforce this condition, as was done in references
[6] or [12], for example. Another possible initialization consists in starting with any
point such that fq(x, Vo) fq(Xq(Vo), Vo) g O(v/-dL). In this case a nearly central
point will be found in O(vf’dL) iterations, as an immediate consequence of Lemma
5.2.

LEMMA 5.4. Suppose that Algorithm 4.1 is used from the initial point x e and
that IIPVfq(e, Vo)ll < 0.03. Assume also that c’e-Vo < 2L, r 2n, q r + Uv/- with
> 1. Then the algorithm stops in no more than O(ux/L iterations.

292 C.C. GONZAGA

Proof. Under the hypotheses, the lower bound is updated in the first iteration.
Applying Lemma 5.3 recursively for consecutive sequences of iterations with fixed
lower bound, we obtain for any iteration k

log(c’xk vk) < log(c’x Vo) k

it is sufficient to take k > 2x/L/5 to see that

log(c’xk vk) < log(c’x Vo) 2L < -L,

completing the proof.

I:LEFEI:tENCES

[1] K. ANSTREICHER AND a. BOSCH, Long steps in a O(n3L) algorithm for linear programming,
manuscript, Yale School of Organization and Management, Yale University, New Haven,
CT, 1989; Math. Programming, to appear.

[2] D. BAYER AND J. C. LAGARIAS, The non-linear geometry of linear programming, i. affine and
projective scaling trajectories, ii. legendre transform coordinates, iii. central trajectories,
preprints, AT&T Bell Laboratories, Murray Hill, NJ, 1986.

[3] R. M. FREUND, Polynomial-time algorithms for linear programming based only on primal scal-
ing and projected gradients of a potential function, manuscript, Sloan School of Manage-
ment, Massachussetts Institute of Technology, Cambridge, MA, 1988; Math. Programming,
to appear.

[4] C. GONZAGA, Conical projection algorithms for linear programming, Math. Programming, 43
(19SS), pp. 151-173.

[5] ., Polynomial aJfine algorithms]or linear programming, Internal report ES-141/88, Pro-
grama de Eng. de Sistemas e Computa@o, COPPE/UFRJ, Rio de Janeiro, Brazil, 1988;
Math. Programming, 49 (1990), pp. 7-21.

[6] ., An algorithm for solving linear programming problems in O(n3L) operations, in
Progress in Mathematical Programming--Interior Point and Pelated Methods, N. Megiddo,
ed., Springer-Verlag, Berlin, 1989, Chap. 1.

[7] C. GONZAGA AND M. J. TODD, An O(x/L)-iteration large-step primal-dual affine algorithm
for linear programming, Tech. Report 862, School of Operations Pesearch and Industrial
Engineering, Cornell University, Ithaca, NY, 1989.

[8] H. IMAI, On the convexity of the multiplicative version of Karmarkar’s potential]unction,
Math. Programming, 40 (1988), pp. 29-32.

[9] N. KARMARKAR, A new polynomial time algorithm for linear programming, Combinatorica, 4
(1984), pp. 373-395.

[10] M. KOJIMA, S. MIZUNO, AND A. YOSHISE, An O(vL) iteration potential reduction algorithm
for linear complementarity problems, Res. Report B-217, Department of Information Sci-
ences, Tokyo Institute of Technology, Tokyo, Japan, 1988; Math. Programming, to appear.

[11] N. MEGIDDO, Pathways to the optimal set in linear programming, in Progress in Mathematical
Programming--Interior Point and Related Methods, N. Megiddo, ed., Springer-Verlag,
Berlin, 1989, Chap. 8.

[12] R. C. MONTEIRO AND I. ADLER, Interior path-following primal-dual algorithms, part I: Linear
programming, Math. Programming, 44 (1989), pp. 27-41.

[13] G. SONNEVEND, An analytical centre .for polyhedrons and new classes of global algorithms .for
linear (smooth, convex) programming, in Lecture Notes in Control and Information Sciences
84, Springer-Verlag, New York, 1985, pp. 866-876.

[14] M. TODD AND B. BURRELL, An extension of Karmarkar’s algorithm]or linear programming
using dual variables, Algorithmica, 1 (1986), pp. 409-424.

[15] M. J. TODD AND Y. YE, A centered projective algorithm for linear programming, Math. Oper.
Res., 15 (1990), pp. 508-529.

[16] Y. YE, An O(n3L) potential reduction algorithm for linear programming, manuscript, De-
partment of Management Sciences, The University of Iowa, Iowa City, IA, 1988; Math.
Programming, to appear.

SIAM J. OPTIMIZATION
Vol. 1, No. 3, pp. 293-315, August 1991

(C) 1991 Society for Industrial and Applied Mathematics
001

TENSOR METHODS FOR UNCONSTRAINED OPTIMIZATION
USING SECOND DERIVATIVES*

ROBERT B. SCHNABEL AND TA-TUNG CHOW?

Abstract. A new type of method for unconstrained optimization, called a tensor method, is introduced.
It is related in its basic philosophy to the tensor methods for nonlinear equations for Schnabel and Frank
[SIAM J. Numer. Anal., 21 (1984), pp. 815-843], but beyond that the methods have significant differences.
The tensor method for unconstrained optimization bases each iteration upon a fourth order model of the
objective function. This model consists of the quadratic portion of the Taylor series, plus low-rank third
and fourth order terms that cause the model to interpolate already calculated function and gradient values
from one or more previous iterates. This paper also shows that the costs of forming, storing, and solving
the tensor model are not significantly more than these costs for a standard method based upon a quadratic
Taylor series model. Test results are presented for sets of problems where the Hessian at the minimizer is
nonsingular, and where it is singular. On all the test sets, the tensor method solves considerably more
problems than a comparable standard method. On problems solved by both methods, the tensor method
requires about half as many iterations, and half as many function and derivative evaluations as the standard
method, on the average.

Key words, unconstrained optimization, tensor method, higher order model, singular problems

AMS(MOS) subject classification. 65K05

1. Introduction. This paper describes a new method, called a tensor method, for
solving the unconstrained optimization problem

(1.1) given f:Rn->R, findx,R such thatf(x,)<=f(x) for allxD,

where D is some open set containing x,. We assume that f(x) is at least twice
continuously differentiable, and that n is of moderate size, say n < 100. Our objective
is to create a general purpose method that is more reliable and efficient than state-of-the-
art methods for solving such problems, particularly- in cases where the evaluation of
f(x) and its derivatives is expensive. We especially intend to improve upon the efficiency
and reliability of standard methods on problems where vef(x,) is singular.

The distinguishing feature of our new method is that it bases each iteration upon
a fourth order model off(x), as opposed to the standard quadratic model. The third
and fourth order terms of this model have special, low-rank forms that make the costs
of using the higher order model reasonable. In particular, in comparison to standard
methods, the formation and use of the fourth order tensor model requires no additional
function or derivative evaluations per iteration, only a small number of additional
arithmetic operations per iteration, and only a very small amount of additional storage.

The tensor method approach was introduced by Schnabel and Frank [1984],
1987], who describe tensor methods for solving systems of nonlinear equations. Their
methods base each iteration of an algorithm for solving F(x)= O, where F:R - R,
upon the second order model

(1.2) Mr(xe + d) F(xe) + Jc" d +1/2 T" de.
Here Xc is the current iterate, J e R is the Jacobian matrix F’(xc) or an approximation
to it, and T,. e R is a low-rank "tensor." In Schnabel and Frank’s computational

Received by the editors August 25, 1989; accepted for publication (in revised form) October 26, 1990.
This research was supported by Army Research Office grant DAAL03-88-K-0086 and National Science
Foundation grant CCR-8702403.

" Department ofComputer Science, Campus Box 430, University of Colorado, Boulder, Colorado 80309.

293

294 R. B. SCHNABEL AND T.-T. CHOW

experiments, the use of the tensor methods led to significant improvements in efficiency
and reliability over state-of-the-art methods for nonlinear equations that are based
upon standard, linear models. In the case when F’(xc) is available, the average
reductions measured in function and derivative evaluations ranged from 20 percent to
60 percent, on both nonsingular and singular problems. Frank [1984] also proved that
this derivative tensor method has a three-step, order 1.16 local convergence rate on
problems where rank (F’(x.))= n- 1, whereas standard methods are linearly conver-
gent under these conditions.

The tensor method described in this paper is related to the methods of Schnabel
and Frank in its basic philosophy, but it is not a straightforward generalization of their
methods. In particular, it is not the application of the model (1.2) to the problem
Vf(x) =0. This would correspond to using a third order model of f(x); as we have
already stated, we use a fourth order model instead. To help motivate the basic
differences, we first summarize some features of standard methods for unconstrained
optimization.

Standard methods for solving small to moderate size unconstrained optimization
problems base each iteration upon a quadratic model off(x) around the current iterate
Xc,

(1.3) m(xc + d) =f(xc) + go" d +1/2H. d2,
where d R n, g R is Vf(xo) or a finite-difference approximation to it, and H R.
(We use the notation gc" d for gd, and He. d2 for drHcd, at the suggestion of a

referee, to be consistent with the subsequent tensor notation, e.g., (1.5).) Such methods
can be divided into two classes: those where H is Vf(xc) or a finite-difference
approximation to it, and those where Hc is a secant approximation to the Hessian
formed solely from current and previous gradient values. In this paper, we will consider
standard and tensor methods of the first type, where both Vf(x) and Vf(x) are
available analytically or by finite differences at each iteration. A subsequent paper will
discuss tensor methods for unconstrained optimization that are based solely on function
and gradient values.

The fundamental method for unconstrained optimization, Newton’s method, is
defined when V2f(Xc) is nonsingular. It consists of using Hc=V2f(x) in (1.3) and
setting the next iterate x/ so that d (x+-x) is the critical point of (1.3), i.e.,

(1.4) X+=Xc--V2f(Xc)--lf(Xc),
The basic properties of Newton’s method are well known. If V2f(x.) is nonsingular
at a local minimizer x., and the initial iterate is sufficiently close to x., then the
sequence of iterates generated by (1.4) converges quadratically to x.. If the initial
iterate is not sufficiently close to x., then the iterates produced by Newton’s method
may not converge to x., but they may be made to converge through the use of line
search or trust region strategies (see, e.g., Fletcher [1980]; Gill, Murray, and Wright
[1981]; Dennis and Schnabel [1983]). The main costs of unconstrained optimization
methods based upon Newton’s method are: one evaluation of V2f(x), and one or more
evaluations of Vf(x) and f(x), at each iteration; the solution of a symmetric n n
system of linear equations at each iteration, costing a small multiple of n arithmetic
operations; and the storage of a symmetric n x n matrix.

One shortcoming of standard unconstrained minimization methods is that they
do not converge quickly if the Hessian at the minimizer, V2f(x.), is singular. Griewank
and Osborne [1983] have shown that in this case, the iterates produced by (1.4)
generally are linearly convergent at best, even if V2f(xc) is nonsingular at all the iterates.

UNCONSTRAINED OPTIMIZATION USING SECOND DERIVATIVES 295

Furthermore, the third derivatives do not supply information in the direction(s) where
the second derivative matrix is lacking, since the necessary conditions for minimization
show that at any minimizer x, where V2f(x,) is singular with null vector u, V3f(x,) vvd
must also be 0 for all d R n. Thus, adding an approximation to V3f(xc) alone will not
lead to better-than-linear convergence for such problems. An approximation to the
fourth derivative vnf(xc) as well, or at least the quantity vaf(xc) v4, is necessary to
obtain better-than-linear convergence.

This need for fourth order information in order to obtain fast convergence on
singular problems is one reason why we will use a fourth order model, rather than a
third order model, in our tensor methods for optimization. Other reasons are that a
third order model is unbounded below, even though it may have a local minimizer,
and that the information that is readily available in an optimization algorithm, namely
values of f(x) and Vf(x) at previous iterates, naturally supports the use of a fourth
order tensor model. Note that these conditions are quite different from the situation
for systems of nonlinear equations, where an approximation to F"(x,) (analogous to
V3f(x,)) is sufficient to produce faster-than-linear convergence on problems where the
Jacobian at the solution is singular, and where only one piece of interpolation informa-
tion (F(x), analogous to Vf(x)) is readily available from each previous iterate.

For these reasons, we have based the tensor methods for unconstrained minimi-
zation discussed in this paper upon the fourth order tensor model

(1.5) mT(Xc+d)=f(x)+Vf(x)" d+1/2V2f(x) d2+T d3+44Vc d4,

where by Vf(x) and V2f(xc) we mean either these analytic derivatives, or finite-
difference approximations to them, and where T e Rn"" and Vc R are
symmetric. (The symmetry of Tc and Vc is another significant difference between tensor
models for unconstrained optimization and for nonlinear equations, where T is not
symmetric with respect to its first index.) The three-dimensional object Tc and the
four-dimensional object V are referred to as tensors, hence we call (1.5) a tensor
model, and methods based on (1.5) tensor methods. Before proceeding, we define the
notation concerning these tensors that is used above and in the remainder of this paper.

DEFINITION 1.1. Let T R"n". Then for u, v, w R", Tuvw R, Tvw R", with

T’uvw= T[i,j,k]u[i]v[j]w[k],
i=1 j--1 k=l

(T. vw)[i]= T[i,j, k]v[j]w[k], i= l, n.
j=l k=l

DEFINITION 1.2. Let V Rn.Then for r, u, v, w R, Vruvw R, Vuvw R
with

i=1 j=l k=l l-1

(V" uw)[i]-- V[i,j,k, 1]u[j][k]w[1],
j=l k--1 1=1

i=l,...,n.

The obvious choices of T and V in (1.5) are vaf(x) and V4f(x); these would
make (1.5) the first five terms of the Taylor series expansion of f around x. We will
not consider using the actual higher order derivatives in the tensor model, however,
because the cost of doing so would be prohibitive. In particular, O(n4) partial deriva-
tives would have to be evaluated or approximated at each iteration; storing these

296 R. B. SCHNABEL AND T.-T. CHOW

derivatives would take O(n4) locations; and finding a minimizer or the model would
require the solution of a difficult minimization problem in n variables at each iteration.
Each of these reasons alone is sufficient to reject this alternative for a general purpose
method, although we note that, for some functions f(x) with special forms, using
analytic higher order information can be viable (see Jackson and McCormick [1986]).

Instead, our new method will choose Te and Ve in (1.5) to be simple, low-rank
symmetric approximations to V3f(x) and V4f(x) that are formed from previously
calculated function and gradient values. The remainder of this paper will show how
we efficiently form and solve such a tensor model, how we incorporate it into a complete
unconstrained optimization algorithm, and what the computational performance of
this algorithm is. Section 2 describes how we form the tensor model, and shows that
this requires only a small multiple of n2 additional arithmetic operations per iteration,
and a small multiple of n additional storage locations. In 3 we show how we solve
this model using only O(n2) more operations per iteration than the O(n3) operations
that are needed by the standard quadratic model. A full tensor algorithm for uncon-
strained optimization is presented in 4. In 5 we present test results of our tensor
method on problems from Mor6, Garbow, and Hillstrom [1981], and on modifications
of these problems constructed so that 72f(x.) is singular. We compare these results
to those obtained from a state-of-the-art algorithm that uses the standard quadratic
model (1.3), but is identical to the tensor algorithm in virtually all other respects. We
briefly summarize our research and comment on possible extensions of this work in 6.

We will denote members of a sequence of n-vectors x by {xk}, where each xk R",
and to avoid ambiguity with this notation, we will continue to denote components of
a vector v R" by v[i] R. We will also continue to abbreviate terms of the form dd,
ddd, and dddd in our tensor models by d2, d 3, and d4, respectively.

2. Forming the tensor model. Now we discuss how we select the tensor terms

Tc R""" and Vc R in the model
4(2.1) mr(x+d)=f(Xc)+Vf(xc)" d +1/2V2f(Xc) d2+-Tc d +Vc" d

We have already stated that Te and Vc will not contain actual third and fourth derivative
information. Instead, we will use the third and fourth order terms in (2.1) to cause
the model to interpolate function and gradient information that has been computed
at some previous iterations of the optimization algorithm. In particular, we will select
p not necessarily consecutive past iterates X_l,’’’, x_p, and ask that the model (2.1)
interpolate f(x) and Vf(x) at these points, i.e.,

f(x_k)=f(x)+Vf(xc). Sk+1/2V2f(Xc) S2k+Tc S3k+V S4k, k= 1,

Vf(x_,) Vf(Xc) + V2f(x) Sk +1/2 Tc" s,+V" s,, k 1, , p

(2.2a)

(2.2b)

where

(2.2c) Sk X_k --Xc, k 1, , p.

First, we briefly summarize how the past points X-l,"" ", X_p are selected. Then we
discuss how we select Tc and Ve so that (2.2) is satisfied.

The set of past points used in the interpolation conditions (2.2) is selected by the
procedure given in Schnabel and Frank [1984]. We always select the most recent
previous iterate, and then select each preceding past iterate if the step from it to x
makes an angle of at least 0 degrees with the subspace spanned by the steps to the
already selected, more recent iterates. Values of 0 between 20 and 45 degrees have
proven to be best in practice; therefore, the selected directions {Sk} are strongly linearly

UNCONSTRAINED OPTIMIZATION USING SECOND DERIVATIVES 297

independent. This procedure is easily implemented using a modified Gram-Schmidt
algorithm. We also set an upper bound

(2.3) p<=n 1/3

on the number of past points. This bound was motivated by computational experience,
which showed that using more than about n 1/3 interpolation conditions rarely helped
much, and also by the desire to keep the storage and arithmetic costs of our tensor
method low. In fact, however, ourcomputationalresults will show that the strong linear
independence criterion discussed above usually limits p far more severely than (2.3).

Now we will discuss how we choose Tc and Vc to satisfy (2.2). First we show that
the interpolation conditions (2.2) uniquely determine Te" s and Ve. s for each
k-1,..-, p. Multiplying (2.2b) by Sk gives

(2.4) Vf(X_k)" Sk=Vf(xc) Sk+V2f(xc) Sk+Tc sak+Vc S4k, k= 1,’" ,p.

Let the unknown quantities a, fl Rp be defined by

(2.5a) a[k] T. s3,

(2.5b) /3[k] V. s,
for k 1,..., p. Then from (2.2a) and (2.4), we have the following systems of two
linear equations in two unknowns for each of the p pairs a[k] and fl[k]:

(2.6a) 1/2a[k]+[k] q[k],

(2.6b) a[k]+fl[k]- q2[k],

where ql, q2 RP are defined by

ql[k]=Vf(x_k)" Sk--Vf(xc)" Sk--V2f(xc) Sk,

q2[k]=f(x_k)-f(xc)-Vf(xc)" Sk--1/2V2f(x) Sk,

for k= 1,..., p. The system (2.6) is nonsingular, so each a[k] and/3[k] is uniquely
determined.

Thus for each k, our interpolation conditions (2.2) are equivalent to (2.5b) (with
fl[k] determined as shown) and (2.2b). These are 2np linear equations in O(n)
unknowns, meaning that the choices of Tc and V are vastly underdetermined.

We have chosen to select T and Vc from among the infinite number of possibilities
by first choosing the smallest symmetric V, in the Frobenius norm, for which

Ve. s =/3[k], k= 1,...p,

where /3[k] is calculated by (2.6). (The Frobenius norm of any matrix or tensor A,
denoted Ilall, is the square root of the sum of the squares of all the elements of a.)
The rationale behind this choice is to use the smallest fourth order term consistent
with the interpolation conditions, thereby modeling as much of the function and
gradient information as possible with a third order model. This choice also will give
us the necessary fourth order information in the singular case. We then substitute this
value of Vc into (2.2b), obtaining

(2.7a) Tc" S2k-- ak, k 1,..., p,

where

(2.7b) ak 2(Vf(X_k)-Vf(xc)-V2f(x) Sk--V" S3k), k= 1,..., p.

298 R.B. SCHNABEL AND T.-T. CHOW

This is a set of np< n4/3 linear equations in n unknowns To[i, j, k], 1-< i, j, k <- n.
Finally, we choose the smallest symmetric To, in the Frobenius norm, which satisfies
the equations (2.7). The use of the minimum norm solution here is consistent with the
tensor method for nonlinear equations, and will again be a key to the efficiency of our
method because it will cause T and V to have low rank. Note that (2.7a) implies
(2.5a), so that the result of this process will satisfy (2.5a), and hence (2.2a), as well.

The solutions to the minimum norm problems that determine V and T are given
by Theorems 2.2 and 2.3. We note that deriving the minimum norm Tc is much more
difficult than in the tensor method for nonlinear equations, because of the symmetry
requirement. First we define three- and four-dimensional rank-one tensors, which will
feature prominently in these theorems and in the remainder of this paper.

DEFINITION 2.1. Let u, v, w, x R n. The tensor T Rnn, for which T[i, j, k]
u[i]. viii. w[k], 1 <= i, j, k <- n, is called a third order rank-one tensor and will be
denoted T=u(R)v(R)w. The tensor VRn""", for which V[i,j, k, /]=
u[i]. viii. w[k]. x[l], l<-_i,j,k, l<=n, is called a fourth order rank-one tensor and
will be denoted V u (R) v (R) w (R) x.

THEOREM 2.2. Let p <-- n, let Sk R, k 1, , p with {Sk} linearly independent,
and let fl R P. Define M Rpxp by M[i,j]=(sfsj)4, l <-- i, j<--p, and define "y Rp by
y M-I. Then the solution to

(2.8)

minimize Vc
VcC R

k=l,...,p

subject to V. Sak fl[k],

and V symmetric

P

(2.9) V= Y y[k](Sk(R)Sk(R)Sk(R)Sk).
k=l

Proof Let the vector 3 e R "4 be defined by r= (Vc[1, 1, 1, 1], V[1, 1, 1, 2], ,
Vc[1, 1, 1, n], V[1, 1, 2, 1],. ., V[1, 1, 2, n], , V[n, n, n, n]). Also, let the matrix
eRp"4 be defined so that row k of S is equal to ((Sk[1])4, (Sk[1])3(Sk[2]),
(Sk[1])3(Sk[3]), ", (Sk[1])3(Sk[n]), ", (Sk[n])4), i.e., the same order of subscripts as
in v. Then (2.8) is equivalent to

minimize 113112 subject to 3=/3 and V symmetric,

where Vc is the original form of 3. Since {Sk} are linearly independent, has full row
rank. The solution to

minimize 3112 subject to Sv

is 3 r(r)-. By straightforward algebra, r M. Thus ry, which, by
reversing the transformation from 3 back to Vc, is equivalent to (2.9). Since V is
symmetric, it is the solution to (2.8). [3

THEOREM 2.3. Let p <-- n, let Sk R, k 1, , p with {Sk} linearly independent,
and let ak R, k 1, , p. The solution to

minimize subject to T s2 --ai,
TcCR

P

(2.11) T= Z (bk(R)Sk(R)Sk+Sk(R)bk(R)Sk+Sk(R)Sk(R)bk),
k=l

(2.10)
i=l,...,p and T symmetric

is

UNCONSTRAINED OPTIMIZATION USING SECOND DERIVATIVES 299

where bk R n, k 1, , p, and {bk} is the unique set ofvectorsfor which (2.11) satisfies
2Tc" si=ai, i= l,. ,p.
Proof. First, we show that the constraint set in (2.10) is feasible. Let tie R n,

i= 1,...,p, obey

1, i=jtfsj=
O, ij

for j 1,..-, p. Since the {s} are linearly independent, such vectors t are obtainable
via a QR factorization of the matrix whose columns are the si. Then

P

T E t, (R) t, (R) a, + ti (R) a, (R) t, + ai (t, (R) t, 2(a s,) t, (R) t (R) ti))
i=l

is a feasible solution to (2.10).
Dennis and Schnabel [1979] show that if the constraints in (2.10) are satisfiable,

then the set of tensors T/ R generated by the procedure To=O, and for all
j =0, 1, 2,..., Tj+I, is the solution of

2(2.12) minimize T=j/l subject to T=j/l s, a,, 1,’.., p,

and T+ is the solution of

minimize T2j+- T _j/ ll subject to T=/= is symmetric,

has a limit which is the unique solution to (2.10). (This type of iterated projection
process was first used in an optimization setting in Powell [1970].)

Next we show that this limit has the form (2.11) for some set of vectors {bk}, by
showing that each T has this form. This is trivially true for To. Assume it is true for
some fixed j, i.e.,

P

(2.13) T2 E (Uk(R)Sk(R)Sk + Sk(R)Uk(R)Sk + Sk(R)Sk(R)Uk)
k=l

for some set of vectors {Uk}. Then from Schnabel and Frank [1984], the solution to
(2.12) is

P

T2+,= T + E Vk (R) Sk (R) Sk)
k=l

for some set of vectors {vk}. Thus

1
T+= T_+ E

kEl= Ilk+ (Sk () Sk-- Sk (Uk-- () Sk-I- Sk () Sk Ilk+

which again has the form (2.13). Thus by induction the solution Tc to (2.10) must have
the form (2.11) for some set of vectors {bk}.

Finally, we show that the set of vectors {bk}, for which T given by (2.11) satisfies
2(2.14) T" si ai, i- 1,. p,

is unique. This will mean that equations (2.11) and (2.14) uniquely determine the
solution to (2.10). Substituting (2.11) into (2.14) gives a system of np linear equations
in np unknowns, where the matrix is a function of the {Sk}, the unknowns are the
elements of the {bk}, and the right-hand side consists of the elements of the {ak}.

300 R. B. SCHNABEL AND T.-T. CHOW

Since we showed above that (2.10) is feasible for any {ak}, the above derivation and
the theory of Dennis and Schnabel 1979] imply that for any set {sk}, this linear system
has at least one solution for any right-hand side. Thus the linear system must be
nonsingular and have a unique solution. This means that the set of vectors {bk} is
uniquely determined and completes the proof D

Theorems 2.2 and 2.3 show that Tc and Vc determined by the minimum norm
problems (2.10) and (2.8) have rank 2p and p, respectively. This is the key to making
the tensor model efficient to store and solve. However, while the proof of Theorem
2.3 shows constructively that there is a unique Tc of the form (2.11) that satisfies (2.10),
it does not give an efficient algorithm for finding it, since the proof involves solving a

system of np linear equations in np unknowns. We now present an efficient method
for finding To.

Substituting (2.11) into (2.14) gives the equations

ai

p p

bk(sW)2S, +2 2 s(ss,)(bs,),
k=l k=l

i= 1,..., p in the unknowns {bk}. We can write these equations in the matrix form

(2.15) A=BN+2SM,

where A R nxp, with column k of A ak, B R nxp, with column k of B bk, S Rnxp,
with column k of S= Sk, and N, M gpp with Nij=(srisj)2 and Mij=(ssj)(bfs),
1 <_- i, j <- p. Note that B contains the unknowns, that M is a linear function of these
unknowns, and that A, N, and S are known. Premultiplying both sides of (2.15) by
Sr gives

(2.16) [SrA] [SrB]N + 2[SrS]M.

Defining xi bf.s, 1 <- i, j <= p, we can rewrite (2.16) in the form of p2 linear equations
in the p2 unknowns xu"

where each wi in the second matrix of (2.17) is a p-element given by wu=
[(sfsl)(ssj), (sfs2)(sfs),..., (SfSp)(SrpSj)] r. The only unknowns in (2.17) are the
xj, so we can solve (2.17) for xu, and then compute M by

Mu (sfsj)(b[sj) (sTsj)Xy,.

Finally, from (2.15), we can compute B by

(2.18) B=(A-ZSM)N-1.

Note that N is symmetric and positive definite since the {Sk} are linearly independent.
We conclude this section by summarizing the costs to form and store the tensor

model. The dominant costs of the process for calculating Tc that is summarized in

UNCONSTRAINED OPTIMIZATION USING SECOND DERIVATIVES 301

equations (2.17) and (2.18) are np2 each multiplications and additions for calculating
STA, the same cost for calculating $. M, the same cost again for the backsolves in
(2.18), roughly np2/2 each multiplications and additions for calculating ssj for
1 <= <=j <= p, and p6/3 each multiplications and additions for solving the system (2.17),
for a total of (7/2)np2+p6/3 each multiplications and additions. Since p <= n 1/3, these
are all O(n) or less. The additional costs of forming Vc are negligible, at most O(p3).
In addition, the cost offorming the interpolation equations (2.2) includes the multiplica-
tion Vf(xc) Sk for k 1, , p, which requires n2p each multiplications and additions.
This is generally the largest cost of forming the tensor model. The Gram-Schmidt
process for selecting the {Sk} requires about n 5/3 arithmetic operations if n 1/3 vectors
are considered. In summary, only a small multiple of n2 additional arithmetic operations
are required to form the model. We will see in 5 that usually p 1, so that the total
additional cost per iteration is usually n2+ nS/3+ O(n) each additions and multiplica-
tions per iteration.

The storage required for forming and storing the tensor model is also small. The
tensor terms T and V themselves require only the storage of the vectors bk and Sk,

which takes 2np <2n4/3 storage locations. In addition, the model formation process
requires at most 2n4/3 storage locations for storing n 1/3 each past iterates and their
gradients, np <=/,/4/3 storage locations for intermediate quantities in (2.18), and p4/,/4/3
storage locations for the factorization in solving (2.17). Thus the total additional storage
is at most 6n4/3.

3. Solving the tensor model. In 2 we showed how to find a rank 2p tensor Tc of
the form (2.11), and a rank p tensor V of the form (2.9), for which the tensor model
(2.1) interpolates the function and gradient values at p (=< n 1/3) past iterates. Substituting
these values of T and Vc into (2.1), the tensor model has the form

(3.1)
mT(X + d) =f(Xc) + Vf(x) d +1/2vZf(x)

P P

d2+1/2 (bd)(sd)2+ y[k](sd)4.
k=l k=l

In this section we show how to efficiently find a minimizer of this model. Although
equation (3.1) is a fourth order polynomial in n variables, we will show how to reduce
its minimization to the minimization of a fourth order polynomial in p variables plus
a quadratic in n-p variables. For conciseness, we use the notation g= Vf(x) and
H V2f(Xc) for the remainder of this section.

Let S Rnp, where column k of S is Sk, and the {Sk} are linearly independent.
Also, let Z R""-p) and We R"p have full column rank and satisfy ZrS =0 and
wTs I, respectively. (Z and W can be calculated through the QR factorization of
S; the efficient implementation of the operations involving Z and W is discussed later
in this section.) Then we can write d in (3.1) in the form

(3.2) d Wu + Zt,

where u Rp, Rn-p. Substituting (3.2) into (3.1) gives

(3.3)
mr(xc + Wu + Zt) =f(x) + grWu + grZt +1/2urWrHWu + urWrHZt +1/2tT"ZrHZt

P P

+1/2 E u[k]2(bWu+bZt)+4 E Y[k]u[k]4.
k=l k=l

302 R. B. SCHNABEL AND T.-T. CHOW

Equation (3.3) is a quadratic with respect to t. Therefore, for the tensor model to
have a minimizer, ZTHZ must be positive definite and the derivative of the model
with respect to must be 0, i.e.,

P

(3.4) ZTg + ZTHZt + ZTHWTu +1/2ZT E biu[i]2=0,
i=1

which yields

(p)(3.5) -(ZTHZ)-Izr g + HWu +1/2 E bitt[i]2
i=1

Thus, if ZrHZ is positive definite, substituting (3.5) into (3.3) reduces the problem of
minimizing the tensor model to finding a minimizer of

P P
TwTHWbl., +mT(U)--f+gTWu+-U - u[i]-(br wu)+4 T[i]u[i]4

i--1 i=1

(3.6) -- g+ HWu +1/2 bill [i] Z(ZTHZ)-’Z 7" g+ HWu +1/2 biu[i]
i=1 i----1

which is a fourth degree polynomial in p variables. If (3.6) has a minimizer u,, then
the minimizer of the original tensor model (3.1) is given by d,-- Wu, + Zt,, where t,
is determined by setting u u, in (3.5). Note that this process is well defined even if
H is singular, as long as ZTHZ is nonsingular and positive definite. This is possible
if and only if rank(H)_-> n-p.

There are several possible difficulties with this process. First, (3.6) may have
multiple minimizers. If p 1, we can find the minimizers analytically, and if there are
two, we choose the value of u, that is in the same valley of the function tilT(U) as
u 0. This choice can be shown to guarantee that there is a (nonlinear) descent path
from x to x + d, for the model mT(Xc -k- d). If p > 1, we minimize (3.6) with a standard
unconstrained minimization code (starting from u 0) and use the minimizer it returns.
We have found that these procedures generally produce a desirable minimizer.

Second, the tensor model may not have a minimizer, either because ZHZ is not
positive definite, or because (3.6) has no minimizer when ZHZ is positive definite.
Finally, even if (3.6) has a minimizer d,, x + d, may not be an acceptable next iterate.
These difficulties are addressed by using a global strategy.

We have tried both line search and trust region global strategies in conjunction
with our tensor method. The line search strategy we used is simple: if (3.6) has a
minimizer d, that is in a descent direction, but x + d, is not an acceptable next iterate,
we set x+ x +,d, for some , (0, 1] using a standard line search. If (3.6) has no
minimizer, or d, is not in a descent direction, we find the next iterate by using a line
search algorithm based on the standard quadratic model (1.3). The tensor method
based on this strategy has performed quite well (see 5), but we find that about 40
percent of the iterations cannot use the tensor model. In order to make fuller use of
the tensor model, we have also tried a trust region strategy, which is the method that
we concentrate on in this paper.

UNCONSTRAINED OPTIMIZATION USING SECOND DERIVATIVES 303

The trust region method approximately solves the problem

(3’7) minimize rn(x+d) subject tolld[l<=6,
dR

where R is the trust radius that is adjusted at each iteration. This is a standard
type of approach for unconstrained optimization; see, for example, Fletcher [1980]
and Dennis and Schnabel [1983]. Efficient methods exist for solving the trust region
problem with quadratic models (see, e.g., MorO and Sorensen [1983]) but it is quite
difficult to extend them to the tensor model. For this reason, in order to test the trust
region tensor method approach initially we used a penalty method to solve (3.?). This
means that we solve (3.’/) by solving a sequence of unconstrained optimization problems
of the form

(3.8) minimize mr(X + d) + o’(dpdp-T 62)2
dR

for increasing positive values of the scalar r. (The details of selecting r are given in
Chow [1989].) As in most trust region algorithms, we only solve (3.7) approximately;
in our implementation we stop when a solution d.(r) to (3.7) satisfies IId,()ll
[0.956,1.056]. This means that o- does not grow unboundedly, and in practice a small
number of problems of the form (3.8) are solved per iteration. The penalty approach
is only intended for initial test purposes, because it increases the cost of each iteration
considerably due to the cost of solving (3.8), although it does not increase the cost in
function and derivative evaluations. We will see that our best results so far have been
obtained when p is constrained to be 1 at each iteration; an efficient but complicated
method for solving (3.7) in this case is given in Chow [1989].

Finally, we discuss the costs of solving the tensor model. The main additional
calculations in finding a minimizer of the tensor model, in comparison to minimizing
a standard quadratic model, are the calculations involving the matrices Z and W.
These are performed by calculating the decomposition S Q. R, where Q U is
an orthogonal matrix that is the product of p Householder transformations, and
R Rnxp consists of an upper triangular matrix R in its first p rows, and is 0 otherwise.
(Q is not actually formed, rather the p n-vectors that determine the p Householder
transformations are stored; see, e.g., Stewart [1970].) Also let R Rnxp consist of
(R1)- in its first p rows and 0 otherwise. Then W Q./, so for any v R n, we can
calculate WTv in 2np each multiplications and additions by applying the p Householder
transformations for QT followed by O(p2) operations to apply (R1) -1. Similarly,
Z--Q. I, where I is 0 in its first p rows and the identity matrix in its bottom n-p
rows. Thus for any v R we can calculate ZTv in 2np each multiplications and
additions by applying Q T and then fr. Using these techniques, it is straightforward
to verify that all the calculations in the tensor method that involve Z and W, as well
as the OR decomposition of S, can be performed in 4n2p + O(np2) each multiplications
and additions per iteration; the leading term comes from calculating HQ and then
QTHQ.

The other costs of minimizing the tensor model are (n -p)/6 each multiplications
and additions for the factorization of ZTHZ, and the cost of minimizing the fourth
order polynomial in p variables (3.6), which is negligible in comparison to the O(n)
cost, especially when p 1. Thus the total cost of minimizing the tensor model is only
a small multiple of np operations more than the n/6 cost of finding a minimizer of
a standard quadratic model. Since p <-_ n/ and we will see that usually p 1, this is
a very small additional cost.

304 R. B. SCHNABEL AND T.-T. CHOW

At many iterations, the tensor model has a minimizer that is accepted as the next
iterate, so these are the only costs of solving the tensor model. If a global strategy is
needed, then the line search described above can be implemented with about the same
cost as for a standard quadratic model, since given the factorization of ZTHZ, we can
also factor H using only o(nZp) additional operations. In the case p 1, the trust
region strategy can also be implemented as efficiently as in the quadratic case, i.e.,
requiring the minimization of the tensor model at each inner iteration, by using the
techniques in Chow [1989]. The penalty approach is more expensive but is only
intended for test purposes.

4. The complete tensor method algorithm. An outline ofthe complete tensor method
algorithm that we used in our computational tests is given in Algorithm 4.1. The
remainder of this section comments on several aspects of this algorithm that have not

yet been discussed.

ALGORITHM 4.1. An iteration of the tensor method. Given xc, f(xc),
1. Calculate Vf(x) and decide whether to stop. If not:
2. Calculate vZf(xc).
3. Select p past points to use in the tensor model from among the nl/3 most recent

past points.
4. Calculate the terms T and Vc in the tensor model, so that the tensor model

interpolates f(x) and Vf(x) at all the points selected in step 3.
5. Find a potential acceptable next iterate x + dr and a potential new trust radius

6r using the tensor model and a trust region strategy.
6. Find a potential acceptable next iterate x + dN and a potential new trust radius

6N using the quadratic model and a trust region strategy.
7. If f(x + dT)f(x+ dN

then set x+ Xc + dr and 6+ 6r
else set x+ x + dN and 3+ 6u.

8. Set Xc- x+, f(xc)=f(x+), 6 6+, go to step 1.

The most important feature of Algorithm 4.1 that has not been previously discussed
is that at each iteration, we calculate a potential new iterate based on the quadratic
model, as well as a potential new iterate based on the tensor model. This means that
we perform a full global strategy using each model, resulting in two points x + dr and

Xc + du, both of which give sufficient decrease in f(x) to be acceptable as the next
iterate. Then we choose the one with the lower function value as the next iterate. Even
though this strategy increases the cost of each iteration by at least one function

evaluation (since it is necessary to evaluate f(x) at both x + dr and x + dN, and maybe
at some unsuccessful trial points, in the global strategies), we have found that this
approach substantially improves the efficiency of our tensor method as measured in

function and derivative evaluations, as well as in iterations. We have not yet found a

way to achieve the same efficiency without requiring the use of both models at each
iteration.

Finally, we discuss some details of the steps of Algorithm 4.1. In steps 1 and 2,
the gradient and Hessian are approximated by finite differences using Algorithms
A5.6.3 and A5.6.2 in Dennis and Schnabel [1983], respectively. The algorithm stops
if]lVf(x)ll_-< 10-5 or]]dcll2 < 10-1. Step 3 was discussed in 2; 45 degrees is used for
the angle 0 mentioned there. The procedures for calculating Te and V in step 4 also
were discussed in 2.

UNCONSTRAINED OPTIMIZATION USING SECOND DERIVATIVES 305

In step 5, we first determine whether the tensor model has an acceptable minimizer
within the trust region and, if so, we select this point as the solution to step 5. Otherwise,
we solve the trust region problem (3.7) by a penalty method, as discussed in 3,
resulting in a candidate step d. Then we decide whether to accept Xc + d as the solution
to step 5, update the trust radius, and possibly repeat this process until an acceptable
point xc + dr is found. In step 6, we follow the exact same procedure, except that we
only use the first three terms of the model. The procedure for determining whether
the candidate step is acceptable in these trust region algorithms, and for updating the
trust region, is identical to Algorithm A6.4.5 in Dennis and Schnabel [1983], except
that: (1) every occurrence of initslope is changed to Afpred, where Afpred is the
difference of the values of the model being used (tensor or quadratic) at the candidate
point and at xc; (2) steps (9c.1-2) of Algorithm A6.4.5 are replaced by setting Afpred
to this same value.

5. Test results. We have tested the tensor algorithm described in 4 on a variety
of nonsingular and singular problems. We compared it to an algorithm that is identical
except that the third and fourth order terms Tc and V are always zero. That is, the
comparison algorithm is a finite-difference Newton’s method whose global strategy is
a trust region problem solved by a penalty method. (We prefer this type of a controlled
comparison to a comparison with some different quadratic model code that would
inevitably differ in many other aspects as well. We note that using a penalty method
to solve the trust region problem approximately, rather than a procedure such as in
Mot6 and Sorenson 1983], has very little effect on the number of iterations or function
evaluations that the method requires.) In this section we summarize our test results.
The details of our computational results are provided in the Appendix. All our
computations were performed on a MIPS computer, using double precision arithmetic.

First we tested our algorithms on the set of unconstrained optimization problems
in Mor6, Garbow, and Hillstrom 1981]. All these problems except the Powell singular
problem have V2f(x,) nonsingular. The dimensions of the problems range from 2 to 30.

Then we created singular test problems by modifying the nonsingular test problems
of Mor6, Garbow, and Hillstrom [1981]. All of the unconstrained optimization test
problems in that paper are obtained by taking a system of nonlinear equations

(5.1) F(x)=(f,(x), f, (x))

where rn >- n and each f" R - R, and setting

(5.2) f(x) F(x)TF(x) Z fi(x).
i=1

In most cases, F(x)= 0 at the minimizer x,, and F’(x,) is nonsingular. In these cases,
Schnabel and Frank [1984] showed how to create singular systems of nonlinear
equations from (5.1), by forming

(5.3) /3(x) F(x)-F’(x,)A(ArA)-’Ar(x-x,),

R"k has full column rank with 1 =< k-< n. Thus /6(x,)=0 and /’(x,) haswhere A
rank n k. To create a singular unconstrained optimization problem, we simply define
the function

(5.4) f(x) 1/2’(x) T(X).

306 R.B. SCHNABEL AND T.-T. CHOW

From (5.4) and 6(x,)= 0, we have Vf(x,)= 6’(x,)T(x,)=0. From

(5.5) tE"(x,) F’(x,)[I-A(ATA)-IAT]

and

(5.6) vZf(x,) F’(x,) TF’(x,) + Y’, f(x,)V2f(x,) F^’(x,) F’(x,),
i=1

we know that V2f(x,) has rank n- k.
By using (5.3) and (5.4), we created two sets of singular problems, with V2f(x,)

having rank n- 1 and n- 2, by using

A Rnl,

and

AT" (1, 1, .,1)

1 -1 1 -1 (-1)"

respectively. We tested our methods on the singular versions of all the nonsingular
problems except the Gaussian function and the Gulf research and development func-
tion, which we excluded because their nonsingular versions never converged to a
minimizer using either standard or tensor methods.

Our computational results for the sets of test problems whose Hessians at the
minimizers have ranks n, n- 1, and n- 2 are summarized in Tables 5.1-5.3, and given
in detail in Tables A.1-A.3, respectively. For each problem set, Tables 5.1-5.3 compare
the performance of the standard method to two versions of the tensor method: the

TABLE 5.1
Summary of test results for nonsingular problems.

Method Tensor/std. (itn) Tensor/std. (fcn) Tensor better Std. better Tie

p 0.496 0.580 36 5 3
p _>- 0.468 0.488 34 5 4

TABLE 5.2
Summary of test results for rank n singular problems.

Method Tensor/std. (itn) Tensor/std. (fen) Tensor better Std. better Tie

p-- 0.465 0.400 42 3 2
p 0.479 0.466 40 5 2

TABLE 5.3
Summary of test results for rank n- 2 singular problems.

Method Tensor/std. (itn) Tensor/std. (fen) Tensor better Std. better Tie

p 0.449 0.390 45 3
p ->_ 0.489 0.466 43 5 2

UNCONSTRAINED OPTIMIZATION USING SECOND DERIVATIVES 307

one described in 2-4, where the number of past points interpolated, p, is selected
at each iteration to be between 1 and n 1/3", and a second version, where p is restricted
to be 1 at all iterations. We tested the second version because we observed that the
first version generally chose p 1 anyhow, and because the tensor method is consider-
ably simpler to implement and is cheaper in terms of storage and cost per iteration,
when p 1.

Tables 5.1-5.3 summarize the comparative costs ofthe standard and tensor methods
using ratios of two measures: iterations, and function and derivative evaluations. The
iteration ratio is the total number of iterations required by the tensor method on all
problems that were successfully solved by both methods, divided by the total number
of iterations required by the standard method on these problems. The second ratio is
based upon the total number of function evaluations required to solve each problem,
including those for finite difference gradients and Hessians (i.e., we count n function
evaluations per gradient evaluation and (n2+ 3n)/2 function evaluations per Hessian
evaluation). The ratio reported is the total of these numbers for the tensor method
over all problems that were successfully solved by both methods, divided by the total
of these numbers for the standard method over the same problems. Tables 5.1-5.3 also
contain, for that test set, the number of problems where the performance of the tensor
method was better, worse, or the same as the standard method. Here, better is defined
as at least 5 percent better in the function evaluation measure; worse is defined as at
least 5 percent worse in the function evaluation measure; and the remaining problems
are considered the same.

The statistics in Tables 5.1-5.3 only pertain to test problems that were solved
successfully by both the standard method and the tensor method..Table 5.4 shows, for
each test set, how many problems were solved successfully by the tensor method but
not by the standard method, and vice versa.

In summary, Tables 5.1-5.4 show that both the p >= 1 and the p 1 versions of the
tensor method have a large advantage, in both reliability and efficiency, over the
standard method on all three test sets. In each of the six comparisons, a substantial
portion of the test problems (between 16 percent and 22 percent) are solved by the
tensor method and not the standard method, while only two problems in the nonsingular
sets and none in the singular sets are solved by the standard method and not the tensor
method. In addition, on the problems solved by both methods (between 43 and 50
problems in each of the six cases), the average cost of the tensor method, measured
in iterations or function and derivative evaluations, is generally slightly less than half
of the cost of the standard method. Finally, the improvements by the tensor are quite
consistent. Totaling all our tests, the tensor method is worse than the standard method
in 8 percent of the test cases (28 of 352), better in 87.5 percent (308 of 352), and the
same in 4.5 percent (16 of 352).

The performances of the version of the tensor method that constrains p to be 1,
and the version that allows p to be between 1 and //1/3 are rather similar overall, with
the p 1 version actually performing somewhat better overall on the singular test

TABLE 5.4
Number ofproblems solved by tensor/standard method only.

Method Nonsingular Singular (rank n 1) Singular (rank n 2)

p=l 13/2 9/0 13/0
p_-->l 11/2 12/0 10/0

308 R.B. SCHNABEL AND T.-T. CHOW

sets and the p >_- 1 version performing somewhat better on the nonsingular test set. One
reason for their similarity is that even when we allow p > 1, we have found that our
criterion for selecting past iterates to interpolate generally results in p 1. Over all our
test problems, we found that the p_-> 1 method selected p 1 85 percent of the time,
p--2 15 percent, and p > 2 0.35 percent. Thus it appears that the advantages of the
tensor method may be achieved by using p 1, which would mean that the extra cost
of storing and forming the tensor model would be very low, and that the method would
be quite simple to implement. In particular, using p 1 has the advantage that the
formulas for Tc and Vc are readily available in closed form in terms of the function
and derivative values being interpolated, and that solving the tensor model reduces to
minimizing a fourth order polynomial in one variable, which also can be done in
closed form.

In our tests, the global portion of the tensor method (steps 5-7 of Algorithm 4.1)
selected the step from the quadratic model about 20 percent of the time on the average.
While this is a rather small percentage, the performance of the tensor method is
improved significantly by allowing this possibility.

We do not claim to fully understand why the tensor method performs so much
more efficiently and reliably than a state-of-the-art standard method in our tests. What
is especially surprising is that the improvements are attained by incorporating a small
amount of extra information, usually just the function in gradient from the previous
iterate, into the model. Apparently, having a more accurate model in the direction of
the previous step is especially useful in practice.

The computational advantage of the tensor method is probably not due to an
improved rate of convergence, except when rank (V2f(x.)) n 1. In particular, when
V2f(x.) is nonsingular and n > 1, it is highly unlikely that the convergence rate of the
tensor method is different than the quadratic rate of the standard method. (It is easy
to show that the tensor method is at least quadratically convergent in this case because
the influence of the tensor terms vanishes asymptotically.) In the case when V2f(x.)
has rank n- 1, we conjecture that the convergence rate of the tensor method is again
better than the linear convergence of the standard method, as was shown by Frank
[1984] for the tensor method for nonlinear equations. We have not yet attempted to
prove this, except in the case n 1, where it is straightforward to show that the tensor
method converges with order (1 +v/-ff)/3 1.2 (Chow [1989]). We did measure the
ratios of the errors of successive iterates on our test problems with rank V2f(x,) n 1.
An example is given in Table 5.5. We see that the standard method converges linearly
with constant--, as predicted by the theory, and that the tensor method appears to
be converging faster than linearly. (An interesting feature of this example is that
iterations 2 and 5 of the tensor method increase the error in x, even though the function
value decreases. We noticed such behavior by the tensor method on several test
problems, although for most it did not occur.) When rank (V2f(x.)) n- 2, the tensor
method does not have enough information to prove a faster-than-linear convergence
rate, since it usually uses p-- 1.

Finally, we have also implemented a line search version of the tensor method and
compared it to an algorithm using the standard quadratic model and the same line
search. We found that, on the average, the performances of the line search and trust
region versions of the quadratic model algorithms were very similar, and that the line
search version of the tensor method was almost 15 percent less efficient than the
trust region tensor method. (See Chow [1989] for details.) We observed that the global
strategy is only able to use a tensor method step about 60 percent of the time in the
line search tensor method, versus about 80 percent of the time in the trust region

UNCONSTRAINED OPTIMIZATION USING SECOND DERIVATIVES 309

TABLE 5.5
Speed ofconvergence on a typical problem with rank V2f(x,)=

n- 1. (Singular version of variably dimensioned function, n 10,
started from x0, using p 1.) Numbers in the second and the third
columns are Xk--X* I/ IXk--x,I

Iteration (k) Tensor method Standard method

0.825 0.825
2 61.73 0.825
3 0.028 0.825
4 0.104 0.668
5 7.860 0.776
6 0.033 0.647
7 0.665 0.666
8 0.665 0.665
9 0.600 0.666
10 0.635 0.666
11 0.664 0.666
12 0.654 0.667
13 0.436 0.667
14 0.511 0.667
15 0.120 0.666
16 0.058 0.666
17 0.666
18 0.666
19 0.666
20 0.665

21 0.665
22 0.664
23 0.664
24 0.667

version. This may be related to the difference in their performances. But the line search
tensor method still improves by a large amount over the standard method.

6. Summary and future research directions. We have presented a tensor method
for unconstrained optimization that bases each iteration upon a fourth order model
of the objective function. This model interpolates the function value, gradient, and
Hessian of the objective function at the current iterate, and forms its third and fourth
order terms by interpolating values of the function and gradient at previous iterates.
The costs per iteration of storing, forming, and using the model are not significantly
more than for a standard method that uses a quadratic Taylor series model.

The computational results of 5 show that the tensor method is substantially more
reliable and more efficient, in terms of iterations and function and derivative evalu-
ations, than the corresponding standard method on both the nonsingular and singular
problems that we tested. This experience indicates that the tensor method may be
preferable to methods available in software libraries for solving small- to medium-sized
unconstrained optimization problems, in cases when analytic or finite-difference
Hessian matrices are available, especially when function and derivative evaluation is
the dominant cost. Obviously, more computational experience is necessary to determine
this conclusively. To facilitate this process, we are developing a software package that
implements a tensor method for unconstrained optimization using analytic or finite-
difference second derivatives, and will make it available shortly. Our software package

310 R.B. SCHNABEL AND T.-T. CHOW

restricts p, the number of past iterates whose function and gradient values are interpo-
lated at each iteration, to be one. The reasons for this choice are that our computational
results show that the tensor method with p 1 is generally about as effective as the
method that allows p => 1, and that the method is considerably simpler and cheaper to
implement in this case. Initially it will use a line search rather than a trust region,
because the line search tensor method is currently much easier to understand, and
much faster on small, inexpensive problems, than the trust region version, while still
leading to large savings in iterations and function and derivative evaluations on our
test problems. A trust region version may be added to the package later.

Several interesting research topics remain concerning the tensor method described
in this paper. As indicated above, the development of a simple, efficient method for
approximately solving the trust region problem using the tensor method would be very
useful. Chow [1989] has developed a fairly efficient, but conceptually complicated,
method for solving the trust region problem (3.7) when p 1; the question of how to
solve this problem efficiently when p> 1 remains open and may be an important
research issue. It would also be nice to develop an effective global strategy that does
not require the determination of the step using both the tensor model and the quadratic
model at each iteration. It will also be important to test the tensor method on
larger-dimensional problems where the linear algebraic costs dominate. The analysis
at the end of 4 indicates that the costs per iteration of the two methods will be very
similar if they take the full Newton or tensor steps. In trust region methods, the trust
region constraint is often inactive, so this is the case. Otherwise, it will be important
to see how many inner iterations per inter iteration the tensor method requires and
how this compares to an efficient quadratic trust region method such as Mor6 and
Sorenson [1983]. Finally, as we mentioned in 5, the local convergence analysis in
the case n > 1 remains open.

The standard and tensor methods discussed in this paper both assume that the
analytic or finite-difference Hessian is available at each iteration. Often in practical
applications, however, the analytic Hessian is not available, and it is expensive to
calculate by finite differences, so secant (quasi-Newton) methods are used instead.
These methods are based on a quadratic model that is formed solely from function
and gradient values at the iterates (see, e.g., Dennis and Mor6 [1977], Fletcher 1980],
Dennis and Schnabel [1983]). We are developing a secant tensor method for uncon-
strained optimization that bases each iteration upon a fourth order model that is also
determined solely from function and gradient values at the iterates. This work is
described in Chow [1989] and in a forthcoming paper.

Appendix. Test results for the standard and tensor methods. The columns in Tables
A.1-A.3 have the following meanings:

mFunction: name of the problem.
ran: dimension of the problem.
mxo: starting point (from Mor6, Garbow, and Hillstrom [1981]). 1, 10, and 100

stand for Xo, 10x0, and 100Xo, respectively.
mitns: number of iterations.
fcns: number of function evaluations (including the necessary function evalu-

ations for finite difference gradients and Hessians).
--x,: two methods converge to the same minimizer if and only if they have the
same letter in this column.

The abbreviations OF, OL, and NC stand for overflow, over iteration limit, and
convergence to a nonminimizer, respectively. The iteration limit was 120.

UNCONSTRAINED OPTIMIZATION USING SECOND DERIVATIVES 311

TABLE A.1
Test results for the standard and tensor methods on nonsingular problems.

Function n x

Rosenbrock 2
10

100

10
10

100

30
10

100

4
10

100

3
10

100

2
10

100

10
10

100

2
10

100

4
10

100

2
10

100

3
10

100

4
10

100

10
10

100

30
10

100

4
10

100

4
10

100

Wood

Helical valley

Trigonometric

Beale

Brown and
Dennis

Brown badly
scaled

Box three
dimensional

Penalty

Penalty II

Variably
dimensioned

Tensor (p _-> 1)

itns fens x*

15 150 a
35 345 a
86 833 a

21 1,724 a

OF
OF

21 11,640 a

30 629 a
32 674 a

11 170 a

14 213 a
13 194 a

4 40 a
6 62 a
4 38 a

6 553 a

9 708 a
40 3,106 a

7 71 a

12 120 a
OL

13 272 a
16 333 a

22 469 a

OL
OL
OL

12 183 a

19 305 a
20 325 a

10 211 a
10 209 a

14 293 a

15 1,179 a
11 868 a
23 1,811 a

19 10,058 a
22 11,640 a

29 15,337 a

7 151 a
13 274 a

44 913 a

7 153 a

7 150 a
13 272 a

Tensor (p 1)

itns fcns x*

14 146 a
35 345 a
83 795 a

21 1,683 a
OF
OL

25 13,240 a
83 44,067 a

30 629 a
34 723 a

9 138 a

14 215 a
13 194 a

4 40 a

6 62 a
4 38 a

7 555 a
9 708 a

43 3,336 a

7 71 a

8 78 a

13 271 a
14 292 a

21 440 a

OF
OL
OL

13 200 a

23 359 a
17 281 b

9 190 b
11 229 a

13 272 a

14 1,101 a

9 707 a
24 1,889 a

20 10,577 a
26 13,761 a
31 16,391 a

5 108 a
20 416 b
29 605 b

7 153 a
7 148 a

13 271 a

itns

22
64
OL

21
73
OL

22
92
OL

62
70
OL

13
16
15

4
7
5

19
5O
32

7
OL
NC

18
24
40

OL
OL
OL

21
59
OL

33
39
43

35
40
52

36
44
99

120
OL
OL

10
11
18

Standard

fens

183
542

1,615
5,605

11,610
48,484

1,230
1,391

175
216
203

37
59
43

1,467
3,820
2,446

62

347
461
778

290
827

644
757
829

2,680
3,059
3,988

18,973
23,189
52,174

2,285

195
214
348

X*

a
a

a

a
a

a
a

a

a
a

a

a

a
a
a

a

b

C

a
a

a
a

a

a

a
a

b

a
a
a

312 R. B. SCHNABEL AND T.-T. CHOW

TABLE A.1 (continued).

Function

Biggs EXP6

Chebyquad

Watson

10

30

6

X0

10
100

10
100

10

Tensor (p _-> 1)

itns fens x*

10 794 a
9 936 a
18 1,492 a

18 9, 540 a
17 10, 056 a

56 30, 641 a

27 972 a

83 2, 987 a

Tensor (p 1)

itns fcns x*

11 863 a
10 786 a
17 1,338 a

10 5, 306 a
17 9, 002 a
OL

28 1,005 a

34 1,223 b

itns

16
20
32

33
40
112

OL
OL

Standard

fens

1,229
1,534
2,447

17, 391
21,073
58, 956

100

6
10

100

20
10

100

6

20

25 914 a

6 221 a

34 1,214 a

50 1,785 a

14 3, 815 a
OF

11 403 a

OF

26 937 b

6 221 a

29 1,033 b
53 1,885 b

16 4, 064 a
95 24, 102 a

104 26, 385 a

11 397 a

OL

14
OL
OL

OL
OL
NC

19

OL

484

658

X*

a

TABLE A.2
Test results for the standard and tensor methods on singular (rank n- 1) problems.

Function

Rosenbrock

Wood

Helical valley

Trigonometric

Tensor (p _-> 1)

n x

10

10
100

10
100

itns fens x*

31 305 a

39 383 a
60 601 a

11 945 a
25 2,049 a
29 2,272 a

Tensor (p 1)

itns fcns x* itns

Standard

31 305 a
39 383 a
58 579 a

15 1,181 b
27 2,125 b
41 3,224 b

fens

70 570
93 764
OL

15 1,162
27 2,071
66 5,060

60 31,598
23 12,137
35 18,453

37 708
52 1,001
OL

13 180
25 334
26 345

12 102
9 75
9 76

30

4

3

2

10
100

10
100

10
100

10
100

6 3,202 a

12 6,368 a

21 11,647 a

25 519 a
34 713 a
77 1,576 a

9 147 a
15 229 a
20 319 a

6 59 a

5 50 a

6 58 a

6 3,202 a
12 6,367 b
21 11,118 a

25 519 a
36 758 a
58 1,200 a

9 138 a
15 222 a
16 243 a

6 59 a
5 50 a
6 58 a

X*

a

a

c
c
c

b
b
b

a
a

a
a
a

a
a
a

UNCONSTRAINED OPTIMIZATION USING SECOND DERIVATIVES 313

TABLE A.2 (continued).

Function n x

10

Beale 2

Brown and 4
Dennis

Brown badly 2
scaled

Box three 3
dimensional

Penalty 4

10

30

Penalty II 4

Variably 4
dimensioned

10

30

Biggs EXP6 6

Chebyquad 6

20

Watson 6

20

10
100

10
100

10
100

10
100

10
100

10
100

10
100

10
100

10
100

10
100

10
100

10
100

10
100

10
100

10
100

Tensor (p _-> 1)

itns fens x*

8 630 a
14 1,097 a
20 1,639 a

6 64 a
10 100 a
64 679 a

12 254 a

16 337 a
20 421 a

OL
OL

9 136 a

11 169 a
28 430 a

4 84 a
4 84 a

7 147 a

4 318 a
7 550 a

17 1,341 a

7 3,722 a
17 9,001 a
20 10,584 a

6 130 a
11 229 a

17 354 a

4 91 a
9 192 a

17 359 a

11 1, 020 a

19 1,479 a

20 1,712 a

48 25, 382 a
OF
OF

83 2, 962 a

74 2, 694 a
OF

9 332 a
22 789 a

35 1,245 a

29 7, 349 a

26 7, 349 a

50 13,903 a

8 295 a

24 6, 099 a

Tensor (p 1)

itns fcns x*

7 553 a
14 1,098 a

18 1,399 a

7 74 a
10 100 a
23 231 a

13 274 a

14 293 a

21 443 a

18 270 b
28 423 b
25 380 a

4 84 a
4 84 a
7 147 a

4 318 a
7 550 a
17 1,341 a

10 5,300 a
16 8,471 a
18 9,532 a

4 88 a
11 229 a
15 313 a

4 87 a

11 229 a
18 372 a

16 1, 254 a
17 1,332 a
21 1,641 a

23 12, 170 a
36 19, 039 a
O

OF
63 2,246 b
OF

10 365 a
19 683 b
22 785 b

8 2,045 b
OF
57 14, 441 a

8 295 a

28 7,100 a

itns

14
15
NC

6
47
44

19
24
40

NC
NC
NC

9
83
31

15
20
26

18
24
35

22
29
86

57
13
OL

17
19
25

24
27
40

41
OL
OL

OL
OL
OL

92
OL
OL

OL
OL
OL

8

OL

Standard

fens

1,085
1,159

52
396
364

366
461
778

121
1,083
412

290
385
499

1,381
1,838
2,685

11,605
15,292
45,334

1,098
252

328
336
480

1, 837
2, 066
3, 055

21,599

3, 135

297

a
a

a

a

a
a

c
c
b

a
a
a

a
a

a

a
a
a

b
b

a
a

a

a
a

a

a

b

a

314 R. B. SCHNABEL AND T.-T. CHOW

Function

TABLE A.3
Test results for the standard and tensor methods on singular (rank n- 2) problems.

Tensor (p 1) Tensor (p 1) Standard

n Xo itns fcns x* itns fcns x* itns fcns

2 7 68 a 7 71 a 16 131
10 5 52 a 5 52 a 21 171

100 11 111 a 13 128 b 26 211

10 11 872 a 11 872 a 14 1,084
10 33 2,718 a 25 1,959 b 29 2,233

100 25 2,007 a 29 2,330 a 45 3,473

30 11 5,841 a 11 5,841 a 21 11,083
10 23 12,172 a 25 1,959 a OL

100 OF 59 31,247 a OL

4 13 277 a 13 275 a 19 366
10 16 339 a 18 378 b 24 461

100 OF OF NC

3 15 222 a 13 196 a 41 541
10 21 316 a 19 281 a 49 648

100 22 328 a 21 315 a 47 621

2 4 38 a 4 38 a 8 67
10 6 62 a 6 62 a 10 83

100 7 70 a 7 70 a 8 67

10 6 553 a 7 554 a 15 1,161
10 11 941 a 11 864 a 15 1,159

100 NC NC NC

2 6 65 a 6 65 a 10 84
10 10 101 a 9 95 b 10 84

100 22 235 a 20 217 a NC

4 12 253 a 13 271 a 18 347
10 17 355 a 14 292 a 24 461

100 20 424 a 20 419 a 40 778

2 NC NC NC
10 NC NC NC

100 NC NC NC

3 16 248 a 11 172 b 16 200
10 22 331 a 13 202 a 22 304

100 48 763 a 40 633 b 46 637

4 3 64 a 3 64 a 15 290
10 4 84 a 4 84 a 20 385

100 7 147 a 7 147 a 26 499

10 4 318 a 4 318 a 18 1,381
10 6 437 a 7 555 a 24 1,838

100 19 1,469 a 18 1,418 a 35 2,685

30 9 4,776 a 8 4,246 a 22 11,605
10 17 9,002 a 15 7,944 a 29 15,292

100 16 8,473 a 18 9,525 a 86 45,334

4 4 88 a 4 88 a 5 100
10 11 230 a 12 253 a 14 271

100 15 314 a 16 335 b 20 385

4 9 192 a 9 192 a 13 254
10 9 193 a 9 191 a 42 804

100 18 377 a 12 250 b OL

10 21 1,663 a 11 868 b 50 3,818

Rosenbrock

Wood

Helical valley

Trigonometric

Beale

Brown and
Dennis

Brown badly
scaled

Box three
dimensional

Penalty

Penalty II

Variably
dimensioned

X*

b
b

a
a
a

a
a
a

a
a

b
C

a
a
a

C

b
b

a

a
a

a
a
a

a

a
a

a
b
C

b
b

C

UNCONSTRAINED OPTIMIZATION USING SECOND DERIVATIVES 315

TABLE A.3 (continued).

Biggs EXP6

Chebyquad

Watson

Tensor (p >_- 1)

Function

Powell
singular

n x

30

6

6

20

10
100

10
100

10
100

10
100

10
100

itns fcns x*

16 1,217 a
24 1,966 a

28 15,368 a
41 23,269 a
30 16,426 a

OF
72 2,627 a
41 1,491 a

13 473 a
30 1,076 a
37 1,320 a

12 3,308 a
OF
58 15,705 a

6 216 a

9 194 a
12 253 a
22 464 a

13 3,308 a

11 3,308 a

17 5,075 a

6

20

4

20

10
100

10
100

Tensor (p 1)

itns fcns x*

14 1,100 b
21 1,666 b

16 8,476 b
OL
OL

OF
54 1,946 b
52 1,884 b

11 404 b
26 926 a
32 1,141 a

13 3,310 a
42 10,631 a
46 11,687 a

6 216 a

33 8,369 a

11 233 a
14 294 a
22 464 a

10 2,550 a
14 3,559 a

Standard

itns fcns x*

102 7,769 c
OL

39 20,547 c
OL
OL

OL
OL
OL

96 3,271 c

OL
OL

6 211 a

OL

15 290 a
21 404 a
26 499 a

16 4,043 a

21 5,296 a

27 6,801 a

T. CHOW [1989], Derivative and secant tensor methodsfor unconstrained optimization, Ph.D. thesis, Department
of Computer Science, University of Colorado, Boulder, CO.

J. E. DENNIS, JR. AND J. J. MORI [1977], Quasi-Newton methods, motivation and theory, SIAM Rev., 19,
pp. 46-89.

J. E. DENNIS, JR. AND R. B. SCHNABEL [1983], Numerical Methods for Nonlinear Equations and Uncon-
strained Optimization, Prentice-Hall, Englewood Cliffs, NJ.

[1979], Least change secant updates for quasi-Newton methods, SIAM Rev., 21, pp. 443-459.
R. FLETCHER 1980], Practical Method of Optimization, Vol. 1, Unconstrained Optimization, John Wiley and

Sons, New York.
P. D. FRANK [1984], Tensor methods for solving systems of nonlinear equations, Ph.D. thesis, Department

of Computer Science, University of Colorado, Boulder, CO.
P. E. GILL, W. MURRAY, AND M. H. WRIGHT [1981], Practical Optimization, Academic Press, London.
A. O. GRIEWANK AND M. R. OSBORNE [1983], Analysis of Newton’s method at irregular singularities,

SIAM J. Numer. Anal., 20, pp. 747-773.
R. H. F. JACKSON AND G. P. MCCORMICK [1986], The polyadic structure offactorablefunction tensors with

appliction to high-order minimization techniques, J. Optim. Theory Appl., 51, pp. 63-94.
J. J. MORI, B. S. GARBOW, AND K. E. HILLSTROM [1981], Testing unconstrained optimization software,

ACM Trans. Math. Software, 7, pp. 17-41.
J. J. MORI AND D. C. SORENSEN [1983], Computing a trust region step, SIAM J. Sci. Statist. Comput., 4,

pp. 553-572.
M. J. D. POWELL [1970], A new algorithm for unconstrained optimization, in Nonlinear Programming, J. B.

Rosen, O. L. Mangasarian, and K. Ritter, eds., Academic Press, New York, pp. 31-65.
R. B. SCHNABEL AND P. FRANK [1984], Tensor methods for nonlinear equations, SIAM J. Numer. Anal.,

21, pp. 815-843.
1987], Solving systems ofnonlinear equations by tensor methods, in The State of the Art in Numerical
Analysis, A. Iserles and M. J. D. Powell, eds., Clarendon Press, Oxford, U.K., pp. 245-271.

G. W. STEWART [1970], Introduction to Matrix Computations, Academic Press, New York.

SIAM J. OPTIMIZATION
Vol. 1, No. 3, pp. 316-332, August 1991

1991 Society for Industrial and Applied Mathematics
002

THE HOMOTOPY PRINCIPLE AND ALGORITHMS FOR
LINEAR PROGRAMMING*

J. L. NAZARETH?

Abstract. Linear programming techniques are formulated within the unifying framework of the
homotopy principle and Newton’s method. Key strategies that determine the effectiveness of an implementa-
tion are considered in detail. A complexity analysis is developed for an elevator predictor, Newton corrector
algorithm started at an arbitrary interior primal-dual feasible point. This analysis is based on a fundamental
theorem of Smale ["Algorithms for solving equations," Proc. Internat. Congress ofMathematicians, University
of California, Berkeley, CA, 1986], in the form given by Renegar and Shub [Report No. 807, School of
Operations Research and Industrial Engineering, Cornell University, Ithaca, NY, 1988].

Key words, linear programming, interior-point methods, homotopy, path-following, prediction-
corrector, self-dual, primal-dual, Euler/Newton, complexity analysis

AMS(MOS) subject classifications. 49, 90, 65

1. Introduction. This paper continues work begun in [15]. Within the unifying
framework of the homotopy principle and Newton’s method (Eaves [5], Smale [21]),
we formulate solution techniques for linear programming that subsume piecewise-linear
path-following and smooth path-following approaches. The former approach derives
from the self-dual simplex method of Dantzig [3] and Lemke [12] and the latter is an
offshoot of the interior-point method of Karmarkar [10].

Our paper is organized as follows. In 15] we first showed the relevance of smooth
path-following homotopy techniques to linear programming, our approach being to
specialize certain nonlinear programming results of Garcia and Zangwill [8]; in
particular, we defined a homotopy by means of a quadratic regularization of the linear
objective function in a suitable metric. We extend this approach in 2.1 in order to
define a homotopy that is now both regular and boundary free. We thereby avoid the
necessity for restarts used in [15].

An alternative way of defining the homotopy is through the use of a logarithmic
(barrier) regularization of the objective function (Frisch [7], Fiacco and McCormick
[6]) as studied by Megiddo [13] in a pioneering paper. Barrier functions are a means
to an end that can be achieved more easily through direct parameterization of the
Karush-Kuhn-Tucker optimality conditions as we discuss in 2.2. Here we are con-
cerned primarily with homotopy paths from arbitrary interior starting points. (These
too can be achieved by using weighted barrier functions (Megiddo [13]) but such
barrier functions are again not central to the development.)

As in 15], our approach places us squarely within the path-following framework
that is now an accepted way to solve nonlinear equations and nonlinear programming
problems. We are thus able to draw on this extensive body of knowledge (see, in
particular, Garcia and Zangwill [8]) to formulate algorithms within the specialized
setting of linear programming. We consider, in turn: (a) Elevator and Euler predictor,
Newton corrector strategies (3.1). (b) Restarting strategies (3.2). (c) Inexact compu-
tation strategies (3.3). As an illustration, in 3.4, we formulate a particular self-dual

* Received by the editors December 8, 1989; accepted for publication (in revised form) December 10,
1990. This research was supported, in part, by a Washington State University Research and Arts Committee
Grant-in-Aid and by National Science Foundation grant DMS-8815513.

f Department of Pure and Applied Mathematics, Washington State University, Pullman, Washington
99164-3113.

316

THE HOMOTOPY PRINCIPLE 317

algorithm that makes a simple choice for each of these three strategies. (A variety of
other algorithms can be formulated, as is also briefly discussed.) Finally, in 3.5, we
combine the preceding ideas with the self-dual simplex approach, returning to the
theme that underlies this and our earlier papers [15], [16], namely, the effective
integration of simplex and interior-point techniques.

Section 4 deals with the complexity analysis of the approach of 2.2. We analyse
an elevator predictor, Newton corrector algorithm that follows a path from an arbitrary
feasible (primal-dual) interior starting point. This analysis is based on a fundamental
theorem of Smale [21], our results being patterned after those of Renegar and Shub
[19]. Analysis of related weighted barrier algorithms is given by Roos and den Hertog
[20] and Tseng [24].

Some concluding remarks are given in the final section.

2. Homotopy techniques. Most discrete iterative procedures defined by a difference
equation have an associated continuous version, which generates a trajectory leading
from any given starting point to the desired solution and is governed by an underlying
differential equation and vector field. By way of introduction, we note here that it is
useful to draw a distinction between such trajectory generating procedures (a posteriori
path definition, for example, Adler, Karmarkar, Resende, and Veiga [1, 3]) and
path-following or homotopy procedures governed by an underlying homotopy differen-
tial equation (a priori path definition, for example, Renegar [18]).

2.1. Parameterizing the objective function. Our note [15] was a first attempt at
devising an a priori path-following homotopy procedure for linear programming and
relating it to a variant of Karmarkar’s algorithm [10]. We extend this approach in
order to obtain a boundary-free homotopy.

Consider the linear programming problem in standard form and its dual, namely,

(P)" minimize c’x (D): maximize brr
(1) s.t. Ax b and s.t. ATr + v c

xO v_>O,

where A is an m x n matrix of full rank, and x, b, and c are vectors of appropriate
dimension. We assume throughout that the primal problem (P) is bounded and that
both (P) and (D) are nondegenerate. Denote the unique optimal solutions of (P) and
(D) by x* and r*, v*, respectively.

The Karush-Kuhn-Tucker (KKT) optimality conditions for (1) are as follows.

Ax= b

(2)
AT,Ir + O

xv =0, i= 1,. ., n

x>--_O, v>-O.

In a homotopy approach applied to (P), the linear programming problem is
parameterized and deformed to a problem that is trivial with a unique solution.
Beginning with the solution to the trivial problem, normally a given starting point, a
path of solutions is followed as the problem is deformed back to the original linear
program. Thus, given a feasible point x>0 for (P), consider the following

318 J.L. NAZARETH

parameterized family of programs:

(3) minimizexR-c;(x,t)--t(cTx)-F(1--t){I (Xj-X)2}Z j=l XjX
s.t. Ax b, x >- O,

where e [0, 1].
For 1,- -, n, the ith component of the gradient of (x, t) with respect to x

and the ith diagonal element of its (diagonal) Hessian matrix are given by

t) [(x,)- (x,)
(4) [Vx(x, t)], --0-- (x, t)= tc,ox, 2 (x,)(x,

o

(5) IV 2 (x, t)] u (1 t) xi

(x,)"
The foregoing Hessian matrix has positive diagonal elements on R, the positive

orthant. This would not be true if the denominator in the quadratic regularizing term
in (3) were to be replaced, more simply, by (x2)2. The Hessian matrix could then
become singular. Other choices for this denominator are possible; for example, we
initially considered min [(x)2, (x)2], but the choice xx, suggested by Karmarkar,
may be preferable.

When =0, the unique solution of (3) is x[0]= x>0. When 1, the solution
of (3) is x[1]=x*, the unique optimal solution of (P). For t[0, 1), the objective
function of (3) is strictly convex on R. Therefore, for each [0, 1), the program (3)
has a unique optimal solution in R, say, x[t]> 0. The points x[t] trace a path of
solutions from the given starting point x and the homotopy that we have defined is
clearly boundary free for [0, 1) (terminology of Garcia and Zangwill [8]).

A solution x[t], [0, 1), is obtained from the following KKT system:

-Vx(X, t) + Arr O,
(6)

Ax b,

where r--r[t] is the vector of Lagrange multipliers.
The path of solutions is governed by a homotopy differential equation (HDE).

Define z r (x, r)r, and denote the system of equations (6) by

H(z[t],t)--O.

Then the HDE is defined as follows:

(7) dz_ [H,z]_l[H,t]
dt

where

[-Vxi(x, t) Ar] [-(O/Ot) Vx(X, t)](8) H’z A 0
H’t

0

The assumption that A is of full rank together with (5) then implies that H’ is
nonsingular over x R, [0, 1), i.e., the homotopy is also regular. Path existence
follows from results given by Garcia and Zangwill [8] that are based, in turn, on the
implicit function theorem. (Path boundedness, implying that it reaches x* when 1,
follows from direct modification of results given in [8, 4.5] for a related problem.)

THE HOMOTOPY PRINCIPLE 319

The path can be followed using techniques analogous to those discussed in 3 of this
paper.

We note that an initial linear approximation (Euler step) at x[0] to the path
defined by (7) and (8) will give an affine (scaling) direction ofdescent (Dikin [4]). The
derivation is analogous to that used to obtain expression (3.13) in [15]. This direction
d[0] is as follows:

(9) d[0]= -Do[I-DoAT(AD2oAT)-ADo]Doc,
0where Do diag [Xl, , x] > 0. However, at an arbitrary point on the path, (0, 1),

an Euler step will not usually give an affine (scaling) direction.

2.2. Parameterizing the KKT conditions directly. We derive a homotopy directly
from the KKT conditions (2). Given x> 0 feasible for (P) and r, v feasible for (D)
with v> 0 (the feasibility assumption is removed in 3.5), we parameterize the KKT
conditions (2) in the most immediate way that presents itself, namely,

Ax b

AT,.a-+V=C
(10) o o

xivi (1- t)xi vi i= 1, , n

x>-O, v>-O,
where [0, 1]. When =0, the point x, 7r, v is a solution of (10). When 1, then
(10) is identical to (2) and solves (P) and (D). Let us write the first three equations
of this system more compactly as (x, r, v, t)=0. In order to establish that the
homotopy defined by (10) is regular and the path is bounded and leads from
x, 7r, v (t =0)to x*, 7r*, v* (t 1), we proceed via a reduction to a theorem of Dikin
[4] as follows.

Interpret (10) as the KKT conditions that correspond to the parameterized
problem min [cTx (1- t) i o ox v) In (x)] such that Ax b, x >-_ O, and observe that
for given [0, 1) the objective function is strictly convex, and the optimal solution
x[t] lies in R_. Here we view the introduction of the weighted logarithmic barrier
function as a convenient means to establishing properties of the system (10) and not
as central to the development. An alternative proof that x[t] > 0 would do just as well.
With the restriction x R" we have

xivi)/xi, i=l,...,n.(11) v, (1 t)(o o

Since x[t] > O, expression (11) implies that the corresponding v[t] > O, [0, 1).
We now establish that r[t], v[t] are bounded for [0, 1). The first two equations

of (10) can be re-expressed as follows:

Ax b,
(12) ATTr + (1 t)D,xX= c,

where D,,=-diag[(v/xl),..., (v,/x,)]>O. Thus we deduce that

(1 t)Ax + (ADA)Tr AD-,lc.
The expression (ADAT) is invertible because A is of full rank and Dv,> O. Also,
Ax Ax b) implies that Ax ADv-,l v. Thus

(13) 7r= (AD-1 T --1 --1
lqtLv,x vo,xA aDv.xc (1 t)(ADIAT)-I--’-’-I o

It is worth noting that use of the convex combination [tcTx--(1--t),i (XiV)In (x)] would give an
alternative parameterization of the KKT conditions with c replaced by (t c) in (10). This corresponds to

starting at the weighted center of the primal polytope.

320 J.L. NAZARETH

It follows directly from a theorem of Dikin (see Vanderbei and Lagarias [25] and
Stewart [23]) that r[t] is bounded for any [0, 1). Hence v[t]> 0 is bounded. Recall
also that the primal problem is assumed to be bounded and nondegenerate.

Given regularity of the homotopy (the Jacobian matrix of (12) is of full rank)
and x[t], 7r[t], v[t] bounded, we can then deduce, following the argument given in
Garcia and Zangwill [8], that the homotopy defined by the system (12) does in-
deed generate a path leading from x, 7r, v to x*, 7r*, v*, the optimal solution of (P)
and (D).

Denote the system (12) by

(14) H(z[t],t)=O,
where zT= (x, 7r) T. The associated homotopy differential equation is given by

(15) dz_ [H,z]_l[H,t]
dt

where

A 0 H’= ,v,

and

D,,v diag [Xl/X/(XlVl),o xn/x/(x,v,)],
(17) T 0 0 0 0w -[(x,v,)/x,,)/(x.v. x.]

We observe that H’z is nonsingular when x e R, e [0, 1). In 3 we shall consider
strategies for following paths defined by (15)-(17).

Impose the further assumption, essentially combinatorial in nature, that the initial
x, 7r, v lies on the so-called central path (Sonnevend [22], Bayer and Lagarias [2],
Megiddo [13]), namely,

o o(18) xivi=O, i=l,. .,n,

where 0 is some given positive number. (Note that 0 =0 enforces complementary
slackness.) Then the HDE (15)-(17) becomes

(19) dz_ [H,z]_I[H,,]
dt

where

(20) H’z=[-(1-t)D- AT] [-D-e]A 0
H’,=

0

and D diag [x,. , xn], eT (1, 1, , 1). We use the symbol to indicate that
quantities on either side of the symbol are a scalar multiple of one another.

An Euler step at any point on the path defined by (15) is then obtained by solving

A 0 A- 0

Simple manipulations then establish the following:

(22) Ax-[I-DAT(AD2Ar)-IA]Dxe=-Dx[I-DxAT(AD2AT)-IADx]Dxc

(AD-2AT -1(23)
Av --AT b,

where D diag vl,. , v.] D.

THE HOMOTOPY PRINCIPLE 321

These are the usual primal and dual affine (scaling) directions used simultaneously,
and with sufficiently small steps they will therefore trace the central path to any desired
degree of accuracy ([8, Thm. 16.2.1]).

3. Algorithms and solution procedures. In this section we consider procedures for
following paths from an arbitrary feasible starting point x, 7r, for the system
(15)-(17). We consider, in turn,

(a) The Euler predictor/Newton corrector strategy.
(b) The restarting strategy.
(c) The inexact computation strategy.
These three strategies hold the key to effective implementation, and a variety of

algorithms can be derived by making particular choices for them. For background on
items (a) and (b), see Garcia and Zangwill [8].

3.1. The Euler/Newton strategy for following a path. Most ofthe theoretical studies
to date, for instance, [18], [19], utilize elevator (vertical) predictor steps and Newton
corrector steps. See [8] for terminology. However, use of Euler predictor steps (cf. 15])
is likely to be more effective in practice. The derivation of an Euler step for (15)-(17)
is analogous to the derivation of (22)-(23) from (19)-(20). Thus, linearizing at any
point z (x, r) r on the path, we obt.,n the Euler step Az 7- (Ax, Act) as the solution
of the following system of equations.

(4
-(- A

A 0 ATr

where Dx; and Wx, are defined in (17).
Straightforward manipulation and use of the relatioas -AD2,w,, Ax b then

gives
T 2 b(25) Art (AD2,,Ar)- b, av -a (AD,,,,,’Xr)-

(26) Ax -Dx,,[I D,,A7-(AD,,Ar)-’AD,, (-G!, ,,,Wx,,).
Denote the matrix in square brackets in expression (26) by P,,.:,. Then the relations

D,, Wx, ,/X V /x, v,, r D,, v, v c Acr and Dx, P, Dx, arcr O
enable us to re-express (26) as follows"

(27) Ax -Dx ,[I T 2Dx,vA (ADx,vAT)-IADx,]Dx,C.
Also, (25) can be stated as follows:

(AD,Ar)-lb.(28)
Av -Ar

As before, the symbol means that quantities on either side of the symbol are scalar
multiples of one another. Note also that we are dealing with a point (x, 7r, v) that lies
on the path, so D,, can be written in alternative ways, for example, D,,v
diag [/xl/vl,’’’, /x,/v,]. This will not be true when iterates stray off the path.

The elevator and Euler predictor steps are depicted in Fig. 1. Next consider the
corrector step at the point (9, ,) depicted there. (The expressions defining the
Newton corrector are very similar to the ones given above for the Euler predictor and
are not detailed here.) From (27) and (28) it is clear that Y is feasible for (P) and
,k, k are feasible for (D). However, in general, kk (1 k) o oxv, i.e., the third
equation of (10) will not be satisfied. Keeping fixed at k, Newton’s method can be
applied to the system (10) starting at the point (yk, ,kk, k), with iterates for the variables

322 J.L. NAZARETH

t=l

t=0

At

Elevator.

Corrector

"

FIG. 1. Predictor/ corrector steps.

x and v confined to R_. Convergence of these iterates to the point on the path
corresponding to t-- k taken to be (xk, rk, v k) in Fig. 1 can be assured by taking At
sufficiently small so that (k, .k, k) is sufficiently close to the path; indeed, it follows
from Theorem 16.2.1 of [8] that the path can be followed to any degree of accuracy
by the Euler (or elevator) predictor and Newton corrector strategy. (In practice, of
course, one would seek to take much larger predictor steps.)

Keeping fixed corresponds to the so-called horizontal corrector. It is also useful
to note that can be treated as a variable during the corrector phase, and a further
linear constraint can be imposed in order to ensure, for example, that the objective
function values of the primal (dual) do not increase (decrease). For a good discussion,
see [8].

3.2. Restarting the homotopy. Since we are dealing here with a terminal value
problem, restarts are useful, as is well motivated by Watson [26] as follows:

This means that the curve itself is not important, and sophisticated homotopy algorithms (as in
HOMPACK, for example) actually change the curve that is being tracked as they proceed. This
strategy has a rigorous theoretical justification, since changing the curve amounts to changing the
parameter vector in the homotopy map, and for almost all parameter vectors the zero curve of the
homotopy map is guaranteed to reach a solution. However, following the zero curve too loosely
can be disastrous, so there is a delicate balance between efficiency and robustness. This balance
needs further study, perhaps leading to fundamentally different algorithms.

Consider again the iterate (sk, k, k), which has strayed from the path in Fig. 1,
and redefine the homotopy equations as follows:

(1- t) (:k, .fr k, k, k)(29) (x, r, v, t)= t(x, r, v, t)
(1- k)

where (.) denotes the system (10). When t--tk, then c(k, (rk, k, tk)__O. When

THE HOMOTOPY PRINCIPLE 323

1, then (g(x, m v, 1)=)f(x, r, v, 1). Hence ((x*, or*, v*, 1)= 0. Therefore the re-
started homotopy defines a path from (k, .zrk, k, k) to the unique optimal solution.

Let us consider the system d(x, r, v, t) explicitly. Because k, .k, k satisfy the
first two equations of (10) exactly, the first two equations of (. and N(. are
identical. (The Newton corrector would also satisfy these equations exactly.) Consider,
therefore, the third set of equations. From (29),

o o_(l-t)(30) (x, r, v, t)= xjvj-(1 t)xjvj
(1 k) [9- (1 tk)xv] 0.

Hence

(l-t)
(31) xvj (1 tk Vk.

(32)

The restarted homotopy is thus defined, again in a natural way, by

Ax b,
Afar+ v c,

(l-t)
xv (1- k) xv j= 1,’’’, n,

x>--O, v>-O,
where e k, 1].

3.3. Inexact computation. Suppose Z spans the null space of A and is of full rank.
For example,

Z=
Inxn

where A [B[N], B is a nonsingular basis matrix, and N is the matrix whose columns
correspond to the remaining t- n-m nonbasic variables. Note that these nonbasic
variables are not at their bounds. Then the range-space expression (27) can be stated
in the alternative null-space form

(33) Ax -Z(ZrV-,z)-lZrc.
In expression (28), the matrix

[-A
spans the null space of the dual constraints [ArlI][] c, and ax[a] is already in the
null-space form. Indeed, the corresponding range-space form does not exist for the
dual (D). In contrast, the symmetric primal-dual statement of the linear programs will
have range-space and null-space forms for both the primal and dual directions.

The advantage of the null-space forms is that the corresponding directions can
be computed inexactly, for example, by a few iterations of the conjugate gradient
algorithm, without loss of feasibility. Moreover, these inexactly computed directions
continue to be directions of descent (ascent) for the primal (dual). This is discussed
in detail in [16] and similar considerations apply to (33) and (28). (In particular, use
of iterative methods like conjugate gradients is essential when computing with null-
space formulations because we do not want to form the matrix B-1N explicitly. Note
that B-IN and (ZrD-2x.vZ) are, in general, dense matrices.)

3.4. Resulting algorithms. In order to provide an illustration, we consider a simple
choice for each of the preceding strategies, namely, (a) Euler predictor steps, (b) a

324 J.L. NAZARETH

restart after each step, and (c) inexact computation of each Euler step using an iterative
method, for example, a few iterations of the conjugate gradient method. The resulting
algorithm is as follows:

ALGORITHM SELF-DUAL AFFINE (SCALING)"
,rTo o vo.1 k := 0, 2 := x, := 7ro, :=

2. Dx, := diag [X/lk/lk, X/,k/,k].
3(a). Solve (ZTD-,2Z)dx =-ZTc approximately by an iterative method to obtain

a direction d.
3(b).)k+l :._ k "3

u /Zd, where Zd is a direction of descent for the primal problem
and 9’ is a suitable step size that maintains primal feasibility.

4. Solve 2AD,vAT)d= b approximately by an iterative method to obtain a
direction of ascent d= for the dual problem.

5. d:=-ATd=.
6(a). k+l := k / dv, where fl is a suitable step size that maintains dual feasibility.
6(b). k+l := ,it k + fld=.
7. If (cTk+l b rv7k+l) < eps then stop, else k := k / 1 and return to Step 2.

When search directions are computed exactly and fl 7(-= a) are chosen appro-
priately, one obtains the algorithm analysed by Monteiro, Adler, and Resende [14].
A variety of other algorithms can be formulated within the framework of 3.1-
3.3. For example, by using elevator predictor and Newton corrector steps, exact
computation of search directions, and no restarts, one obtains the algorithm of
Kojima, Mizuno, and Yoshise [11], which has roots in Megiddo [13]. Again, by
using a pure Euler strategy (i.e., without corrector steps), exact computation of search
directions, and no restarts, one obtains a new algorithm that simultaneously com-
putes primal and dual affine (scaling) directions from the scaling matrix Dx

~k 0 0 ~k 0 0dlag [xl/x/XlV, x,/x/x,v,]. Note that as iterates stray off the path, D will no
longer be a scalar multiple of the matrix diag [x/:lk/tlk, X/,k,k]. Use of the latter
scaling matrix would thus give a different algorithm.

For each such algorithm, the Garcia-Zangwill framework (in particular, Theorem
16.2.1) demonstrates that the homotopy path can be followed to any desired degree
of accuracy. Recently, Renegar and Shub [19] showed how the complexity analysis
of several elevator predictor/Newton corrector algorithms can be greatly simplified
using a fundamental theorem of Smale [21]. Their approach to complexity analysis
applies to the study of algorithms formulated within the framework described here,
as will be discussed in 4.

We should also note that completely analogous considerations to those discussed
in 3.1-3.3 apply to the system (7)-(8). These too are currently under study and will
be reported elsewhere.

3.5. Combining with the self-dual simplex algorithm. The self-dual (parametric)
simplex algorithm of Dantzig [3], a special case of Lemke’s algorithm [12] for the
linear complementarity problem, parameterizes the KKT system (2) as follows:

Ax b + (1 t)qp

ATvr + v c+(1 t)qd
(34)

xivi =0, 1,. ., n

x>=O, v>=O,

THE HOMOTOPY PRINCIPLE 325

where t[0, 1]. The conditions (34) are the optimality conditions for associated
parameterized versions of the linear programs (P) and (D). For any given basis matrix
of (P), the vectors qp and qd are chosen so that the corresponding basic solutions of
these parameterized programs are feasible. Obviously, these solutions satisfy the com-
plementary slackness conditions and thus solve (34). (Note that they need not be
feasible for the original unparameterized linear programs.) A piecewise-linear path of
solutions to (34) is followed as varies from 0 to 1.

When primal and dual feasible solutions are not available, as assumed in 2.2,
we utilize the foregoing approach to parameterize the KKT system (2) as follows:

(35)

Ax b+(1- t)qp
ATTr + V-- c+(1- t)qd

XiVi)XiV (1 0 0 i---1,...,n

A 0
H’

qp

where

(36) dz_ [H’]-’[H’,],
dt

(15)-(16) are as follows.

The fact that a homotopy path for the foregoing system can be followed to any
degree of accuracy by an algorithm based on an elevator or Euler predictor together
with a Newton corrector again follows from Theorem 16.2.1 of [8]. A complexity
analysis can be based on Smale [21] and Renegar and Shub [19] along lines similar
to 4 of our paper. These topics are under investigation and will be reported elsewhere.

Note also that the self-dual simplex algorithm provides a convenient way to obtain
an optimal vertex from the point where a smooth path-following algorithm terminates.
For example, the self-dual simplex algorithm can be initiated from a basis given by
the m variables farthest from their bounds, with the remaining (nonbasic) variables
set to their zero bounds. The only requirement is that the basis matrix be nonsingular;
the associated basic solutions need not be feasible for primal or dual.

In the next section we turn to the analysis of a particular homotopy algorithm.

4. Complexity analysis. In 2.2 we established the existence of a path leading
from (x, 7r, v) to the optimal solution for. the homotopy system derived from (10).
Theorem 16.2.1 of Garcia and Zangwill [8] then establishes that by taking sufficiently
small steps this path can be followed to an arbitrary degree ofaccuracy using an elevator
predictor, Newton corrector algorithm. Now we turn to a complexity analysis of such
an algorithm based on a theorem of Smale [21], in the form given by Renegar and

x_>O, v=>0.

Here x and v are arbitrary n-vectors with positive components, and r is an arbitrary
m-vector. The vectors qp and qa are given by qp =(Ax-b), qa =(ArTr+v--c). The
system (35) reduces to the self-dual simplex system (34) when x and v satisfy the
complementary slackness conditions. Therefore, note especially that (35) subsumes
the smooth homotopy and piecewise-linear homotopy systems given by (10) and (34),
in a natural manner.

A development completely analogous to 2.2 can be carried out, and path-
following algorithms derived, as discussed in 3. Then the expressions analogous to

326 J.L. NAZARETH

Shub 19]. (In the interests of brevity, we give a condensed version of our proofs. Full
details can be found in 17].)

Let and denote Banach spaces, where the norm on is II. For an operator
M"k , let [IMII denote the usual operator norm IIMII sup (llM(u’), uCk))ll;
Ilu’)II 1, vi}, Assume that f" o is an analytic map. Let Df denote the Frechet
derivative If Df-1 exists at x, define

(38) /3(x)- IlDf(x)-lf(x)ll,

(39) y(x) sup
k=>2

1-. Df(x)-’Df(x) 1/(k-l)

THEOREM (Smale [21], in the formulation of Renegar and Shub [19]). Assume
thatf: all - is analytic, where ll is an open subset of. Assume that fl fl(), 2, "y()
satisfy <- 1/28 <-_ 1/40/and(, 48) o//. If I1- 11 <-- , then the Newton sequence x()=

x(i+1) x<i)- Df(xi)-lf(xi)) is well defined and converges to the zero ’ offin B(,),
this being the only zero off in B(, 48). Moreover,

(40) x’- ’11 <--(})=’.
For any vector d R", let lid I1_ denote the Euclidean norm. Let f/be any diagonal

matrix, and let I111= denote the matrix norm that is subordinate to the Euclidean vector
norm. Let lid -’- 4-d -ff--i, where W> 0 is a given diagonal matrix with positive
diagonal elements. Let I111 w-, denote the norm of 11 subordinate to the vector norm
just defined.

We shall utilize the following results concerning these diagonal matrices and
associated norms. Their proofs are simple and are therefore omitted.

PROPOSITION 1.

I111= max l)i, -< IIe I1= 4211- -- ’2nnPROPOSITION 2.

When the homotopy system derived from the first three equations of (10) is
expressed in terms of the variables x and 7r (with v being defined by the second
equation and eliminated from the third), we obtain the following"

(41) XA(r)e-lzWe=O, b-Ax=O,
Twhere X =diag [Xl,... ,x,], A(Tr)= diag [Cl-alrTr, c,-a, Tr], with aj being the

jth column of A. Also, W diag [XlVlo,..., x, vO,] > 0, e (1, 1, ,1), and/x (1 t).
Let us assume that W has bounded spectral condition number, namely,

(42) K2(W) wll = w-111 = max [(cT. ajT7ro Xg]/m!n c T arrO)x].
Let w=(Tr, x)R"/ and let H(w,/x)=0 denote the system (41). The specific

algorithm that we consider here for following the path defined by H(w,/x) 0 is an
elevator predictor, Newton corrector algorithm and it is defined by

(43) w(i+I) w(i) DwH(w(), [jl,(i+l))-lH(w(i), /./,(i+1)),
where/() 0. Dw denotes the Frechet derivative with respect to w.

We now claim that we can take

(1) ft(i(44) /./,(i+1).__ 1 40x/’-ff x/ll Wll2it W-ill

THE HOMOTOPY PRINCIPLE 327

and that each w(i) will be a good approximation to the zero of w H(w, tz(), with r
and x, the components of w, being interior points of dual and primal, respectively.
Our proof is patterned after 5 of Renegar and Shub 19], the difference between their
results and ours being that the central path-following algorithm is analysed in [19],
whereas we study the path from an arbitrary interior feasible point (Tr, x).

Fix (0,) satisfying A b. Let = {(Tr, x) Rm+", Ax =0} and let the com-
ponents of w() be feasible for dual and primal, respectively. Subsequently, we shall
maintain w()- for all i, and w (Tr, x) will always refer to points in .

Assume /z > 0 fixed. Let s (p, to) be the unique zero of w H(w + ,/x)
where p is an interior point for the dual. Let f=diag[tol,...,to,] and ’=
diag [1,. ",n]. Then

(45) (f + x)a(p)e tt We O.

Hence (1/t.t)w-l(o+fC)A(p)e=e and diagonality of all the matrices in this
expression imply that

(46) --1 W-’(12 + 3)A(p) I.

Now we are able, in fact, to choose a starting point on the path itself. Therefore
we certainly have no difficulty in choosing sc (iS, aS) initially to satisfy

(47) (- ll with 6
2oll w-’/ll_

for an appropriate choice of vector norm]l" to be defined shortly, as required by the
foregoing theorem. Also,

(48)

Assume that

AT(p fi) A(fi p)e.

(1)1 40/-ff/c2(W) /x</x

Define f" R" by

(49) f(w) (X + X)A(Tr)e-/x’ We.

Let sc-’= (-Df(-)-f(). We now set out to show that

1
(50) I1’ ’11 -2011 W-1/2112
where we must first define the norms I1" and I1" I1’ appropriately. We do this as follows.

Define

(51) Ilwll =L IIDf()wllw-’,

where

Df(w) [(X +’)A" A(Tr)],

Therefore, for w (m x) ,
(52)

Df()w= Df() (f+X)A 7r+A(p)x.

Ilwll =% II(n +)ATr + XA(p)ell w-1,

328 J.L. NAZARETH

(53)

Simple manipulations show that our definition of the norm (52) reduces to

Ilwll =1 [ll(/ ff)AT,rrll2w + IlXA(p)ell2w-,] 1/2.

For/x’> 0 define :’= (p’, to’), tl’, and I1" I1’ in an analogous manner.
Now, from the definition of/3, see (38) and then, using (51), (49), and (45), we have

() -[IDf()-’f()ll--< (tz- ’) wl/=ll=.

Then (44) gives

1
(54) /3 _-<

4011W-1/2112"
Next we turn to the second constant 3’.
Let wr-i= (ortil, xti3), 1, 2 denote two arbitrary vectors in . The operator D2f(:)

maps (wtl, w[2) to the vector XtArrrt21+ Xt2AT’rrtl. Using the norm definition (51)
it follows that Df()-lDZf() maps (wtl, wr2) to a vector of I1" II-length at most

11
ilXt,at=l ,,-’ /-ilXt=at,l ,,-l.

Consider each of the terms in the foregoing expression:

[[X[1]ATTT[2IIIw-I"-- x[ll[-(I"-F.,,)A(p) W-1]ATTT[2II]
W

using (46)

=L W-1/2X[1][(+)a(p) W-1]ATtII
1 W_I/2 W_I/2xE1 1/-II II=ll a(p) w- =(+ x)at=ll=

11 w-/llllwtll Ilwtll from norm inequalities and (53).

Hence

Similarly,

Hence

11
iixtllA%.r ,,-’ +- iiXAt, ,,-’ _-< 211W-1/=ll=ll wtll wt=ll.

Then using the usual operator norm definition, given at the beginning of this section,
we obtain

(55) 1/211DI()-ID2N()II W-1/2112.
Observe also that Dkf 0 for all k > 2. Hence

(56) 3/= sup -.!Df(j)-lDgf()
k=>2

THE HOMOTOPY PRINCIPLE 329

Combining (54) and (56) we have

1
(57) /3-<_.

40

Note also that/3 _<- 1/2& Then the theorem quoted at the beginning of this section implies
that

(58) I1’-’11-< 2011w_1/11 and 11-’ll=80llw_/=ll=.
Finally, we seek a bound on I1’-11’. Let us first apply Proposition 2 to the

evaluation of [[A(p’)A(p)-lll w-.
IIA(p’)A(p)-’ll -, Ila(p’)A(p)-’ll =

--III + a(p)-’A(p’-- P)II=----< IIZlI= + II,a(p)-"X(p’-- P)II=
1

1 +--II w-l(f + X)A(p’- o)ll= using (46)

1 W_I/2_--< 1+--II I1=11 w-/=(a+2)a(p o)ell= by Proposition 1

1 w_l/2 T1+--II II_ll(a+X)A (p’-p)ll -’.

Then using (53) applied to I1-11, where (:’-:)= (p’-p, to’-to), gives

(59)

Similarly,

(60)

Therefore

A(p’)A(p)-’ ,,,,-, 1 + W-’/=ll=ll ’- 11.

II(a’ +)(a+ 2)-’ v-, -< 1 + W-1/:ll=ll ’- 11.

Thus

(61)

Ilwll ’= 1-S [ll(a’+ 2)Arll + Ilxa(r,’)ell%-’]’/

1
--<--; II(a’ +)(a+ 2)-111 v-111 (11 + x)a

+ Ila(p’)A(p)-lll-,llXA(p)ell-,]
_--< (1 + w-’/:ll:ll ’- 11)

}[ll(a+X)A 11 + IlXZX(p)ell-’] ’/=

w I1’ -< (1 + w-’/= I1_ ’ II)11 w II,
I1’- ’11’ (1 + w-’/=ll=ll 11)11’- ’11.

Using (58), we obtain

1 1
I1’- ’11’<--- 6 (see (47)).

-20

This completes the proof of the claim (50).

from (59), (60).

330 J.L. NAZARETH

4.1. Feasibility of (/, t + :).

2011 w-’/211 =

_1 w-/=[(+ 3)A()e -/z We] I1= using (48) and (45).

Thus

(62)
1 1/2(wl/2-->--I[W- 12+)A(tS)e /x ell=.

Suppose that A(tS) contains a negative component corresponding, say, to index
k. Then (62) implies that 1/(2011 w-/=ll=)_-> "/=,,kk. But w-/2112 =l/(mini(Wi/2))

wl/2’ > uIz1/2Thus (1/20)min (,,, ,= , giving a contradiction. Therefore t5 is dual feasible.
A similar argument establishes that 03 + is primal feasible.

4.2. Duality gap. We show that

Ibm- c(o /)1 < 2zn Wll=.
First consider the duality gap at (p, to +), namely, Ibp cr (to +)[. Since (to +)

is feasible for the primal, A(to +)= b. Thus

+ +)rA P- er(fl + 3)cl
=le(9.+)A-e[(O,+Y)c-(a+)A(p)+We][by (45)

le (O +)(A c A(p)) -/xeWel- txerWe

Also,

Ib(- p)l--le(+)Ar(.6 P)I -< e I1(+)Ar(,6- p)l[

using labl<= Ilall llbll -’. Thus Ib (-o)l<--/eWe(ll ll), using the first relation
of the preceding subsection on feasibility (4.1). Thus

x/e We

Now w-’/=ll=ll w/=ll=-> 1 implies that 1/(11 w-’/=ll=)--< w’/=ll=. Therefore

Ib (fi p)l =< x/e rWe W1/2112 00 wll=,
20

Similarly,

Hence

]c(-,o)]4h wll:.

ibr cr (03 +)1 -<- 2nll Wll:.

THE HOMOTOPY PRINCIPLE 331

This result, along with (44), then implies, in the usual way, an O(v/-ffL) iteration
bound from all starting points with a fixed prescribed bound on the associated condition
number K2(W). (Here L denotes the number of bits required to specify the problem.)

5. Concluding remarks. In conclusion, we reiterate the main theme of this paper.
The field of mathematical programming is at the threshold of a new generation of
large-scale mathematical programming systems that must effectively integrate vertex-
following (simplex) and interior-point techniques. The homotopy principle and
Newton’s method provide an extremely rich and powerful unifying framework for
deriving algorithms and implementing them effectively within such mathematical
programming systems. This requires a careful hybridizing of the strategies discussed
in 3 applied to the canonical system of 3.5, together with the use of appropriate
iterative techniques of computational linear algebra. Such research is currently being
undertaken.

In 4 we also studied a particular elevator predictor, Newton corrector homotopy
algorithm and showed that every pair of feasible interior primal and dual points
determines a path to the optimal solution characterized by a "condition" K2(W) and
an associated "complexity," which is defined in terms ofthe quantities n, L, and n2(W).
A balanced choice can be made between path following and condition improvement,
suggesting a novel approach to algorithm development. The theoretical (and practical)
study of Euler predictor, Newton corrector homotopy algorithms in this setting, as
well as extensions given in 3.5 for starting homotopy algorithms from infeasible
points, would also be worthwhile.

Acknowledgments. I thank J. Renegar for helpful interaction on the material of
4 and its algorithmic implications. I am also grateful to the referees and editor for

their helpful comments.

REFERENCES

[1] I. ADLER, N. KARMARKAR, M. G. C. RESENDE, AND G. VEIGA (1986), An implementation of
Karmarkar’s algorithmfor linearprogramming, Report No. ORC 86-8, Operations Research Center,
University of California, Berkeley, CA.

[2] D. A. BAYER AND J. C. LAGARIAS (1986), The nonlinear geometry of linear programming. I: Affine
and projective scaling trajectories, II: Legendre transform coordinates and central trajectories, AT&T
Bell Laboratories, Murray Hill, NJ, preprint; Trans. Amer. Math. Soc., to appear.

[3] G. B. DANTZIG (1963), Linear Programming and Extensions, Princeton University Press, Princeton, NJ.
[4] I. I. DIKIN (1967), Iterative solution of problems of linear and quadratic programming, Soviet Math.

Dokl., 8, pp. 674-675.
[5] B.C. EAVES (1979), A view ofcomplementary pivot theory, in Constructive Approaches to Mathematical

Models, C. Coffman and G. Fix, eds., Academic Press, New York, pp. 153-170.
[6] m. V. FIACCO AND G. P. MCCORMICK (1968), Nonlinear Programming: Sequential Unconstrained

Minimization Techniques, John Wiley and Sons, New York.
[7] R. FRISCH (1956), La rdsolution des problemes de programme lindaire par la mdthode du potential

logarithmique, Cahiers du Seminaire D’Econometrie, 4, pp. 7-20; Discussion, pp. 20-23.

[8] C. B. GARCIA AND W. I. ZANGWILL (1981), Pathways to Solutions, Fixed Points and Equilibria,
Prentice-Hall, Englewood Cliffs, NJ.

[9] P. E. GILL, W. MURRAY, M. A. SAUNDERS, J. A. TOMLIN, AND M. H. WRIGHT (1986), On projected
Newton barrier methodsfor linearprogramming and an equivalence to Karmarkar’s projective method,
Math. Programming, 36, pp. 183-209.

10] N. KARMARKAR (1984), A new polynomial-time algorithm for linear programming, Combinatorica, 4,
pp. 373-395.

[11] M. KOJIMA, S. MIZUNO, AND A. YOSHISE (1987), A primal-dual interior point method for linear

programming, Res. Report No. B-188, Department of Information Sciences, Tokyo Institute of
Technology, Tokyo, Japan.

332 J.L. NAZARETH

12] C. E. LEMKE (1968), On complementary pivot theory, in Mathematics of the Decision Sciences, G. B.
Dantzig and A. F. Veinott, eds., American Mathematical Society, Providence, RI.

[13] N. MEGIDDO (1986), Pathways to the optimal set in linear programming, Res. Report RJ 5295, IBM
Almaden Research Center, San Jose, CA. Also in Progress in Mathematical Programming: Interior-
Point and Related Methods, N. Megiddo, ed., Springer-Verlag, Berlin, New York, 1989, pp. 131-158.

[14] R. D. C. MONTEIRO, I. ADLER, AND M. G. C. RESENDE (1988), A polynomial-time primal-dual affine
scaling algorithm for linear and convex quadratic programming, Report ESRC 88-8, Department of
Industrial Engineering and Operations Research, University of California, Berkeley, CA.

15] J. L. NAZARETH (1986), Homotopy techniques in linear programming, Algorithmica, 1, pp. 529-535.
[16] (1987), Pricing criteria in linear programming, Report PAM-382, Center for Pure and Applied

Mathematics, University of California, Berkeley, CA. Also in Progress in Mathematical Program-
ming: Interior Point and Related Methods, N. Megiddo, ed., Springer-Verlag, Berlin, New York,
1989, pp. 105-129.

[17] (1989), The homotopy principle and algorithms for linear programming, presented at the IIASA
Workshop on Nonstandard Optimization Methods and Related Topics, August 1-4, 1989, Inter-
national Institute for Applied Systems Analysis, Laxenburg, Austria. Also appeared as Tech. Report
90-1, Department of Pure and Applied Mathematics, Washington State University, Pullman, WA.

[18] J. RENEGAR (1988), A polynomial-time algorithm, based on Newton’s method, for linear programming,
Math. Programming, 40, pp. 59-93.

[19] J. RENEGAR AND M. SHUn (1988), Simplified complexity analysisfor Newton LP methods, Report No.
807, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY.

[20] C. Roos AND D. DEN HERTOG (1989), A polynomial method ofapproximate weighted centersfor linear
programming, Report 99-13, Faculty of Technical Mathematics and Informatics, Delft University
of Technology, Delft, the Netherlands.

[21] S. SMALE (1986), Algorithms for solving equations, in Proc. Internat. Congress of Mathematicians,
University of California, Berkeley, CA.

[22] G. SONNEVEND (1985), An analytic center for polyhedrons and new classes of global algorithms for
linear (smooth, convex) programming, in Proc. 12th Internat. Federation of Information Processing
Societies Conference on System Modelling and Optimization, Budapest, Hungary.

[23] G. W. STEWART (1988), On scaled projections and pseudo-inverses, Report TR-2026, Computer Science
Technical Report Series, University of Maryland, College Park, MD.

[24] P. TSENG (1989), Complexity analysis of a linear complementarity algorithm based on a Lyapunov
function, Report No. P-1884, Laboratory for Informatics and Decision Systems, Massachusetts
Institute of Technology, Cambridge, MA.

[25] R. J. VANDERBEI AND J. C. LAGARIAS (1988), I. I. Dikin’s convergence result for the affine-scaling
algorithm, preprint, AT&T Bell Laboratories, Murray Hill, NJ.

[26] L. T. WATSON (1986), Numerical linear algebra aspects ofglobally convergent homotopy methods, Tech.
Report 86-7, Department of Industrial and Operations Engineering, University of Michigan, Ann
Arbor, MI.

SIAM J. OPTIMIZATION
Vol. i, No. 3, pp. 333-357, August 1991

() 1991 Society for Industrial and Applied Mathematics
OO3

A CURVILINEAR SEARCH USING TRIDIAGONAL SECANT
UPDATES FOR UNCONSTRAINED OPTIMIZATION

J. E. DENNIS, JR.t, N. ECHEBEST*, M. T. GUARDARUCCI$, J. M. MARTiNEZ,
H. D. SCOLNIK, AND C. VACCHINO*

Abstract. The idea of doing a curvilinear search along the Levenberg-Marquardt path s(tt)
-(H + ttI)-lg always hs been appealing, but the cost of solving a linear system for each trial value
of the parameter tt has discouraged its implementation. In this paper, an algorithm for searching
along a path which includes s(tt) is studied. The algorithm uses a special inexpensive QTcQT to
QT+QT Hessian update which trivializes the linear Mgebra required to compute s(tt). This update is
based on earlier work of Dennis and Marwil and Martlnez on least-change secant updates of matrix
factors. The new algorithm is shown to be local and q-superlinearly convergent to stationary points,
and to be globally q-superlinearly convergent for quasi-convex functions. Computational tests are
given that show the new algorithm to be robust and efficient.

Key words, unconstrained optimization, trust regions, curvilinear search, Levenberg-Mar-
quardt, factor updating, least change secant methods

AMS(MOS) subject classification. 65K

1. Introduction. In this paper, we consider iterative methods for solving the
smooth unconstrained minimization problem:

min f(x); f" - C]Rn --+ JR; f e cl()x

for Ft open in IR. We denote g(x) Vf(x) for all x E f. We will use the t2 norm
whenever another norm is not indicated.

Our methods are based on the common notion of choosing a trial step from
the current iterate Xc to the next iterate x+ based on a local quadratic model of
f(xc + s) f(xc) of the form:

T 1
(1) qc(s) =-- g S -+- -STHcS, where gc Vf(x) and Hc HTc
Our methods belong to a class often called curvilinear search methods, and the curvi-
linear path we search along is the same one in IR from which the trust-region method
based on the same model would choose its step. The major difference from trust-region
methods is that, even if we eventually choose the same trial step, we do our search
based on the "Levenberg-Marquardt" parameter rather than on the length of the step.
Methods based on other curvilinear paths have been published, but since none are in
general use, we omit any comparative discussion. Most relevant is that Schramm and

Received by the editors January 11, 1990; accepted for publication (in revised form) January 4,
1991.

Mathematical Sciences Department, Rice University, Houston, Texas 77251-1892. This work
was begun under a Fulbright Fellowship to Argentina. This research was partially supported by Air
Force Office of Scientific Research grants AFOSR-89-0363, DOE/ER/25017-3, DAAL03-90-0093, and
National Science Foundation grant DMS-8903751.

Departamento de MatemAtica, Universidad de La Plata, La Plata, Buenos Aires, Argentina.
Universidade Estadual de Campinos, Campinos, Brasil. This work was done while the author

visited the Mathematical Sciences Department, Rice University, and was supported by a fellowship
from FAPESP, Brasil.

Departamento de ComputaciSn, Facultad de Ciencias Exactas y Naturales, Universidad de
Buenos Aires, Argentina.

333

334 J.E. DENNIS, JR. ET AL.

Zowe [11] in their B-T algorithm for nonsmooth optimization search the analogous
curve.

The key to the practicality of the particular method we test is that we build the
local model (1) in a form that trivializes the linear algebra needed to compute any
trial step along the search path. For example, standard approaches would require a
Cholesky factorization at each trial step, but we need only solve a tridiagonal system
and do two matrix-vector products.

This paper is organized as follows: 2 contains a global convergence analysis in
which we assume that the sequence of model Hessians is bounded, but we do not
specify how the Hessians are to be chosen. We define the set from which a trial step
must be chosen that satisfies an Armijo criterion. We show that there are steps in the
set that satisfy the sufficient decrease criterion, but we do not specify how the step is
to be found.

In 3, we assume that 72f is Lipschitz continuous on f, and we present a new
least-change secant method for defining H+ from Hc and apply the results of 2 to
the resulting algorithm. This method is in the spirit of [2], [7], and [5] in that there is
never any need to form H+. Instead, Hc is held in the form QoTcQTo, Qo orthogonal,
T tridiagonal; and H+ QoT+Qff is defined by doing a sparse symmetric secant
update of T to get T+.

In 4, we validate the new update by giving a local convergence analysis of the
corresponding full step quasi-Newton method to stationary points of f. In 5, we
add a convexity assumption on f and prove that the particular method from 3
that always tries the Newton step first when Hc is positive definite is globally q-
superlinearly convergent. This order of convergence result is no better than we could
prove if we did not do the updates, but the updates cost a low multiple of n, and they
are certainly worthwhile computationally, as is shown in 7.3. Section 6 discusses an
implementation and 7 gives some numerical results for a particular method from 3.

2. The general algorithm: Global convergence. In this section we state a
general algorithm of the type studied here. We make the algorithm only as specific
as necessary to prove a global convergence result.

Given x E f, H a symmetric n n matrix, A1 A1 (H) the smallest eigenvalue
of H, V the corresponding eigenspace, we define a curve parameterized by mu:

Fl(x, H) {x- (H + #I)-g(x) 0 <_ # > --,’1 }.

If g(x) q Vx, or if)i) 0, we define r(x,H) FI(X,H).
v E V1, v 0, and we define a curve parameterized by mu:

Otherwise, we choose

r(x, H) Fl(X, H) U F2(x, H),

where

r(x, H) {x- (H- ,lI)-fg(x) + #v]_1, e

The following lemma, which follows from Gay [4] and Mor6 and Sorensen [8], gives
a geometrical meaning to F(x, H). It shows that if/k _< 0 and if g(x) e V1x, then
any v V gives the same result for the quadratic. In our implementation, we always
choose trial steps that stand in the same relation to the current iterate that z has
to x in the hypotheses of the lemma. However, we have no need to be so specific in
order to prove global convergence in the next section.

CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 335

LEMMA 2.1. Let x E , z F(x, H). Then z is a minimizer of

q(w) l(w x)TH(w x) T g(x)T(w X) subject to lit x[I _< [Iz xll
and the direction from x to z is a descent direction for q. Furthermore, assume
z Fl(X,H); then z is the unique minimizer. If 0 < <_ IIz- xll, then there is a
unique w e F(x, H) such that]lw xll . Also, w e F (x, H).

Proof. This is just a slight restatement of a standard result of Gay[4] and Sorensen.
For example, see Lemma 2.3 of Mor and Sorensen [8]. 0

The following algorithm describes the way of obtaining a new approximation x+
to the minimizer of f, starting from a current approximation xc such that gc 0
and using a current Hessian approximation H. A large positive number A is used
to bound the steplength, and Ac and A are constants needed in the convergence
proof. The algorithm parameters c e (0, 1/2),/ e (0, 1) are used to guarantee sufficient
decrease. We use 10-4 and macheps.

ALGORITHM 2.1.

Given H,
If l(Hc) _< 0; Then Ac Ac A;

Else SNc -H[g(x); A [X- min(A,
Set 2 xc;

While (2--x or f(2) > f(xc)+ g(x)T(2- x)) DO
Choose 2 F(x, Hc) such that/32A

ENDO;
Set x+ 2;

Remark. Obviously, the efficiency of Algorithm 2.1 depends on the way 2 is
selected. "Choose" is a very ambiguous word that we use deliberately to show that
many strategies are possible.

Let us now prove that, given xc, H, with g g(xc) O, Algorithm 2.1 is always
able to finish by finding a point 2 which satisfies the sufficient decrease condition

(2) f(2) <_ fc + Tc (2 Xc).

THEOREM 2.2. After a finite number of DO loop executions, Algorithm 2.1 ob-
tains a point 2 x+ that satisfies (2).

Proof. We only need to prove that, if 112- xll is small enough and 2 e F(xc, H),
then (2) is satisfied. Using Lemma 2.1, it is easy to see that

(3) lim 2-xc lim 2-x -g(Xc)

eF(xc,Hc) erl (xc,Hc)

since if]12- xl] is small enough, then 2 e F(x, He). Therefore, using (3) and the
Mean Value Theorem, we have

f(2)- f(xc) + with e (0, 1).

336 J.E. DENNIS, JR. ET AL.

Hence,

lim
f() f(x) g(x)T lira x -IIg(x)ll
II-xll II-xll

2eF(xc,Hc) 2eF1 (xc,H)

(x)-l(x)] +]_ x]

for ny x, and the required result follows from this inequality.
We now give a result that we need to prove global convergence of Algorithm 2.1.
LEMMA 2.3. Assume that]]Hk B for k O, 1, 2,... and limk Xk X, with

g(x,) O. Let {} be any sequence such that e F(x, H), lim k--x 0.
Then there exists a subsequence (2k Xk } such that, for this subsequence,

lim 2k xk --g(x,

Proof. Let {Hk}keK be a convergent subsequence of {nk }. Then for some H,

ii n- H, lInll .
kK

For k K let us write

(4) Hk QkDkQ

where D diag((H),.--,n(Hk)), l(Hk) n(Hk). By the continuity
property of eigenvalues (see Wilkinson [12, p. 63] or Ostrowski [9, p. 225]), we have:

lim Ai(Hk) Ai(H), 1,...,n,
kK

where Ai(H), 1,...,n are the eigenvalues of H in increasing order. Now, the
matrices (Qk}kg are contained in a compact set of x. Therefore, there exists
a convergent subsequence {Qk}keg:, K2 C K such that

lim Qk Q,
kK2

and Q is an orthogonal n n matrix. Hence, taking limits in (4) for k K2, we have"

H QDQT

where D diag(Al(H),... ,n(H)), Q (Vl,..., Vn). Now, g(x,) 0, so there exists
m {1,...,n} such that

() (.)% 0.

Therefore, there exists > - such that

+
min

1
Hence, taking limits for k K, we have, for large enough k K,

) >2
a() +. 4

CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 337

But,

and

Xk -(Hk + #I)-lg(xk) e Fl(xk,Hk),

II- (Hk + #I)-ig(xk)ll >_
Am(Hk)+#

Therefore, for large enough k e K2, by Lemma 2.1 and (7) there exists zk E F(xk, Hk)
such that

(8) IIk zkll -Hence, since lim--,oo 112k xkll 0, Lemma 2.1 and (8) imply that 2 E F(x, H)
for large enough k K2 (say, k K3).

We now want to prove that limk-oo #k OO. We proceed by contradiction.
Assume that #k _< #0 < oc for k K4 C K3. Then, 2k F(xk,Hk) for k E K4, so

kfor Qk (vk, v,),

(9)

I1 xll (H / mI)-g(x)ll Qk(Dk 21"- kI)-1Q g(x)II

!l(Dk + #kI)- Tg(x)ll

,’l(Hk) - Pk

--> l(gk) -/0

But the limit of the right-hand side of (9) when k oo is clearly a nonzero positive
number, therefore IIk Xkll 2 is bounded away from zero if k K4 is large enough,
contradicting the hypothesis. Hence, limkeg3/Zk OO. Therefore, we may write

k Xk --(Hk + II)-Ig(xk)
II- (U + kI)-lg(xk)[I

--(Uk/k "- I)-lg(xk)

and the thesis follows for the subsequence indexed by K3 using boundedness of {Hk }
and limeg3/z oo. El

Now we are able to prove the following global convergence theorem. Note that
we do not assume that V2f(xk) exists, much less that Hk approximates it well.

THEOREM 2.4. Assume that [[H[[<_ B for k 0, 1, 2,..., xo f and xk+, k
0, 1, 2,... is obtained from Algorithm 2.1. Let x, be a limit point of {xk}. Then
(,) =o.

Proof. Assume that x, , x, limkegl Xk, and g(x,) O. We consider two
possibilities:

(a) Some subsequence of (llx+ xll}eK1 is bounded away from 0.
(b) limkegl [[Xk-I Xk 0.
Using Lemma 3.2 of Powell and Yuan [10], we see that

g(x)T(xa+ X) < IIg(x)IIUlIX+I XII <
211Hll IIx+l -xll / IIg(x)ll

338 J.E. DENNIS, JR. ET AL.

Hence, if (a) holds, using (2) and the continuity of V: at x., we see that limk-o :(Xk)
--CX). This contradicts the assumption x. E f.

Therefore, it remains to analyze (b). Since, in Algorithm 2.1, Xk+l is set to
which is chosen such that 112- Xkll >_ /2Ak/2, it follows that limkegl Ak 0. We
consider two possibilities:

(i) For some K2 c K1, limkeg. /k 0.
(ii) For every K3 C K1, limkeg3 Ak : 0.
If (i) holds, then we can assume for k E K2 that A1 (Hk) > 0 since otherwise Ak

A. Thus /k is set in Algorithm 2.1 to be the minimum of A and
and it follows that limkeg2]l- H+kg(Xk)]l 0. But

Hence limkeK, g(xk) 0 and so, g(x,) 0, contradicting the initial assumption.
Now consider (ii). It means that the sequence {Ak}keK1 is bounded away from

zero. Therefore the first trial point of the algorithm failed to satisfy (2). This is
so because Ak /k, the first pass through the DO loop at each iteration, and our
working hypothesis at this point is limkeK Ak 0. Thus, for all iterations indexed
by K1, there is at least one failed trial point. Let us set the sequence of last failed
trials to {’,k}kK. We have that each 2k satisfies

It follows that

and

lim IIk Xkll 0
kK

Hence, using the Mean Value Theorem,

g(xk Xk))T Xk) > -- llg(Xk)ll

Now we are under the hypotheses of Lemma 2.3. So, taking limits on both sides
of (10) for a suitable subsequence, we obtain

g(x.)T (-g(x*) _> --a"g(x,)’]

But this inequality implies that a >_ 1, contradicting the initial hypothesis. Therefore
the theorem is proved. D

3. Updating Hk. In 2, we used a uniform bound on {llHkll} to obtain a global
convergence result for Algorithm 2.1. Algorithm 3.1 proposes a way of updating Hk
that under reasonable conditions preserves uniform boundedness of {[IHk[I} and, in
addition, incorporates second-order information using secant approximations.

ALGORITHM 3.1. Let 7-/ C IR’n be a family of symmetric matrices uniformly
bounded in norm by M. Let q be a positive integer, (0,) be a small number,
and T c IR’n be the set of tridiagonal symmetric matrices. We now particularize
Algorithm 2.1 by specifying that if k / 1 0 (mod q), then we choose Hk+l
Otherwise, we assume that Hk QcTQ, Tk T, Qk orthogonal, and we obtain

Hk+l by the following steps:

CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 339

Step 1. Let s sk Q(xk+ xk). If s does not satisfy

(11) V/ >ll,ll<v/4+8i t_ 8i_1

1,...,n- 1, replace s by any vector satisfying (11) with

Ilxk+l--xkll and xk+Qks e . We used s
in our implementation.

Step 2. Define y Yk Q[g(xk +Qks)--g(xk)]. (Observe that xk +Qks Xk+l
if s was not replaced at Step 1.)

Step 3. Obtain Tk+ as the solution of the problem

Ts--y
TET

TStep 4. Hk+l Qk+lTk+lQk+l with Qk+l Qk. (Of course, neither Hk nor

Hk+l need to be formed.)

The solution of (3) may be obtained using the least-change theory for updates by
an algorithm which will be described in 5. See, for example, Dennis and Schnabel [3,
Chap. 7]. The rest of this section is essentially to prove that the sequence of matrices
obtained using Algorithms 2.1 and 3.1 is bounded, and so, that the global convergence
Theorem 2.2 holds. Some auxiliary lemmas will be necessary.

2 2LEMMA 3.1. Let s be such that s + si+ > O; i- 1,-..,n- 1. Define E

IR’(2n-) as:

(12)
81

82 sa/
82/vr 83 84/x/

8n--1/x/ 8n

Then rank A n.

Proof. Form /T and note that it is symmetric and strictly diagonally dom-
inant. D

COROLLARY 3.1. Under condition (11), if s O, rank ft n.

Proof. The proof is trivial using Lemma 3.1. E]

Under condition (11) and s : 0, either Is1[_> (O/x/)[Is[[or [Sn[>_ (O/x/)l[sll. Let
us suppose, without loss of generality, that ISnl >_ (O/x/)llsll (otherwise the following
lemma may be reformulated in an obvious way).

LEMMA 3.2. Let i be the angle between the row i + 1 of 4 and the subspace
ad th t o. An 0 ad (1). Thn sinZl -> (/),

i-- 1,...,n- 1.

Proof. Consider S, the subspace of IR(2n-1) formed by the vectors of the form"

(ZlZ2’’’Z2i0’’’0)T

Obviously, Si c S, i- 1,..., n- 1.

340 J.E. DENNIS, JR. ET AL.

Then, sin flil> sin flil.Let/ be the angle between the row i + 1 of A and si.

Now if i _< n- 2, then

V/8 + 8-t_1/2

(8i_1/2) nc 8 q-

2 12 2,, + + 0

Si_ -t- 8 -t- Si+

If n- 1, then

ISnl _> OII*II/x/ Isin/’n-ll--
V/(82n_1/2)-it- 82n I1 11

so, sin Bil _>l sin ZI _> i- 1,..., n- 1. D
LEMMA 3.3. The product YI n--1Hi=I sin/il is invariant under permutations of

the rows of A.
Proof. Set (/) such that ft. is nonsingular. Suppose further that the rows

of H are orthogonal and span the orthogonal complement to the rows of .. Thus
(see [6])

(13) H=
det AI
W

where W is the product of the norms of the rows of A. But the right-hand side of
(13) is invariant under permutations of the rows of A (and hence, of A), so the same
happens with H. r?

LEMMA 3.4. Let 7i be the angle between the row i of ft and the subspace spanned
by the other rows of ft. Then lsin’Ti >_ I-[>- on-12(1-n)/2"

Proof. Fix the row and permute the rows of . so that row becomes the last
one. So sinil sinfln_ll _> 1-I I-[sinflil-> (0/%) n-1. [

LEMMA 3.5. Let s 0 and fit+ fiT (.T)-. Then fi+ IR(en-1)x. Let

/rl /(14) -+ (hi,..., hn), ft Then IIhll <_

rn

2(n-1)/2

Proof. Each column hi of .+ is a linear combination of rl,.’., rn. Moreover
hTiri 1 and hTirj 0 if j 7 i. Let S be the subspace spanned by {rl,..., rn} (and
hence, by {hi,..., hn}). Each ri may be expressed as

ri Vi -- Wiwhere vi is the projection of ri on the subspace spanned by {rj,j 7 i} and wi is the
projection of ri into the line spanned by hi. So

h/T hi hi(15) wi iihllr iihll- iihll 2

CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 341

But

(16) sinTi= Ilwill Ilwill > (0)
n--1

Thus, by (15) and (16), 1/llhill Ilrill >_ (0/xfl) n-1 and hence,

But Ilrill >_ OIIsll, so

(0/) 1-n

2(n-1)/2
(17) Ilhl[<

LEMMa 3.6. II s 0, then for any norm I" fized in IR(2n-1)xn, there exists a
constant K1 K1 (1" I, O, n) such that I +1 _< KI/IIII.

Pro@ The proof is a consequence of (17).
The results above are going to be used in a "vector formulation of the least-change

update." Let us write

(18) T

al
k blk

blk a2
k

an

(19) T

al bl
bl a2

The least-change update is the solution of

(0)

52

bn- an

F"
Ts--y
TT

By (18) and (19), (20) may be formulated as follows:

(21)

(22)

min (al--ak) -- 2(bl-blk)2 + (a2--a2k)2 +... H- 2(bn-l-bkn_l)2 + (an-akn)2

al 81 -t- bls2 yl

bs + a282 + b283 Y2s.t.

bn-18n-1 bnsn Yn

Let us now consider the isomorphism between T and]R2n-1, which maps

al
al bl bl
bl a2 b2 a2

T= .. -t.

bn-1 an bn’-I
an

342 J.E. DENNIS, JR. ET AL.

We write (T) t, (Tk) tk, and so on. Therefore, the problem (21) may be
written in IR2n-1 as"

min lit- tkll2 =_ (t- tk)TG(t- tk) with G

1

such that Akt- y,

81 82
81 82 83

(23) where Ak-- .. ".
and si=(sk)i.

8n--1 8n

By Lemma 3.1, the matrix Ak k(1/2 has full rank, so by straightforward calcula-
tions, the solution of (23) is

g---1/2-t- (Aktk y)(24) tk+l tk ’’k

where Ak is defined in (12) and

(25) .k+ "(AA k Ak)-

So

(26) tk+l tk G-1A(AkG-1A)-I(Aktk y)

Therefore

iit+lll a < i1(i a-1 T -1)tklla m-1/2+Ak (AkG A)-IAk + Yllc;.

But (i- G-1A(AG-1A)-A)t is the solution of

min lit tklla s.t. Akt O,

so II(I -1 TG Ak (AkG-1A)-lAk)tklla <_]ltkllc;. Therefore

(27) Iltk+lllG _< IltkllG + Ila-1/22+-k lla.
NOW,

[[G-1/2 ~+ 1/2Ak Y[[a _< JIG-

II+kYllG Ilylhl nt-’’’ + ynhnllG <_ lYll IlhlllG +""-I-lYnl

But Ilhllla +"" / IIhlla defines a norm in IR(2,-l)x’, so by Lemma 3.6,

glllyll

CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 343

and so

(28) I[G-I/2TkY[[G < K2

Now we are able to prove the main result of this section.
Let

THEOREM 3.7.

Lo {x f(x) <_ f(x0)}.

Assume that Lo is bounded and contained in , f E C2(Q), t
convex, and that for some L >_ O,

(29) [[V2f(x)- V2f(w)[[
_
L[[x- w[[

for all x, w .
Assume that the sequences {Xk} and {Hk} are generated using Algorithms 2.1 and

3.1. Then the sequence {Hk} is bounded by some constant B.
Proof. Since {xk} is generated by Algorithms 2.1 and 3.1,

and Lemma 2.1 implies that [Is[[0 only if {xk} converges to a stationary point in
finitely many steps. Using (29), we have

L
I1 - v f(x) ll < ll ll

Since [[V2f(x)[[is bounded uniformly on L0 by continuity, and since {xk} contained
in no implies that []s[[is uniformly bounded,

L

for a suitably defined constant K3. If k + 1 0 (mod q), then by (27) and (28),

(30)

Hence, by (30),

I[TiF + K2K3 [[T[[+ K2K3 lIH[I + K2K3
()qM + qK2K3.

COROLLARY 3.2. Under the hypothesis of Theorem 3.7, the sequence {xk} is well
defined by Algorithms 2.1 and 3.1, and there is at least one limit point of the sequence.
Every limit point is a stationary point for f.

Proof. The proof follows directly from Theorem 2.4, Theorem 3.7, and the com-
pactness of L0.

4. Local superlinear convergence. In 3, we proved that Algorithm 2.1, with
the approximate Hessian matrices {Hk} chosen by Algorithm 3.1, is globally conver-
gent in the sense that every limit point of the sequence {Xk } must satisfy the first-order
stationary condition. In this section, we will do two things at once by doing a local
analysis of the direct-prediction method associated with the tridiagonal factor update

N Unhappily, the good localmethod. This means that we will take Xk+l Xk + Sk

344 J.E. DENNIS, JR. ET AL.

behavior of this iteration imposes that Hk =-- V2f(xk) if k 0 (mod q). First, we
will prove some strong bounded deterioration results for (Hk which will be crucial to
our global convergence result in 5. Then, almost as a sidelight to the main theme of
this paper, we will prove that the direct-prediction method is locally q-superlinearly
convergent to stationary points at which the Hessian is nonsingular. It will turn out
that this result is also useful in the global analysis of 5.

Let us define the algorithm under consideration in this section as an independent
algorithm.

ALGORITHM 4.1. Assume that x0 E IRn, H0 V2f(x0). Given xk IRn,
Hk]ann, Hk QkTkQ, Qk orthogonal, Tk T, obtain xk+l, Hk+ as follows:

Step 1. xk+ xk H+k Vf(x).
Step 2. If k + 1 0 (mod q), set Hk+l V2f(xk+l). Else, obtain Hk+ using

Algorithm 3.1.

Let us state the assumptions on f which allow us to obtain a local superlinear
convergence result.

ASSUMPTION 4.1. Let f C2(t), t an open and convex set. We assume that
x, Ft is such that Vf(x,) is symmetric and nonsingular. Further, we assume that
(29) holds for all x, w E t.

Let PT denote the Frobenius norm projection operator onto the subspace of sym-
metric tridiagonal matrices T.

LEMMA 4.1. Assume that k =_ 0 (mod q) and that xk is well defined. Then,

IIPT(QkTV2f(x,)Qk) QkTV2f(x,)QkllF <_ 2x/- LIIxk x,

Proof.

IIPr(QrV:f(x,)Q) QVVf(x,)Q
< IIp(QVVf(x,)Q)
+ IIQVf()Q QVf(x,)Q].

But QkTV2f(xk)Qk T. Therefore,

Ip(QTV2f(x,)Q) QkTv2f(x)QlF
v(rvf(x,)q) pv(qrv(x)q)
[QkTV2f(x,)Q QTv2f(xk)Qk[F.

Hence, by (29),

pr(QVVf(x,)Q) Qrv:(x,)Q, eilQ(Vf(x) vf(x,))Qi
e]Qr(v(x) v:f(x,))Q]
e I[v(x) v:/(x.)l

nlx x..
om now on, let us use the notation e xt- x,]], g 0, 1, 2,....
LEMMA 4.2. Assume that k 0 (mod q), 0 j q- 1, and that xk+j, Xk+y+l,

Xk+y + Sk+j are well defined and belong to . Then,

+ -[Pr(QV:f(x,)Q)]+ nl+l(+ +++ +)

CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 345

Proof.

(31) IlYk+j [Pr(QkTv2f(x,)Qk)]sk+jll <--IlYk+Y- QkTv2f(x.)Qksk+ill
+ IIPT(QkTv2f(x,)Qk)- QkTV2f(x.)Qkll

But, by (29), and the definition of Yk+j,

(32) IIg(x+ + Qs+) g(x+) V:f(x,)Qs+]]
L

-2

Therefore, by (31), (32), and Lemma 4.1,

]]y+ -[P(QkTVef(x,)Q)]s+]
L

-2

Now, even if sk+y xk+j+ xk+, they are equal in norm, so

]x+ Q+ x,] + +]+ + + x++
2ek+ + ek++

Therefore,

IlY+ -[P(QTVef(x.)Q)]s+ylI
L< --118k+jll(2ek+j -)F (k+j+l) -- 2V/- nllsk+jlle

--2

v),

as we wanted to prove.
The following lemma states a Bounded Deterioration Principle (see [1) for the

matrices T.
LEMMA 4.3. Assume that k 0 (mod q), 0 j q-2, ad that ak+j, ak+j+l,

X+ + Qsa+j are well defined and belong to . Then,

IITk+j+l PT(QkTV2f(x.)Qk)IIF

Proof. For matrices T e T, remember that IITIIF II(I)(T)IIc, where (I) is the
isomorphism which maps T into]a2n-1. The matrices

Tk+j+l PT(QkTv2f(x,)Qk)

and

T+j PT(QTVf(x,)Q)

belong to T. So, using the convention t (I)(T), we are going to prove the thesis in
2n--1 using I1" IIC-

346 J.E. DENNIS, JR. ET AL.

By (26) we have, writing y Yk+j,

t, (PT(QkTV2f(x,)Qk)),
tk+j+l tk+j G-1A+j(Ak+j -1 TG Ak+j)- (Ak+tk+--y).

Ttk+j+l t, tk+j t G- Ak+j(Ak+jG-1 T -1Ak+y) (Ak+ytk+j y)
Ttk+j $, G- Ak+j(Ak+jG-1Ak+j -1

(A+itc+j Ak+t, + Ak+jt, y)
--1 T (Ak+j -1 T[I- G Ak+ G Ak+)-lAk+y](tk+j t,)

T -1+ G-Ak+T (A+iG- Ak+) (y Ak+t,).
Hence,

]ta++l Ak+
T+ IIG- Aa+i(Ak+jG-1 T -1Ak+j) (Y-- Ak+yt,)iv

A+ A+) (y-

Therefore, using the arguments which lead to (28), we have:

l]- A+,

But A+jt, P(QTV2f(x,)Qk)sk+j. Thus, the desired result follows using
Lemma 4.2.

LEMMA 4.4. Assume that k 0 (mod q), 0 j q-2, and that xk+j, Xk+j+,

Xk+j + QkSk+j are well defined and belong to . Then,

iiT++ QvV:f(x,)Qi.

Proof. By Lemmas 4.1 and 4.3, we have:_
]lTk+j+i PT(QkTV2f(x,)Qk)I]F

+ IIPT(QTVeI(x,)Q)
<_ IITa+y PT(QaTveI(x,)Qk)I]F

2x/-d 2Lek+ K2L(ek+j + -ek+j+l + ek)

and the desired result follows trivially from this inequality.
LEMMA 4.5. Assume the hypotheses of the previous lemmas. Then,

(33) IITk QkTV2f(x,)QklIF <_ /Lek
and for 0 <_ j <_ q- 2

[[Tk+j+l QTvef(x,)QIIF

)<_ x/ Lek + L K2ek+v + -ek+v+l + 2v (K2 + l)ek
’-0

CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 347

Proof.

Thus the desired result follows straightforwardly from the previous inequality and
Lemma 4.4. B

LEMMA 4.6. Assume the hypotheses of the previous lemmas, and remember that

He QeTeQ for- 1, 2,....

Then, for some l >- 0

Ilnk-Fy/ V2f(x,)II r E ek+v
\-0

Proof. By Lemma 4.5,

IIHk-Fy-F V2f(x,)ll IIQk(Tk++X QkTv2f(x,)Qk)QkTII
<_ IITk+j+l QkTvef(x,)Qkll
_< IIT++I QTVef(x,)Q]]F

_< Lek + L Kek+, + -ek+,+l + 2/ (K + 1)ek
’--0

and the result follows directly. E]

THEOREM 4.7. There exists > 0 such that for any xo with Ilxo x, <- , the
sequence {xe} generated by Algorithm 4.1 converges q-superlinearly to x,. Further-
more, if eql[V2fjl[<_ - < 1, then the sequence {IIH-IlI} is uniformly bounded by
the constant

IIV2f(x,)-X

independent of the particular choice of xo.
Proof. Algorithm 4.1 is locally linearly convergent and {IIH-II} is uniformly

bounded if the matrices Hk remain in a suitable neighborhood of V2f(x,). (See [3,
Chap. 7].) This condition is easily verified using Lemma 4.6 if x0 is close enough to
x,. The reason this condition and the bound on the inverses can be independent of
the particular x0 is that Algorithm 4.1 always takes H0 V2f(x0). In particular,

IIH- x7f(x,)ll _< eq

and so the bound BN follows from the Banach lemma (see [3]). Now, using linear
convergence and Lemma 4.6, we see that limk- Hk V2f(x,). This implies that
convergence is q-superlinear (see [1]). V1

348 J.E. DENNIS, JR. ET AL.

5. Global superlinear convergence. In 3, we proved that Algorithm 2.1,
with the approximate Hessian matrices (Hk} chosen by Algorithm 3.1, is globally
convergent in the sense that every limit point of the sequence (xk} is a first-order
stationary point. In 4, we proved that if we require the Hessian update method to
always choose Hk V2f(xk) every q iterations, then the direct-prediction method is
locally q-superlinearly convergent to stationary points at which the Hessian is nonsin-
gular. In this section, we put all this together. We update the Hessian approximations
as in 4, and we modify Algorithm 2.1 to always try the full quasi-Newton step first
when Hk is positive definite. We then prove that if f is quasi-convex on L0 and
V2f(x,) V2f(x,) is positive definite for some stationary point x,, then from some
point on, the Newton steps satisfy the sufficient decrease condition (2).

ALGORITHM 5.1 Assume that x0 IRn, H0 V2f(x0). Given xk IRn, Hk
]an)<n, Hk QkTkQ, Qk orthogonal, Tk T, obtain {xk+}, {Hk+l} as follows-

Step 1. If Hk is positive definite, then in Algorithm 2.1, first try Xk+l Xk-
H[Vf(xk).

Step 2. If k / 1 0 (mod q), set Hk+l V2f(xk+). Else, obtain Hk+ using
Algorithm 3.1. Return to Step 1.

Now we give our main result. We assume that f is quasi-convex, i.e., that all level
sets of f are convex.

THEOREM 5.1. Let f E C2(), an open and convex set containing Lo, be a
quasi-convex function on Lo. Assume that Lo is bounded, and that some stationary
point x, is such that V2f(x,) is positive definite. Further, assume that the
Lipschitz condition on the Hessian given by (29) holds for all x, w . Then, there
exists some integer kN such that Algorithm 5.1 takes #k 0 for k >_ kN, and {xk}
converges q-superlinearly to x,, which is the global minimizer of f.

Proof. Since f is quasi-convex and has a stationary point x, at which V2f(x,) is
positive definite, x, must be the unique stationary point for f on Lo, and the global
minimizer of f.

Since Lo is bounded and V2f is continuous, we can take

7-l-- (V2f(x) x e Lo).

Thus from Corollary 3.2, we have that {xk } is well defined and that some subsequence
converges to a stationary point, which must then be x,. Furthermore, there is some
B >_ IIHkll uniformly in k. Since x, is the only possible limit point of {Xk}, the
compactness of L0 ensures that limk Xk x,. In particular, the subsequence of the
iterates indexed by k-0 (mod q) converges to x,.

The key to the proof will be to show below that eventually, starting at one of
the k 0(mod q) iterates, Algorithm 5.1 reduces to Algorithm 4.1, i.e., the step
N H[gk eventually satisfies (2).8k

Let e be small enough that Algorithm 4.1 is locally q-linearly convergent to x,
from any x0

N with IIx- x, < . Now, let BN be as in Theorem 4.7. Choose e
even smaller, if necessary, to make 1 2 > (q + L)BNe. The standard approach to
proving Theorem 4.7 makes e be chosen so that if V2f(x,) is positive definite, then
so are allHv for IlXoN-x,II < . Choose kN-- 0 (modq) so that ifk >_ kN, then

There are still a couple of small points to deal with before we start to chain
Ninequalities. First, since Hk is positive definite, we have g[sk < 0, and

Hk -1 /2gk)TH gk--(gk gk
T HI /2gk <_ II(Hk) II(H-1 1/2

CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 349

N N NFurthermore, xk xk + sk are both within e of x,. Thus, any convex combination is
N Nalso, and so for any e (0, 1), Ilxk + sk x,

Now the proof that g{xk } {Xk} for k > kN is by Taylor’s theorem and all
these partial results. It can be done by induction, but we give only the main step
here. Assume that the sequences are identical from the kNth to the gth iterate. Then
Ht H_kN, and -T N

_
_I (sT)T[v2f(x

< + [n + q,] ll 7
1/2TNg S 1/2 [L + qrl]eBygs7

1 T N__ I(1__20 T N T_< g s g s g s
since H is positive definite and so gs < O.

6. Implementation.
6.1. Implementation of steps 4 and 5 of Algorithm 2.1. Considering

sk(#)----(Hk + #I)-lg(xk) with

_> # max(0,-A +
where Al is the least eigenvalue of Hk and 10-5 in the computer implementation,
we choose

Xk-I Xk 2V 8k(,),
where #, is an approximate solution to the problem

(I) argmin f(xk + Sk(#)), #

_
#.

In order to solve this problem it is necessary to follow the curvilinear path Sk(#),
_> #, and therefore to find the solution of the linear system of equations

(Hk + #I)sk(#) --g(Xk)

for several trial values of #. These computations are carried out in O(n) operations
because the decomposition Hk QkTkQkT is available. This is because we can write
the equivalent system

(T + pI),k(p) --t(Xk),
where k (#) QkTsk (#), (Xk) QkTg(xk).

The least eigenvalue of Tk is obtained by means of the IMSL routine EQRT1S,
and the solution of the tridiagonal systems by the LINPACK routine SGTSL.

For solving (I) we modified the routine GSRCH originally written by Powell for
MINPACK [10].

The new iterate xk+ is accepted (step 5 of Algorithm 2.1) only if the condition

f(xk+l)

_
f(xk) / ag(xk)T(xk+ Xk)

is satisfied with a 10-a. However, we may continue searching even if the Newton
step satisfies this criterion.

We decide that I2(xk, Hk) is not empty if the angle between gk and vk) is between
85 degrees and 95 degrees.

350 J.E. DENNIS, JR. ET AL.

6.2. Choosing the sequence Bk. For those iterations in which Hk V2f(xk),
the decomposition is computed with the IMSL routines EHOUSS and EHOBS, except
when the Hessian itself is tridiagonal.

The stopping condition is (7.2.5) of Dennis and Schnabel [3, p. 160]

max {,Vf(xk),max(.x,,, 1)) < eps

(eps 10-15 in the computer implementation).

6.3. Efficiency. The computer program allows the user to compute the full de-
composition every q iterations (we use q 3) or to decide when to do so in between
automatically, depending upon the following notion of efficiency of an iteration. We
define efficiency of the kth iteration as

log rkEk

where

f. is an estimation of f(x.), fk+l f(xk+l), and tk is the CPU time required by the
kth iteration.

Assuming rk remains constant until convergence (denoted by r hereafter), the
required number of iterations NITER is approximately given by

rNITER eps.

Therefore, the total CPU time T will be

log epsT
log epstk
log r Ek

In order to decide what Hk+l will be (that is, gk/ V2f(Xk+l) or gk+
QkTk+IQkT), we use Ek as follows. Let k0 be the last iteration such that Bo

V2f(Xko). If k0 k (mod q) or if Eko > Ek, then Hk+l V2f(Xk+l). Otherwise
H+ QT+IQ.

7. Numerical experience. The class of algorithms described in the previous
sections form the theoretical basis of subroutine TRIDI.

The decision about when [’2 is not empty is taken according to a user-supplied
parameter defining a maximum deviation in degrees with respect to orthogonality.
This parameter was defined as five degrees for the numerical experiments.

7.1. Test problems. In order to demonstrate the effectiveness of the new

method, numerical results were obtained not only for well-known test examples ap-
pearing in the literature but also for some new functions. For brevity, the full details
of the test problems are not given here except for the following new ones:

TEST FUNCTION PRUEBA.

f(x) a(1)/x(1) + a(2)/x(2) + a(3)/x(3) + 0.5(x, Cx) + (b,x}

where b(i)=l, x 10-6,a(i)-(i+4),1. x 103 for i-1,...,3,aisasdefinedin
Table 1, and

CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 351

1/3 1/10 1/10
C= 1/10 1/4 1/10

/0 /0 /
The underlying idea is that if a starting point is close to the origin, the "wavy

behavior" of the function leads to a very small trust region, a phenomenon which
leads to a rather inefficient performance of the classical method. This shortcoming
does not exist for the new algorithm because of the curvilinear search, which can be
considered as a way of computing an optimal radius in each iteration.

TEST FUNCTION SNLLSQ I. Generate data (j, y(j)) for j 1,.-., 15 from

y(j) a(1) j**xopt(1) + a(2) j**xopt(2) + a(3) j**xopt(3)

with a(1)= 3, a(2)- 3.1, a(3)= 0.7, xopt(].)- 1.5, xopt(2)= 2.5, xopt(3)--2.5.
Now with the given a, recover x by a least-squares fit to this data.
TEST FUNCTION SNLLSQ II. Generate data (j, y(j)) for j 1,..-, 15 from

y(j) a(1) sin(j xopt(1)) + a(2) sin(j xopt(2)) + a(3) sin(j xopt(3))

with a(i), xopt(i), i= 1,..., 3 as in SNLLSQ I. Again, recover x by least squares.
TEST FUNCTION SNLLSQ III. Generate data (j, y(j)) for j 1,..-, 30 from

y(j) a(1) cos(j xopt(1)) + a(2) cos(j xopt(2)) + a(3) cos(j xopt(3))

with a(1)= 10, a(2)= 20, a(3)- 30, xopt(1)- 0.1, xopt(2)= 0.2, xopt(3)- o.3.
Recover x by least squares.
TEST FUNCTION SNLLSQ IV. Generate data (j, y(j)) for j 1,-.-, 45 from

y(j) a(1) exp(j xopt(1)) + a(2) exp(j xopt(2)) + a(3) exp(j xopt(3))

with a(1)= 1, a(2)= 2, a(3)= 3, xopt(1)=-0.1, xopt(2)=-0.2, xopt(3)=-0.3.
Now recover x by least squares.
From here on we use the notation tfn.n.cn.sp, where tfn is the test function

number, n the number of variables, cn the case number, and sp the identification of
the starting point.

Table 1 defines the problems.

TABLE

tfn Name n cn sp

1 Prueba
1

3 1: a(i)= 1.d- 1
3 2: a(1) 1.d3

a(2) a(3) 1.d0
3 3: a(1) a(2) a(3) 1.dl

1: (1.d- 3, 1.d- 3, 1.d- 3)
2: (0.25, 0.25, 0.25)

2 Penalty 4 1
8 1

1: x(j) j

Variable
Dimensioned
[]

4 1

5
8
12

1: x(j) 1 j/n

352 J.E. DENNIS, JR. ET AL.

tfn Name

TABLE 1
continued)

Rosenbrock
[]

ca

4
8
10
12

sp

Chained
Rosenbrock
[]

25

Powell
Extended
[]

1: x(2j- 1) -1.2, x(2j) 1

1: (j)=-1

8
240
400

Brown-Dennis

Gaussian
[]

1: x(4j 3) 3, x(4j 2) -1

(4j)= 0, (4j) 1

4 1 (25, 5,-5,)

Trigonometric 25
[] 0

100
2O0

3 1 1: (0.4, 1, O)

1: x(j)- 1

16 Pseudo Penalty 50 1 1: x(j) --0
[]

17 SNLLSQ 3 1 1: x(j) 3.50 xopt(j)

18 SNLLSQ II 3 1 1: x(j) 1.15 xopt(j)

19 SNLLSQ III 3 1 1: x(j) 1.50 xopt(j)

20 SNLLSQ IV 3 1 1: x(j) 3.00 xopt(j)

15 Dennis-Marwil II 5 1 1: x(j) -1
[e]

14 Dennis-Marwil 10 1: rl 1; r2 n 1: x(j) -1
[2] kl=k3=l; k2=5

2: rl---- 1;r2-----n
kl--4; k2--k3--1

100 2

13 Biggs Exp 6 6 1 1: (1.2, 1, 1, 1, 1, 1)
[]

12 Box 3 1 1: (0, 10, 20)
[]

11 Wood 4 1 1: (-3,-1,-3,-1)
[]

10 Watson 12 1 1: x(j) 0
[]

CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 353

TABLE 2

Problem NIT FE GE HE T FMIN

1.3.1.1 18 33 19 18 1.00 -.13e + 09
11 12 12 5 0.29 -.13e + 09
13 14 14 4 0.33 -.13e - 09

1.3.1.2 12 14 13 12 1.00 -.13e 09
5 6 6 2 0.24 -.13e + 09
5 6 6 2 0.22 -.13e + 09

1.3.2.1 error 6
23 24 24 9 0.09 -.13e -{- 09
22 23 23 8 0.06 -.13e + 09

1.3.2.2 13 26 14 13 1.00 -.13e + 09
8 9 9 3 0.26 13e 09
8 9 9 2 0.24 -.13e -t- 09

1.3.3.1 23 33 24 23 1.00 -.13e + 09
17 18 18 8 0.45 -.13e -+- 09
18 19 19 5 0.45 -.13e 09

1.3.3.2 12 20 13 12 1.00 -.13e + 09
5 6 6 2 0.20 -.13e -+- 09
5 6 6 2 0.19 -.13e -l- 09

2.4.1.1 34 48 35 34 1.00 0.23e 04
11 12 12 5 0.50 0.24e 04
12 13 13 4 0.33 0.24e 04

2.8.1.1 34 43 35 34 1.00 0.54e 04
15 16 16 5 0.88 0.57e 04
17 21 21 6 1.09 0.57e 04

3.4.1.1 10 11 11 10 1.00 0.24e- 27
12 13 13 5 1.10 0.21e- 30
12 13 13 4 1.88 0.78e- 12

3.5.1.1 11 12 12 11 1.00 0.13e- 28
14 15 15 6 3.79 0.27e- 19
14 34 34 4 3.74 0.61e- 17

7.2. Numerical results. Table 2 gives the obtained numerical results using the
notation:
NIT number of iterations
FE number of function evaluations
GE number of gradient evaluations
HE number of Hessian evaluations
T relative CPU time with respect to the IMSL routines
FMIN Computed minimum

For each problem three sets of results are given; the first row corresponds to the
routine DUMIAH (trust region algorithm), the second and third to the new method
with efficiency and without efficiency, respectively. For the last four test problems the
first row corresponds to the results obtained with the routine DUMIDH. Error 6 in
DUMIAH means that five consecutive steps have been taken with the maximum step
length.

The computational tests were carried out in double precision on a Hewlett-
Packard 9000 825S computer using software written in Fortran 77 under the HP-UX
operating system and on an IBM 4361. The reason for using two different computers

354 J.E. DENNIS, JR. ET AL.

TABLE 2
(continued)

Problem NIT FE GE HE T FMIN

3.8.1.1 13 14 14 13 1.00 0.53e- 26
17 18 18 5 4.75 0.22e- 24
16 18 18 6 4.75 0.19e- 16

3.10.1.1 14 15 15 14 1.00 0.18e- 25
18 21 21 5 7.07 0.15e- 14
18 19 19 6 6.13 0.46e- 19

4.4.1.1 23 34 24 23 1.00 0.55e- 20
31 50 49 14 1.16 0.39e- 31
39 72 71 10 1.45 0.77e- 21

4.8.1.1 23 34 24 23 1.00 0.11e- 19
35 63 61 16 1.85 0.29e- 27
42 91 88 11 2.21 0.34e- 23

4.10.1.1 23 34 24 23 1.00 0.14e- 19
36 75 73 12 1.68 0.28e 11
36 75 73 12 1.46 0.23e 11

4.12.1.1 23 34 24 23 1.00 0.16e- 19
38 87 84 13 1.80 0.18e- 15
38 87 84 13 1.78 0.18e- 15

5.25.1.1 15 19 16 15 1.00 0.14e- 13
19 51 49 7 0.62 0.13e- 15
19 51 49 7 0.56 0.13e- 15

6.4.1.1 15 17 16 15 1.00 0.46e 08
19 20 20 7 1.10 0.46e 08
19 20 20 7 1.00 0.47e 08

6.8.1.1 15 17 16 15 1.00 0.92e 08
22 27 27 8 1.58 0.63e 08
22 27 27 8 1.68 0.63e 08

6.240.1.1 15 17 16 15 1.00 0.27e 06
23 38 39 6 0.39 0.93e 06
20 39 40 7 0.47 0.19e 05

6.400.1.1 15 17 16 15 1.00 0.45e 06
23 36 37 6 0.33 0.16e 05

was mainly that the efficiency idea is quite sensitive to the precision with which the
CPU time is measured. Due to the fact that timing routines like the one provided
in the IMSL Library or others available for UNIX systems do not fulfill the accuracy
requirements in the sense that different runs of the same problem may give unaccept-
able differences for our purposes, some of the small-size problems were run on an IBM
computer for which the staff of the University of LaPlata Computer Center wrote a
very precise assembler routine for measuring CPU time. For several reasons, it was
not feasible to run all examples on that computer, so most of the results are from
the HP machine. In order to normalize comparisons, all results are given relative to
the CPU time required by the IMSL optimization routines except in the examples
in which they failed to converge properly. All comparisons of the new method have
been made against the trust regions algorithm as implemented in subroutine DU-
MIAH of the IMSL Library (version 1.0, April 1987), with the only exception being
the separable nonlinear least squares problems for which subroutine DUMIDH was

CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 355

TABLE 2
(continued)

Problem NIT FE GE HE T FMIN

7.4.1.1 8 10 9 8 1.00 0.86e + 05
9 16 16 5 1.26 0.86e + 05
13 19 19 4 1.39 0.86e + 05

8.3.1.1 1 4 2 1 1.00 O.lle 07
2 3 3 1 0.41 0.11e 07
2 3 3 1 0.47 0.11e 07

9.25.1.1 6 20 7 6 1.00 --0.75e 04
9 22 22 3 0.94 --0.75e -{- 04
9 22 22 3 0.94 --0.75e + 04

9.50.1.1 8 26 9 8 1.00 -0.31e + (5
13 16 15 6 0.90 -0.31e + 05
17 28 27 5 0.91 -0.31e T 05

9.100.1.1 17 39 18 17 1.00 -0.12e -}- 06
20 45 45 7 0.68 --0.12e T 06
20 45 45 7 0.58 --0.12e -t- 06

9.200.1.1 23 43 64 35 1.00 -0.50e T 06
22 43 43 8 0.70 -0.50e T 06
22 43 43 8 0.72 --0.50e - 06

10.12.1.1 12 26 13 12 1.00 0.22e 07
22 52 48 8 0.97 0.23e 07
22 52 48 8 0.85 0.22e 07

11.4.1.1 12 26 13 12 1.00 0.47e 09
12 59 56 7 0.76 0.49e 07
12 61 57 8 1.03 0.15e 07

12.3.1.1 7 14 8 7 1.00 0.54e- 16
10 14 14 4 1.00 0.14e- 11
10 14 14 4 0.94 0.14e- 11

13.6.1.1 29 60 30 29 1.00 0.11e- 11
33 52 46 13 0.77 0.13e- 12
53 85 77 14 1.19 0.36e- 12

14.10.1.1 12 23 13 12 1.00 0.29e- 15
1 7 6 1 0.76 0.23e- 21
1 7 6 1 0.76 0.23e 21

14.100.2.1 17 37 18 17 1.00 0.81e- 15
1 6 6 1 0.16 0.71e- 25
1 6 6 1 0.16 0.71e- 25

15.10.2.1 12 23 13 12 0.52 0.17e- 15
1 10 10 1 0.19 0.38e- 22
1 10 10 1 0.15 0.38e- 22

15.5.1.1 4 6 5 4 1.00 0.24e- 13
5 6 6 2 1.00 0.67e- 12
5 6 6 2 1.01 0.67e- 12

16.50.1.1 100 111 101 100 1.00 0.23e 03
27 73 70 8 0.20 0.23e 03
35 87 86 9 0.20 0.23e 03

356 J.E. DENNIS, JR. ET AL.

TABLE 2
(continued)

Problem

17.3.1.1

18.3.1.1

19.3.1.1

20.3.1.1

NIT FE GE HE T

7 78 29 0 1.73
64 182 237 0 5.91
56 140 194 0 4.45

divergence

FMIN

0.70e + 02
0.33e- 18
0.35e- 12

13 35 46 0 0.72 0.15e- 21
16 36 54 0 0.87 0.92e 25

26 84 105 0 2.97 0.42e- 18
31 37 64 0 1.61 0.33e- 18
31 39 72 0 1.54 0.42e- 22

4 19 17 0 0.92 0.17e 01
31 59 90 0 3.08 0.33e 09
29 59 88 0 2.93 0.93e 07

used because a finite-difference Hessian was required.
In the following nonlinear least squares problems the absolute CPU time is given

because of the poor performance of the trust-region algorithm, which led to divergence
in one example, a large number of function evaluations in another, and to a very high
functional value in the third.

The test examples show the new algorithm to be more robust (in fact, no example
of divergence has been found) than the trust-region method, and that its efficiency
tends to increase with the number of variables. This is so because of the savings in
Hessian evaluations, and in spite of the CPU time spent on the computation of the
least eigenvalue of the tridiagonal factor, which is relatively more important in small
size problems.

7.3. Comparisons with not updating. In Table 3 are some examples to show
that our update is better than if we kept the Hessian constant for q iterations. In
particular, we compare not updating (we will call this method HC) against the method
obtained updating the Hessian but without the test of 6.3 (WE without efficiency).

The results of these tests convince us that our updating scheme is worthwhile.
This is true despite the fact that no stronger convergence result holds for our updating
scheme than for not updating.

Acknowledgments. The authors wish to thank Ms. Laura Carcione for pro-
gramming help and for generating the test results.

CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 357

TABLE 3

Problem NIT FE GE HE T FMIN q Method
1.3.2.1 22 23 23 8 1.00 -0.13e + 9 4 WE

40 41 41 14 1.39 -0.13e + 9 4 HC
21 22 22 4 1.00 -0.13e + 9 6 WE
63 64 64 11 1.73 -0.13e + 9 6 HC
31 32 32 4 1.00 -0.13e + 9 10 WE
91 92 92 10 1.62 -0.13e + 9 10 HC

2.8.1.1 17 21 21 6 1.00 +0.57e 4 4 WE
21 22 21 7 1.20 +0.57e 4 4 HC
15 33 32 3 1.00 +0.57e 4 6 WE
31 35 34 6 1.40 +0.57e 4 6 HC
16 33 32 2 1.00 +0.57e 4 10 WE
41 43 42 5 1.51 +0.57e 4 10 HC

10.12.1.1 22 52 48 8 1.00 +0.22e- 7 4 WE
51 61 58 17 2.31 +0.43e- 7 4 HC
37 98 92 7 1.00 +0.24e- 7 6 WE
72 177 159 12 1.66 +0.42e 7 6 HC
51 108 102 6 1.00 +0.43e- 7 10 WE
96 260 232 10 1.69 +0.43e- 7 10 HC

16.50.1.1 35 87 86 9 1.00 +0.23e + 3 4 WE
30 127 124 8 0.88 +0.23e + 3 4 HC
31 66 63 6 1.00 +0.23e + 3 6 WE
51 184 183 9 1.47 +0.23e + 3 6 HC
25 52 49 3 1.00 +0.23e + 3 10 HC
49 162 161 5 1.47 +0.23e + 3 10 HC

REFERENCES

[1] C. G. BROYDEN, J. E. DENNIS, JR., AND J. J. MOR, On the local and superlinear convergence
of quasi-Newton methods, IMA J. Appl. Math., 12 (1973), pp. 223-246.

[2] J. E. DENNIS, JR. AND E. S. MARWIL, Direct secant updates of matrix factorizations, Math.
Comp., 38 (1982), pp. 459-474.

[3] J. E. DENNIS, JR. AND R. B. SCHNABEL, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983. Russian edition: Mir
Publishing Office, Moscow, 1988, O. Burdakov, trans.

[4] D. M. GAY, Computing optimal locally constrained steps, SIAM J. Sci. Statist. Comput., 2
(S), . S-I.

[5] J. M. MARTfNEZ, A new family of quasi-Newton methods for nonlinear equations with direct
secant updates of matrix factorizations, SIAM J. Numer. Anal., 27 (1990) pp. 1034-1049.

[6] On the order of convergence of the Broyden-Gay-Schnabel method, Comm. Math. Univ.
Carol, 19 (1978), pp. 107-118.

[7] , A quasi-Newton method with a new updating for the LDU factorization of the approx-
imate Jacobian, Mat. Apl. Comput., 2 (1983), pp. 131-142.

[8] J. J. MORI AND D. C. SORENSEN, Computing a trust region step, SIAM J. Sci. Statist. Comput.,
4 (1983), pp. 553-572.

[9] A.M. OSTROWSKI, Solution of Equations in Euclidean and Banach Spaces, Academic Press,
New York, 1973.

[10] M. J. D. POWELL AND Y. YUAN, A trust region algorithm for equality constrained optimization,
DAMTP Report 1986/NA2, Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge, U.K., 1986.

[11] H. SCHRAMM AND J. ZOWE, A combination of the bundle approach and the trust region con-

cept, Tech. Report Math. Inst. 1987/20, Mathematisches Institut, University of Bayreuth,
Bayreuth, Germany, 1987.

[12] J.H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, London, 1965.

SIAM J. OPTIMIZATION
Vol. 1, No. 3, pp. 358-372, August 1991

() 1991 Society for Industrial and Applied Mathematics
0O4

A NUMERICAL STUDY OF THE LIMITED MEMORY
BFGS METHOD AND THE TRUNCATED-NEWTON METHOD

FOR LARGE SCALE OPTIMIZATION*

STEPHEN G. NASHt AND JORGE NOCEDAL$

Abstract. This paper examines the numerical performances of two methods for large-scale
optimization: a limited memory quasi-Newton method (L-BFGS), and a discrete truncated-Newton
method (TN). Various ways of classifying test problems are discussed in order to better understand
the types of problems that each algorithm solves well. The L-BFGS and TN methods are also
compared with the Polak-Ribire conjugate gradient method.

Key words, large scale nonlinear optimization, limited memory method, truncated-Newton
method, conjugate-gradient method

AMS(MOS) subject classifications. 65, 49

1. Introduction. Suppose we had to solve an unconstrained optimization prob-
lem,

(1.1) min f(x),

where f is a smooth function, the number of variables n is large, and a subroutine to
evaluate f(x) and Vf(x) is available. What method should we choose?

The answer will depend on how much knowledge we have about the structure
of the objective function, and on the size of the problem. Newton’s method using
sparse matrix estimation techniques [2], and the partitioned quasi-Newton method
of Griewank and Toint [8] can be highly efficient if sufficient information is supplied
to the algorithms. However, it is sometimes too difficult for the user to provide this
information, and efficient and reliable software that supplies it automatically is not
yet available. In addition, the storage and arithmetic costs for these methods can be
prohibitive if the Hessian matrix is not very sparse, or if the problem is extremely
large. In these cases, it is better to use other, less ambitious, algorithms. The limited
memory BFGS method (L-BFGS) and the discrete truncated-Newton method (TN)
represent two classes of methods in this category. They use a low and predictable
amount of storage, and only require the function and gradient values at each iterate--
and no other information about the problem. Both methods have been tested on large
problems and their performance appears to be satisfactory.

In this paper we study the relative performance of L-BFGS and TN on a set
of 45 large test problems with a number of variables ranging from 100 to 10,000.
Our goal is to study the two methods in a controlled environment to highlight the
differences between them and to indicate to the reader the types of problems that are
well suited to each algorithm. Our study is limited by the collection of test problems
we have used; however, we have tried to produce a test set of considerable breadth.
Some test problems arise from applications, whereas others are artificial. Some of the

Received by the editors January 10, 1990; accepted for publication (in revised form) January 8,
1991.

Operations Research and Applied Statistics Department, George Mason University, Fairfax,
Virginia 22030.

Department of Electrical Engineering and Computer Science, Northwestern University,
Evanston, Illinois 60208. This author was supported by the Applied Mathematical Sciences sub-
program of the Office of Energy Research, U.S. Department of Energy, under contract DE-FG02-
87ER25047-A001, and by National Science Foundation grant ASC 87-19583.

358

METHODS FOR LARGE SCALE OPTIMIZATION 359

problems are quadratic or nearly quadratic, while others are highly nonlinear. Some
are nonconvex. There are varying degrees of ill-conditioning. Our conclusions can
only be based on this sample of results, but we hope that they may be more generally
useful--both to readers who solve practical problems, and to readers who develop and
test new algorithms.

Many limited memory methods have been proposed; some resemble the conjugate-
gradient method, and others, the BFGS method. We chose the L-BFGS method
because the studies of Gilbert and Lemarechal [4] and Liu and Nocedal [10] seem
to indicate that it is the best limited memory method available to date. Several
implementations of the truncated-Newton method have also been proposed, but few
codes are as developed as that of Nash [13], which we have chosen for our tests.

Since the authors of the present paper have been closely involved in the devel-
opment of the methods tested here, a careful effort was made to run them in their
best form. This probably also avoided a conscious or unconscious bias towards one
of the methods, while setting the test problems or while interpreting the results. The
two codes used for this study are not new; they have both been refined during the
last years, and neither was especially modified for these runs. We were aware of the
dangers of "tuning" methods to a set of test problems. As a result, the nature of
the computational tests was specified in detail in advance: A single, fixed version of
each algorithm was provided, with all parameters such as tolerances and stopping
conditions chosen beforehand. The set of test problems was also chosen in advance,
and a single run on each test problem was made. (One exception had to be made. On
three runs, the algorithms were unable to satisfy our prespecified convergence toler-
ance. These three problems were run again with a slightly less stringent convergence
tolerance.)

Our results indicate that, for L-BFGS and TN, two properties of the problems
can be used to make an informed decision on the choice of method. These are the
cost of the function-gradient evaluation and the "degree of nonlinearity" of f (this
latter property is defined more precisely in 4).

What follows is a brief outline of the paper. The L-BFGS and TN algorithms
are described in 2; the test problems and numerical results are presented in 3. The
analysis of the test problems, their classification into types, and the correlation of
these types with the two methods, appear in 4 and 5. In the final part of the paper,
we compare the two methods to the Polak-Ribire conjugate-gradient method, to
obtain another measure of their efficiency.

2. Description of the TN and L-BFGS methods. The truncated-Newton
algorithm and the limited memory BFGS method used in this study have already
been published, and hence we will only describe them in outline. The L-BFGS has
been incorporated into the Harwell Library under the name VA15, and is described
by Liu and Nocedal [10]. The TN method is described by Nash [13] (a more pre-
cise description of many parts of the method is in Nash [14]). We now give a brief
description of their major components.

2.1. The truncated-Newton algorithm. At each "outer" iteration, an ap-
proximate solution is found to the Newton equations

(2.1) GkPk --gk,

where gk g(xk) Vf(xk) is the gradient at the kth iteration, and Gk V2f(xk) is
the Hessian. This is done using an "inner" iteration based on a preconditioned linear

360 S. G. NASH AND J. NOCEDAL

conjugate-gradient method [3]. If indefiniteness in the Hessian is detected, the inner
iteration is terminated. The approximate solution Pk (the search direction) is then
used in a linesearch to get a new point Xk+l Xk + okpk where f(xk+l) < f(xk) and
ak > 0. More precisely:

(1) The outer iteration is terminated when

10-6(1

(2) The linesearch was performed using the iteration described by Gill and Mur-
ray [6]. It is based on cubic interpolation, and is terminated when

Ig(xk + ckpk)Tpkl
_

olg(xk)Tpk]

and

f(xk) f(xk + ckp) >_ -ttkpg(x),

with r] 0.25 and # 10-4. An initial guess of ak 1 is used. We refer to
(2.3)-(2.4) as the strong Wolfe conditions.

(3) The conjugate-gradient inner iteration is preconditioned by a scaled two-step
limited memory BFGS method, with Powell’s restarting strategy used to reset
the preconditioner periodically. It is based on formula (6.5) in [6]: Let t be
the iteration where the last restart occurred. Define sl xk--xt, Yl gk--gt,

82 Xk Xk-1, Y2 gk gk-1, and let Dk be a scaling matrix. Then the
approximation H to the Hessian is obtained via

U FBFGS (Dk, Yl, 81), Hk FBFGs(U, Y2, s2),

where FBFGs(A, y, s) represents the formula for the BFGS update initialized
with matrix A, and with vectors y and s corresponding to the change in the
gradient and parameter vectors, respectively. The scaling matrix D used
here is a diagonal approximation to the Hessian obtained by BFGS updating;
see equation (10) in Nash [14]. This reference also describes the preconditioner
in more detail. We note, in particular, that safeguarding is needed to ensure
that the scaling matrix is sufficiently positive definite.

(4) The matrix-vector products required by the inner conjugate-gradient algo-
rithm are obtained by finite differencing [19]. Given a vector v, the product
Gkv is approximated by

+ 5v)

where 5 (l+llx Ile)x, and is the relative machine precision (the "machine
epsilon").

(5) The inner algorithm is normally terminated when

(1- Qk(Pi-)) <0.5
Qk(Pi)

where is the counter for the inner iteration, pi is the ith approximation to
the search direction, and Qk(P) T Tp Gkp+p gk is the value of the quadratic
model. This test is explained further in [16]; it guarantees a linear rate of
convergence for the optimization algorithm, and detects convergence of the

METHODS FOR LARGE SCALE OPTIMIZATION 361

inner iteration. An upper limit of 50 inner iterations is imposed (this limit
was encountered on five of the problems). In addition, the inner algorithm is
terminated whenever nonpositive-definiteness is detected in the Hessian. In
this case, Pk is the iterate obtained prior to detecting indefiniteness.

The truncated-Newton method requires storage for 16 vectors of length n (the
vectors Xk, g(Xk), and 14 work vectors). Each outer iteration consists of three stages:
setup, computation of the search direction, and the linesearch. These costs are listed
in Table 1. The typical cost was obtained by assuming 1 iteration in the linesearch
and 5 inner iterations; these are typical values observed in our test runs.

TABLE 1
Cost of truncated-Newton iteration.

Operation Flops f-g Storage
Setup 81n 0
Search direction iteration 48n 1
Line search iteration 4n 1
Typical cost 325n 6

16n

Here "Flops" denotes additions, multiplications, or divisions, and "f-g" refers to
the number of function-gradient evaluations. The setup is performed once per outer
iteration. The search direction and linesearch iterations are repeated until appropriate
convergence tests are satisfied, although the linesearch is frequently terminated after
only one iteration. Note that each inner iteration requires one gradient evaluation to
estimate the matrix-vector product (2.6). The number of inner iterations can vary
greatly from problem to problem; thus large deviations from this "typical cost" occur
in practice. On the test problems in this paper, where an upper limit of 50 inner
iterations was imposed, the number of inner iterations varied between 1 and 50 with
both extremes achieved.

2.2. The limited memory BFGIS method. We view the L-BFGS method as
an adaptation of the BFGS method to large problems, and the implementation of
both methods is very similar. In the BFGS method, the approximation Hk to the
inverse Hessian matrix of f is updated by

(2.8) Hk+l vTHkVk + pkSkS,
where

(2.9) Yk I T
pkYk8k

sk xk+l xk, y gk+l gk, and Pk 1/y[sk. The search direction is given by

(2.10) Pk+ --Hk+gk+.
We say that Hk+l is obtained by applying one BFGS correction to Hk. In the L-BFGS
method, instead of forming the matrices Hk, we save the vectors sk and Yk that define
them implicitly. We choose a number m of corrections that we wish to store, and at
the kth iteration (with k > m) proceed as follows:

(1) Define the diagonal matrix

T
Yk sk I,(2.11) H Ilyall

where I denotes the identity matrix. This scaling is suggested by Oren and
Spedicato [20].

362 S. G. NASH AND J. NOCEDAL

(2) Obtain Hk by applying m BFGS corrections to H, using the m previous
vectors s and y. Compute the product Hkgk using the recursive formula
described in 4 of [18]. This formula takes advantage of the symmetry of the
BFGS updating to reduce the number of arithmetic operations.

(3) Perform a linesearch along the direction Pk, enforcing the strong Wolfe con-
ditions (2.3)-(2.4), and trying the steplength ck 1 first. We use the values

0.9 and # 10-4. The linesearch is performed by means of the routine
CVSRCH of Mor6 and Thuente [11], which uses cubic interpolation.

(4) The iteration is finished when (2.2) is satisfied.
We note that once m is chosen, the only parameters in the L-BFGS method are

the constants and #. The simple scaling of step 1 contributes significantly to the
efficiency of the method. Our experience indicates that values of m in the range
3 _< m <_ 7 give the best results, and in this paper we use the value m 5. The
L-BFGS method requires 2m(n / 1) / 4n storage locations. Table 2 gives the storage
and computational requirements of the L-BFGS method, assuming m 5. We have
observed that L-BFGS requires an average of 1.2 iterations within the linesearch;
using this value we obtained the typical cost of the iteration, given in Table 2.

TABLE 2
Cost of the limited memory BFGS iteration.

Operation Flops f-g Storage
Setup 4n 0
Search direction computation 33n 0
Linesearch iteration 4n 1
Typical cost 42n 1.2

14n

Except for the first m- 1 iterations, the cost of computing the search direction
in the L-BFGS method is uniform and predictable; it is a function of m and n.

Comparing Tables 1 and 2, we see that the storage requirements of TN and L-
BFGS (with m 5) are very similar, and that the arithmetic costs are drastically
different. TN uses an elaborate, variable-cost iteration with partial second-derivative
information, whereas L-BFGS uses a fixed, low-cost formula requiring no extra deriva-
tive information. In fact, TN contains a limited memory method, since the precon-
ditioner used for the inner iteration is similar to an L-BFGS matrix with m 2,
and several multiplications with this matrix are performed in one iteration. TN and
L-BFGS therefore use different principles to compute search direction. It should be
noted that the routines used for the linesearch are similar: both use cubic interpola-
tion to obtain the strong Wolfe conditions (only the value of the parameter in (2.3)
is different).

3. Numerical tests. All the problems used in our tests have been described
elsewhere; approximately half of them were used by Liu and Nocedal in their study of
L-BFGS [10]. Table 3 lists the problems and the number of variables used for the runs,
and gives references to detailed descriptions of the test functions and starting points.
For test problems 8, 9, and 10, starting point 3 from the reference was used. The
problems are not numbered consecutively because they belong to a larger collection of
test problems to which we may want to refer in future studies. The number of variables
in the test set ranges from 100 to 10,000, and, as will be seen in 4, the problems
form a varied grouping. We verified that, in each run, both methods converged to the
same solution point.

The results of the tests are given in Tables 4 and 5. There "It" and "f-g" record

METHODS FOR LARGE SCALE OPTIMIZATION 363

TABLE 3
List of test functions

Problem Name Reference n
1 Calculus of variations 1 Gill and Murray [5] 100, 200
2 Calculus of variations 2 Gill and Murray [5] 100, 200
3 Calculus of variations 3 Gill and Murray [5] 100, 200
6 Generalized Rosenbrock Mor, Garbow, and Hillstrom [12] 100, 500
8 Penalty 1 Gill and Murray [6] 100, 1000
9 Penalty 2 Gill and Murray [6] 100
10 Penalty 3 Gill and Murray [6] 100, 1000
28 Extended Powell singular Mor, Garbow, and Hillstrom [12] 100, 1000
29 Variably dimensioned Mor, Garbow, and Hillstrom [12] 100, 500
31 Brown almost linear Mor, Garbow, and Hillstrom [12] 100, 200
38 Tridiagonl 1 Buckley and LeNir [1] 100, 1000
39 Linear minimal surface Toint [23] 121, 961
40 Boundary-value problem Toint [23] 100
41 Broyden tridiagonal nonlinear Toint [23] 100
42 Extended ENGVL1 Toint [23] 1000, 10,000
43 Ext. Freudenstein and Roth Toint [23] 100, 1000
45 Wrong extended Wood Toint [23] 100
46(1) Matrix square root (ns 1) Liu and Nocedal [9] 100
46(2) Matrix square root (us 2) Liu and Nocedal [9] 100
47 Sparse matrix square root Liu and Nocedal [9] 100, 1000
48 Extended Rosenbrock Mor, Garbow, and Hillstrom [12] 1000, 10,000
49 Extended Powell Mor, Garbow, and Hillstrom [12] 100, 1000
50 Tridiagonal 2 Toint [23] 100, 1000
51 Trigonometric Mor, Garbow, and Hillstrom [12] 100, 1000
52 Penalty 1 (2nd version) Mor, Garbow, and nillstrom [12] 1000, 10,000
53 INRIA ults0 Gilbert and Lemarchal [4] 403

the iteration count and the number of function-gradient evaluations, respectively.
For the truncated-Newton method, this includes the number of gradient evaluations
of the inner iteration (one gradient computation is considered to be as expensive
as a simultaneous function and gradient evaluation). The times are measured in
seconds and reflect total execution time, including function-gradient evaluations. The
runs were made on one processor of an Encore Multimax computer, using Fortran in
double precision (about 16 decimal digits). An upper bound of 9,999 function-gradient
evaluations was imposed, but was only encountered by L-BFGS on test function one;
this is indicated by a "/" next to the function-gradient count. Most of the test
functions were run for two values of n. Table 4 presents the results for the smaller
dimensions.

Table 5 gives the results for higher dimensions. On three runs, both routines
terminated abnormally in the linesearch (a lower point could not be found). This is
indicated by a "*." In all three cases the algorithms were close to the solution. These
problems were rerun with the convergence tolerance in (2.2) set to 10-5 to make it
less stringent. With this change, these runs were successful and are included in Table
5. As before, "/" indicates that the function evaluation limit was reached.

The results of Tables 4 and 5 are summarized in Table 6. "Much better" is
defined to be a difference of more than 30 percent in results. Differences of less than
10 percent were considered to be insignificant ("even"), as were absolute differences
of less than one second and differences of less than five function-gradient evaluations.
A failure is recorded as "much better" performance for the algorithm that succeeded.

What can we conclude from these results? First, neither algorithm is clearly
superior to the other. Second, the limited-memory BFGS method tends to use fewer

364 S. G. NASH AND J. NOCEDAL

TABLE 4
Smaller test problems. Comparison of the limited memory BFGS method (m 5) with the

truncated-Newton method.

P N
1 100
2 100
3 100
6 100
8 100
9 100
10 100
28 100
29 100
31 100
38 I00
39 121
40 100
41 100
42 1000
43 I00
45 100
() 00
6(2) 00
47 100
48 1000
49 100
5o 100
51 100
52 1000

L-BFGS
It f-g Time

9707 +9999 2380.0
1605 1669 304.0
3095 3216 640.0
257 291 19.0
30 36 2.1
21 23 2.4
82 90 7.1
57 67 3.6
36 37 2.4
24 27 10.7
120 128 8.5
66 70 8.4

2219 2296 188.0
28 31 2.1
15 17 10.2
19 21 1.7
48 56 3.8

362 377 75.9
438 453 92.8
87 95 10.1
38 49 26.4
57 67 3.8
129 133 9.5
53 60 8.9
5 6 2.3

TN
It f-g Time
28 466 105.0
27 242 41.4
45 325 60.8
78 683 35.3
4 26 0.8
8 48 4.4

20 107 7.3
14 70 3.0
9 42 1.3
14 101 38.5
18 77 4.4
18 187 19.6
55 2091 146.0
14 77 4.7
15 75 41.0
10 38 2.9
14 59 3.3
30 339 61.9
35 556 101.0
17 94 8.8
16 79 32.0
14 70 3.0
17 78 4.2
28 233 30.2
3 10 4.3

Larger test problems.
truncated-Newton method.

1
2
3
6
8
10
28
29
31
38
39
42
43
47
48
49
5O
51
52
53

TABLE 5
Comparison of the limited memory BFGS method (m 5) with the

200
200
200
500
1000
1000
1000
500
200
1000
961

10,000
1000
1000

10,000
1000
1000
1000

10,000
403

L-BFGS
It f-g Time

9695
1734
7248
1054

30
103
54
48
3

4O5
165
14
16

145
37
54
457
46
6

57

-}-9999 5040.0
1785 646.0
7482 2960.0
1177 389.0
34 21.0

"114 89.4
61 35.8
*49 15.4

4 5.8
423 302.0
172 187.0
17 102.0
20 15.4
157 168.0
50 261.0
61 35.6

476 328.0
*57 80.1

8 32.5
63 410.0

TN
It f-g Time
38 929 428.0
37 456 154.0
76 599 220.0

356 3446 796.0
12 58 23.9
30 *200 142.0
15 75 34.6
12 *54 8.8
4 20 24.9

33 208 121.0
27 387 364.0
24 111 696.0
15 75 59.1
22 160 145.0
29 118 639.0
14 68 31.8
30 210 118.0
35 *370 467.0
5 19 90.9
14 100 656.0

METHODS FOR LARGE SCALE OPTIMIZATION 365

TABLE 6
Summary of results: number of problems for which a method was better in terms of function-

gradient evaluations and time.

Result f-g Time
L-BFGS much better 18 21
L-BFGS better 6 1
even 8 4
TN better 2 1
TN much better 11 18

function-gradient evaluations. Third, in terms of time, neither algorithm is a clear
winner: the higher iteration cost of TN is compensated by a much lower iteration
count, on the average. Fourth, the truncated-Newton method solved all the problems,
whereas the limited memory BFGS method failed twice (on both versions of the first
test problem). In 5 we analyze these results further, and present more detailed
conclusions.

Tests of a simulated Newton method were also made. Algorithm TN was modified
by changing the termination rule for the inner algorithm from (2.7) to

< 10-8

and with an upper limit of min(n, 500) inner iterations imposed. Even though this
does not represent a well-designed Newton method for large scale problems, it can in-
dicate how many outer iterations would be required if the costs of the inner algorithm
could be ignored. We refer to this simulated Newton method as SN. On the smaller
test problems, SN required 313 iterations and TN required 551; in the worst case TN
required five times more iterations. On the larger test problems, SN required 598
iterations and TN required 828; in the worst case TN required seven times more iter-
ations. Hence, over the entire test set, TN required about 50 percent more iterations
than SN. The L-BFGS method, whose iteration is much cheaper, typically requires
between 3 and 10 times more iterations than TN.

We conclude this section with a few comments on the partitioned quasi-Newton
method of Griewank and Toint [8]. It assumes that the objective function is partially
separable, i.e., that it can be written as

ne

i--1

where the ne element functions fi depend only on a few variables. The partitioned
quasi-Newton method (PQN) takes advantage of this structure of f by updating a
quasi-Newton approximation to each of the element functions fi. Liu and Nocedal
[10] compared L-BFGS and PQN, and concluded that when the number of variables
entering into the element functions is very small (say, less than four), PQN is vastly
superior to L-BFGS, both in terms of function evaluations and time. However, if the
element functions fi depend on four or five variables, L-BFGS and PQN are often
comparable. Furthermore, if more than five or six variables enter into the element
functions, L-BFGS is likely to be more efficient.

4. Classification of the test problems. We would like to better understand
the types of problems that each algorithm solves well. This immediately raises the

366 S. G. NASH AND J. NOCEDAL

question of how to classify the test problems. Among the various function charac-
teristics that are relevant to the convergence theory or computational behavior of
algorithms, we have selected the following.

(1) Deviation from quadratic. To assess this, we use the Taylor series ap-
proximation of the gradient, and define

(4.1) DQ IIg(x) g(x*) G(x*)pll

where x0 and x* are the starting point and the solution, and p x0 x*.
Since we have scaled the difference by Ilpl12, DQ gives a measure of the size
of the third derivatives.

(2) Condition number of the Hessian. Using the/2-norm, we measure the
condition numbers of the Hessian at the starting point and solution point;
these are denoted by K0 and K., respectively.

(3) Convexity. This was sometimes determined by observation; otherwise we
performed several computations to guide us. We computed the eigenvalues of
the Hessian at x0. If any were negative, the problem was clearly nonconvex.
In addition, the inner algorithm of the truncated-Newton method can detect
indefiniteness (although it is not guaranteed to find it). If none of these
indicators suggested indefiniteness, and if we were not able to ascertain this
theoretically, the problem was labeled "presumably convex."

(4) Eigenvalue structure. We plotted the eigenvalue distribution of the Hes-
sian at the starting point and final point. The graphs are not given here due
to space limitations, but can be obtained from the authors. The eigenvalue
distribution greatly affects the performance of the inner conjugate-gradient
algorithm of the truncated-Newton method, and Gill and Murray [6] suggest
that it is also related to the efficiency of limited memory methods.

The characteristics of most of our test problems are displayed in Table 7. We have
only considered the case when n 100, because the eigenvalue analysis for values of
n in the thousands is not tractable. In particular, test problem 42 was analyzed for
n 100 rather than n 1000 (TN solved this smaller problem in 1.8 seconds using
nine iterations and 35 function-gradient evaluations; L-BFGS used .9 seconds, 14
iterations, and 15 function-gradient evaluations). In Table 7, we also indicate which
of the two methods performed best, and give the percentage difference in performance.

The next table has been arranged to show that there is a strong correlation
between the degree of nonlinearity of the function and the success of the methods.
We have concentrated on those problems of Table 7 in which the performance of the
two methods is markedly different. Table 8 lists the problems for which one of the
methods was better by at least 30 percent in terms of both time and function-gradient
evaluations. The entries are ordered by degree of nonlinearity DQ.

We now list, in Table 9, three other properties of the test functions that help
measure problem complexity, even though they do not appear to be directly useful
for purposes of analysis.

(1) Sparsity. The degree of sparsity and the sparsity pattern determine whether
Newton’s method with sparse matrix techniques is attractive. Neither TN nor
L-BFGS takes advantage of sparsity.

(2) Cost of evaluating f and g. Here we merely timed the function values for
most problems by averaging the time for 1000 function-gradient evaluations.
For problem 53, only 20 evaluations were used in the timing because of the
expense of computing the function.

METHODS FOR LARGE SCALE OPTIMIZATION 367

TABLE 7
Problem characteristics.

P N

1 100
2 100
3 100
6 100
8 100
9 100
10 100
28 100
29 100
31 100
38 100
39 121
40 100
41 100
42 100
43 100
45 100
46(1) 100
46(2) 100
47 100
49 100
50 100
51 100
53 403

DQ 1/Ko 1/K. Convexity Winner

10-2 10-5 10-5 presumed TN
10o 10-5 10-5 presumed TN
100 10-6 10-6 presumed TN
102 10-3 10-4 no L-BFGS
102 10-1 10-2 no TN
105 10-3 10-2 presumed L-BFGS
102 10-2 10-3 presumed L-BFGS
101 10-3 10-8 presumed even
1013 10-9 10-6 no even
102 0 10-8 presumed L-BFGS
10-2 0 0 yes TN
101 10-9 0 no L-BFGS
10-2 10-7 10-7 no TN
101 0 0 no L-BFGS
101 10-1 10-1 presumed L-BFGS
100 10-3 10-4 presumed L-BFGS
103 10-3 10-2 no even
101 10-4 10-4 no TN
101 10-3 10-4 no L-BFGS
101 10-2 10-2 no even
101 10-3 10-7 presumed even
10-4 0 0 yes TN
102 10-3 10-2 no L-BFGS
10o 0 0 no L-BFGS

Percent difference
f-g Time

2045 2167
590 634
890 953
135 86
38 163
109 83
18 3
4 20
14 85

274 260
66 93
167 133
10 3O

148 124
133 100
81 71
5 15

11 23
23 9
1 15
4 27

58 126
288 239
59 60

TABLE 8
Selected test problems, ordered by degree of nonlinearity.

P N DQ Winner Percent difference
f-g Time

9 100 105 L-BFGS 109 83
31 100 102 L-BFGS 274 260
8 100 102 TN 38 163
6 100 102 L-BFGS 135 86
51 100 102 L-BFGS 288 239
41 100 101 L-BFGS 148 124
42 100 101 L-BFGS 133 100
39 121 101 L-BFGS 167 133
3 100 10 TN 890 953
2 100 10 TN 590 634
43 100 10 L-BFGS 81 71
53 403 10 L-BFGS 59 60
1 100 10-2 TN 2045 2167
38 100 10-2 TN 66 93
50 100 10-4 TN 58 126

(3) Laboriousness. This is an attempt to measure the difficulty of solving a
problem. We considered both algorithms, and recorded the minimum number
of function-gradient evaluations and the minimum time to solve the problem.

One final point about the test problems should be made. Of those analyzed
here, 13 out of 24 (and all eight of the most laborious problems) are singular, nearly
singular, or nonconvex. The fact that all these problems were successfully solved by
both methods seems to indicate that their implementations are very robust.

368 S. G. NASH AND J. NOCEDAL

TABLE 9
Other problem characteristics.

P N Sparsity Cost Laboriousness Winner Percent difference
fog Time f-g Time

1 100 7-diagonal .155 466 105.0 TN 2045 2167
2 100 7-diagonal .123 242 41.4 TN 590 634
3 100 7-diagonal .121 325 60.8 TN 890 953
6 100 tridiagonal .014 291 19.0 L-BFGS 135 86
8 100 dense .011 26 0.8 TN 38 163
9 100 dense .054 23 2.4 L-BFGS 109 83
10 100 dense .026 90 7.1 L-BFGS 18 3
28 100 4 4 block diagonal .007 67 3.0 even 4 20
29 100 dense .009 37 1.3 even 14 85
31 100 dense .322 27 10.7 L-BFGS 274 260
38 100 tridiagonal .014 77 4.4 TN 66 93
39 121 9 non-zero diagonals .054 70 8.4 L-BFGS 167 133
40 100 5-diagonal .026 2091 146.0 TN 10 30
41 100 5-diagonal .018 31 2.1 L-BFGS 148 124
42 100 tridiagonal .013 15 0.9 L-BFGS 133 100
43 100 tridiagonal .032 21 1.7 L-BFGS 81 71
45 100 tridiagonal .015 56 3.3 even 5 15
46(1) 100 dense .137 339 61.9 TN 11 23
46(2) 100 dense .131 453 92.8 L-BFGS 23 9
47 100 9-diagonal .046 94 8.8 even 1 15
49 100 4 4 block diagonal .009 67 3.0 even 4 27
50 100 tridiagonal .011 78 4.2 TN 58 126
51 100 dense .094 60 8.9 L-BFGS 288 239
53 403 dense 5.980 63 410.0 L-BFGS 59 60

5. Further analysis of the numerical results. Using the tables of results and
of function characteristics of the previous sections, we now try to correlate the types of
test problems with the success of TN and L-BFGS. Since we have seen that in terms of
time the two methods are similar, we concentrate on the number of function-gradient
evaluations.

The first, very visible, trend is that the performance of the two algorithms appears
to be correlated with the degree of nonlinearity DN: for quadratic and approximately
quadratic problems, TN outperforms L-BFGS. In fact, TN was better almost ex-

clusively for these types of problems. Among the 11 problems for which TN was
considered "much better" in Table 6, four are quadratic (both versions of problems
38 and 50) and six are approximately quadratic (both versions of problems 1, 2, and
3). Moreover, one of the two problems for which TN was considered "better" in
this table is approximately quadratic (problem 40). For most of the highly nonlinear
problems, L-BFGS performed better. It appears that TN’s effort to approximate the
Newton step is not paying off on highly nonlinear problems. Continuing work on

trying to improve the performance of TN by reducing the number of inner iterations
on problems that are detected to be highly nonlinear will be reported in a future
paper [17].

A study of the eigenvalue distribution of the Hessian matrices shows no clear
correlation between the success of the methods and the eigenvalue structure. For
problems with ill-conditioned Hessians, TN is perhaps better, but this is difficult to
ascertain from our tests. Clustering of eigenvalues at the solution does not seem to
benefit one method more than the other. There is little or no correlation between the
other measures of the test problems and the performance of the two methods.

L-BFGS did very poorly on the calculus of variations problems 1, 2, and 3. These

METHODS FOR LARGE SCALE OPTIMIZATION 369

problems are not only ill conditioned; their Hessians have many eigenvalues near zero

(for problem 1 for n 100, about half the eigenvalues are near zero). We ran L-
BFGS with a more accurate linesearch and using more memory, and even though
the performance improved substantially, it was still far from competitive with TN.
For example, using m 20 corrections and setting 10-3 in (2.3) resulted in
418 iterations, 861 function-gradient evaluations, and 183 seconds for problem 2 with
n 100. The calculus of variations problems also caused difficulties for earlier versions
of the TN method that used no preconditioning; the performance was as bad as for
L-BFGS. If n is increased to 1000, TN has trouble solving the problem; however,
block versions of the TN method (requiring greater storage and work per iteration)
are capable of solving it [15]. We should note that Newton’s method is very effective
on this problem, suggesting that an accurate approximation to the Newton direction
is needed.

It appears from this test set that, in terms of function evaluations, L-BFGS is
preferable to TN for more highly nonlinear (not approximately quadratic) problems.
However, TN almost always requires many fewer iterations than L-BFGS, and there-
fore, if the number of gradient evaluations in the inner iteration could be significantly
reduced, TN would be competitive or more efficient than L-BFGS. How to realize
these savings is a question that deserves further investigation. It does not appear
that automatic differentiation (see, for example, [7]) will help, because the cost is
of the same order as that of the gradient differences used here. Differencing along
selective directions determined by the sparsity of the problem could be useful, but in
this case both Newton’s method with sparse matrix techniques and the partitioned
quasi-Newton method may be preferable.

6. The nonlinear conjugate-gradient method. Now that we have studied
the relative performances of L-BFGS and TN, we will use another, well-established,
algorithm to measure their efficiency. To this end, we will solve our set of test problems
with the Polak-Ribire version of the conjugate-gradient method, which is one of the
classical methods for solving large problems. We chose the Polak-Ribire method for
the following reason.

More recent implementations of the conjugate-gradient method, like the Harwell
routine VA14 of Powell [21] or the routine CONMIN of Shanno and Phua [22], which
include automatic restarts, and store additional information, require fewer function
evaluations than the Polak-Ribire method. However, Liu and Nocedal [10] found
that L-BFGS clearly outperforms CONMIN, both in terms of computer time and
function evaluations--and it is known that CONMIN is more efficient than VA14. On
the other hand, the Polak-Ribire method appeared to be often competitive with L-
BFGS in terms of computer time (but not in terms of function evaluations). Therefore,
we chose the Polak-Ribire method for this study, since it appears to be the only
implementation of the conjugate-gradient method that could be competitive (at least
in terms of computer time) with TN and L-BFGS.

The Polak-Ribire iteration is

(6.1) xk+l Xk + okPk,

where the steplength ak satisfies the strong Wolfe conditions (2.3)-(2.4), and where

(6.2) Pk --gk + kPk-,

370 S. G. NASH AND J. NOCEDAL

TABLE 10
Smaller problems. Results of the Polak-Ribire conjugate-gradient method (CG).

CG L-BFGS
P N It f-g Time f-g Time
1 100 4915 +9999 1910.0
2 100 656 1506 201.0
3 100 2082 4243 641.0
6 100 275 1129 24.2
8 100 9 28 0.6
9 I00 F
i0 100 119 304 11.3
28 i00 108 277 4.7
29 I00 7 51 1.0
31 100 3 12 4.3
38 I00 76 154 3.8
39 121 63 180 12.6
40 I00 5001 +9999 363.0
41 i00 27 63 1.8
42 1000 14 37 8.0
43 100 54 141 7.1

oo o
46(1) 100 286 583 89.3
46(2) 100 313 639 99.4
47 100 73 152 9.6
48 1000 25 108 14.2
49 100 104 255 4.8
50 100 79 160 3.6
51 100 54 114 12.1
52 1000 4 10 1.6

TN
f-g Time

with

(6.3) k

The linesearch is performed by means of the routine of Mor and Thuente [11], pre-
viously mentioned in 2, with two small changes: (i) Since the Wolfe conditions do
not ensure that descent directions are always generated, we continue the linesearch
iteration until the descent condition is guaranteed. (ii) We insist that the linesearch
performs at least one quadratic (or cubic) interpolation, and hence the algorithm re-
duces to the linear conjugate-gradient algorithm if the objective function is quadratic.

We chose # 10-4 and 0.1, for the parameters in (2.3)-(2.4), because our
earlier experience with the Polak-Ribire method indicated that these values give the
best results. The stopping condition was (2.2). The tests were performed, as before,
on an Encore Multimax. The algorithm was restarted every n iterations by setting
/k 0, which ensures global convergence in exact arithmetic. We note that n is often
larger than the number of iterations, so that the algorithm performs no restarts in
many of our test runs. The Polak-Ribire method requires 4n storage locations, and
as shown by (6.2)-(6.3), the computation of dk is very inexpensive.

Tables 10 and 11 present the results of the Polak-Ribire (CG) method on the
whole collection of test problems. Under the column labelled "CG" we give the number
of iterations/number of function-gradient evaluations, and the total computing time.
As before, a "+" indicates that the function evaluation limit was reached, and a
"*" indicates that the weaker convergence test (described in the third paragraph of
3) was used. In the runs marked "F" the search direction was so out of scale that

METHODS FOR LARGE SCALE OPTIMIZATION 371

TABLE 11
Larger problems. Results of the Polak-Ribire conjugate-gradient method (CG).

CG L-BFGS TN
P N It f-g Time f-g Time f-g Time
1 200 4804 +9999 3840.0
2 200 1106 2491 657.0
3 200 3336 6847 2060.0
6 500 1098 4889 515.0
8 1000 13 36 7.3
10 1000 *F
28 1000 167 456 72.1
29 500 8 *98 7.1
31 200 3 14 20.3
38 1000 285 573 138.0
39 961 161 519 319.0
42 10000 11 33 68.9
43 1000 16 56 23.3
47 1000 145 302 181.0
48 10000 18 76 103.0
49 1000 225 615 104.0
50 1000 294 591 116.0
51 1000 41 "91 93.7
52 10000 5 13 21.0
53 403 62 144 926.0

+ *
+ *

+ *
+ *

overflow occurred. Additional safeguarding could remedy these failures, but was not
implemented. We compare the performance of CG with that of LoBFGS and TN
by indicating the problems for which CG was more effective. In the column labelled
"L-BFGS," a "+" in the column "f-g" indicates that CG required fewer function calls,
and a "*" in the column "Time" indicates that it required less computing time than
L-BFGS. The sign "" means equal or near-equal performance (measured in the same
way as in Table 6: differences of less than 10 percent, less than one second, or less than
five gradient evaluations were considered negligible). The same notation is used in
the column labelled "TN." We verified, for each run, that the solution point obtained
by CG coincided with that found by L-BFGS and TN.

It is clear that the conjugate-gradient method is not competitive with TN or
L-BFGS in terms of function evaluations. However, it is often efficient in terms of
computing time, due to its very low iteration cost. From this set of test runs, we
conclude that the conjugate-gradient method is not to be recommended when the
function evaluation is expensive, but that it may be useful for very large problems
whose objective functions are relatively inexpensive.

Acknowledgments. We would like to thank the referees for several valuable
comments and suggestions.

REFERENCES

[1] A. BUCKLEY AND A. LENIR (1983), QN-like variable storage conjugate gradients, Math. Pro-
gramming, 27, pp. 155-175.

[2] T.F. COLEMAN AND J. MORI (1984), Estimation of sparse Hessian matrices and graph coloring
problems, Math. Programming, 28, pp. 243-270.

[3] P. CONCUS, G. GOLUB, AND D. P. O’LEARY (1976), A generalized conjugate gradient method
for the numerical solution of elliptic partial differential equations, in J. Bunch and D.
Rose, eds., in Sparse Matrix Computations, Academic Press, New York, pp. 309-332.

372 S. G. NASH AND J. NOCEDAL

[4] J. C. GILBERT AND C. LEMARlCHAL (1989), Some numerical experiments with variable storage
quasi-Newton algorithms, Math. Programming, 45, pp. 407-435.

[5] P. E. GILL AND W. MURRAY (1973), The numerical solution of a problem in the calculus of
variations, in Recent Mathematical Developments in Control, D.J. Bell, ed., Academic
Press, New York, pp. 97-122.

[6] (1979), Conjugate-gradient methods for large-scale nonlinear optimization, Report SOL
79-15, Department of Operations Research, Stanford University, Stanford, CA.

[7] A. (RIEWANK (1989), On automatic differentiation, in Mathematical Programming, M. Iri and
K. Tanabe, eds., Kluwer Academic Publishers, Tokyo, pp. 83-107.

[8] A. (RIEWANK AND Pn. L. TOINT (1982), Partitioned variable metric updates for large structured
optimization problems, Numer. Math., 39, pp. 119-137.

[9] D. C. LIU AND J. NOCEDAL (1988), Test results of two limited memory methods for large
scale optimization, Report NAM 04, Department of Electrical Engineering and Computer
Science, Northwestern University, Evanston, Illinois.

[10] (1989), On the limited memory BFGS method for large scale optimization, Math. Pro-
gramming, 45, pp. 503-528.

[11] J. J. MOR, AND D. J. THUENTE (1990), On linesearch algorithms with guaranteed sufficient
decrease, Mathematics and Computer Science Division Preprint MCS-P153-0590, Argonne
National Laboratory, Argonne, IL.

[12] J. J. MOR, B. S. (ARBOW, AND K. E. HILLSTROM (1981), Testing unconstrained optimization
software, ACM Trans. Math. Software, 7, pp. 17-41.

[13] S. G. NASH (1984), User’s guide for TN/TNBC: Fortran routines for nonlinear optimization,
Report 397, Mathematical Sciences Department, The Johns Hopkins University, Baltimore,
MD.

[14] (1985), Preconditioning of truncated-Newton methods, SIAM J. Sci. Statist. Comput., 6,
pp. 599-616.

[15] S. (. NASH AND A. SOFER (1989), Block truncated-Newton methods for large-scale nonlinear
optimization, Math. Programming, 45, pp. 529-546.

[16] (1990a), Assessing a search direction within a truncated-Newton method, Oper. Research
Lett., 9, pp. 219-221.

[17] (1990b), A practical truncated-Newton method for parallel optimization, Report 63, Cen-
ter for Computational Statistics, George Mason University, Fairfax, VA.

[18] J. NOCEDAL (1980), Updating quasi-Newton matrices with limited storage, Math. Comp., 35,
pp. 773-782.

[19] D. P. O’LEARY (1983), A discrete Newton algorithm for minimizing a function of many vari-
ables, Math. Programming, 23, pp. 20-33.

[20] S. OREN AND E. SPEDICATO (1976), Optimal conditioning of self-scaling variable metric algo-
rithms, Math. Programming, 10, pp. 70-90.

[21] M. J. D. POWELL (1977), Restart procedures for the conjugate gradient method, Math. Pro-
gramming, 12, pp. 241-254.

[22] D. F. SHANNO AND K. H. PHUA (1980), Remark on algorithm 500: Minimization of uncon-
strained multivariate functions, ACM Trans. Math. Software, 6, pp. 618-622.

[23] PH.L. TOINT (1983), Test problems for partially separable optimization and results for the
routine PSPMIN, Report Nr 83/4, Department of Mathematics, Facult6s Universitaires de
Namur, Namur, Belgium.

SIAM J. OPTIMIZATION
Vol. i, No. 3, pp. 373-400, August 1991

1991 Society for Industrial and Applied Mathematics
OO5

MASSIVELY PARALLEL ROW-ACTION ALGORITHMS
FOR SOME NONLINEAR TRANSPORTATION PROBLEMS*

STAVROS A. ZENIOS AND YAIR CENSORS

Abstract. Row-action iterative algorithms are developed for two classes of nonlinear optimiza-
tion problems with transportation constraints: entropy problems where the objective function is
a sum of [ln (x/a)- 1] terms, and quadratic problems where the objective function is a sum of
1/2wz2 + cx terms. The algorithms are specialized to take advantage of both the structure of the
transportation constraints and the special forms of the objective functions. Both generalized and
pure networks are dealt with in this paper.

The algorithms are well suited for parallel computing. Implementations are developed on a
massively parallel Connection Machine CM-2 with up to 32K processing elements. The algorithms
solve test problems with 4000 nodes and 4 million arcs in less than one minute of computer time.
On a maximally configured machine with 64K processing elements, they achieve a peak computing
rate of 3 GFLOPS.

Key words, transportation models, nonlinear programming, row-action algorithms, parallel
computation

AMS(MOS) subject classifications, primary 90-08, 90B06, 90C06; secondary 65Y05

I. Introduction. In this paper we consider nonlinear optimization problems
with transportation constraints. Such problems appear in several areas of applica-
tions, mainly in logistics and transportation planning. Most common instances of
matrix-balancing problems are also formulated over transportation constraints. A
significant body of literature exists on the solution of linear transportation problems
that dates back to Kantorovich [15]. For an early account, see Ford and Fulkerson
[12]. For recent work, see Miller, Pekney, and Thompson [19], where a parallel im-
plementation of the transportation simplex algorithm is also developed. A review of
models and algorithms is given in Dembo, Mulvey, and Zenios [10].

The development of nonlinear programming algorithms for the same class of prob-
lems is a more recent activity. Quite often, it is associated with the development of it-
erative algorithms for matrix balancing (see, e.g., [2], [13], or [22]). In those instances,
some nonlinear function is optimized over the transportation constraints to achieve
the balancing of the matrix. Dual algorithms for continuously differentiable strictly
convex nonlinear functions over more general transshipment network constraints have
been developed by Bertsekas, Hossein, and Wseng [3]. Ohuchi and Kaji [21] developed
dual algorithms for quadratic problems over transportation constraints. Newton’s
algorithm has been specialized for the transportation constraints by Klincewicz [16].
Algorithms for nonlinear generalized networks--i.e., with arc gains--that include as
a special case the transportation problem, were published in [1] and [26].

In this paper, we develop specialized algorithms for problems with transportation
constraints when the objective function is either the sum of entropy terms of the form

Received by the editors April 26, 1990; accepted for publication (in revised from) February 25,
1991.

Decision Sciences Department, Wharton School, University of Pennsylvania, Philadelphia, Penn-
sylvania 19104. The work of this author was supported in part by National Science Foundation grant
CCR-8811135 and Air Force Office of Scientific Research grant 91-0168.

Department of Mathematics and Computer Science, University of Haifa, Haifa 31905, Israel.
The work of this author was supported by National Science Foundation grant SES-9100216 and
National Institutes of Health grant HL-28438 and was performed while he was visiting the Deci-
sion Sciences Department, Wharton School, University of Pennsylvania, and the Medical Imaging
Processing Group (MIPG), Department of Radiology, University of Pennsylvania.

373

374 STAVROS A. ZENIOS AND YAIR CENSOR

x [ln (x/a) 1] or quadratic terms of the form -wx2 / cx. Both functions belong to
the family of Bregman’s functions [6] as characterized by Censor and Lent [7]. It is
thus possible to develop row-action-type algorithms for those special objective func-
tions, and for linear equality, inequality, or interval constraints. The algorithms can
be viewed as coordinate ascent methods for maximizing the dual functional obtained
by dualizing both the equality (i.e., flow-conservation) constraints and the bounds on
the variables. The iterative procedures we develop here are specializations of the algo-
rithms of Censor and Lent [7] that exploit the special structure of the transportation
constraints. For generalized transportation problems with quadratic objective func-
tions, or pure network problems, very simple formulae are obtained for the iterative
steps of the algorithms. In the case of generalized networks with entropy objective
function, the iterative step of the algorithm would require solution of a nonlinear
equation. Even in this case, however, closed-form formulae can be obtained for an
approximate solution to this equation that guarantees asymptotic convergence of the
algorithm. For this, we draw on results from Censor et al. [8]. The algorithms are well
suited for parallel computing, especially on massively parallel systems. This charac-
teristic is indeed our motivation for designing these algorithms in the first place, and
implementations are developed on a Connection Machine CM-2 with up to 32K (1K

1024) processing elements, using simple modifications of the data structures from
Zenios [27].

The contributions of this paper are the development of the specialized iterative
algorithms for the transportation constraints, and the massively parallel implemen-
tations. The algorithms for generalized network problems and the algorithm for pure
network problems with quadratic objective appear to be new in this field. Their
structure is, however, essentially similar to that of the ART4 algorithm of Herman
and Lent [28], which was proposed as an iterative procedure for image reconstruction
from projections. ART4 is a development of the earlier Hildrath algorithm [29], [30].
The algorithm for entropy optimization over pure transportation constraints is a gen-
eralization of an existing algorithm for matrix balancing. The test problems solved
are, to our knowledge, the largest reported in the literature and solution times do not
exceed a few seconds of computer time. As subsequent computational results show,
the algorithms on the Connection Machine also outperform by a large margin other
algorithms for the same problems on more conventional parallel or serial computers.

Section 2 formulates the problems and develops the algorithms: we develop the
algorithms for generalized network problems and obtain the algorithms for pure net-
works as a special case. It also provides some general background on the Connection
Machine CM-2 and a brief overview of the Paris language. The parallel implementa-
tions are discussed in 3, and 4 provides a summary of the computational experiments
and an interpretation of the results. Concluding remarks are given in 5.

2. Nonlinear transportation problems.

2.1. Problem formulation. Let (m denote the set {1, 2,3,...,m}. Denote
by m the m-dimensional Euclidean space and (., "/ is the Euclidean inner product.
A transportation graph is defined as the triplet 6 (Vo, VD,), where Vo (mol,
VD (roD), and C_ {(i, j) E Vo, j VD }. VO and VD are the sets of origin and
destination nodes of cardinality mo and mD, respectively. $ is the set of n directed
arcs (i, j), with origin node and destination node j, which belong to the graph,
n <_ momD. It is not assumed that the graph is dense, i.e., (i, j) may not be in $

for some values of Vo and j VD. Some additional notation is needed to define
the nonlinear transportation problems. Let

MASSIVELY PARALLEL TRANSPORTATION ALGORITHMS 375

x (xj) e y{n, (i,j) e , be the vector of flows;
u-- (uj) E n, (i, j) e , be the vector of upper bounds on the flows;
m (m) , (i, j) e , be the vector of positive multipliers on the flows;
s (s) mo, Vo, be the vector of supplies;
d (dj) mD, j VD, be the vector of demands;
ro (rio) y{mo, Vo, be the vector of dual prices for origin nodes;
rD (r?) mD j VD, be the vector of dual prices for destination nodes;
r (rj) e ’, (i, j) e , be the vector of dual prices for the bound constraints;
i+ {j VD (i, j) }, be the set of destination nodes which have arcs with

origin node i; and
{i Vo (i, j) e }, be the set of origin nodes which have arcs with destination
node j.

With this notation we define pure and generalized transportation problems as follows:
[PTR] Pure Transportation Problem:

(1) Minimize F(x)
Subject to

(2) E xi s,

(4) O <_ xij <_ uij,

Vi e Vo,

Vj VD,

V(i,j) $.

[GTR] Generalized Transportation Problem:

(5) Minimize F(x)
Subject to

<

(8) 0Sx S u,

Vie Vo,

Vj E VD,

v(i, j) e

The objective function F" --+ may take one of the following two forms:
[E] Entropy:

(9) F(x)= E xij[ln(Xi-)-l]
(i,j)E aij

where In is the natural logarithm and {aj } are given positive real numbers.
[Q] Quadratic:

(10) +
(i,j)E

where {wij } and {ci } are given positive real numbers.

376 STAVROS A. ZENIOS AND YAIR CENSOR

The following standing assumptions are made for both [PTR] and [GTR].
ASSUMPTION 1. The constraint sets (2)-(4) and (6)-(8) are feasible. (The Gale-

Hoffma circulation conditions on the problem data $, s, d, m, and u that guarantee
feasibility of the constraint set are given in Ford and Fulkerson [12, Chap. 11].)

ASSUMPTION 2. The transportation graph is connected. (Otherwise, the problem
could be partitioned into its disconnected components and each solved separately.)

ASSUMPTION 3. Si > 0 for all 6 Vo and dj > 0 for all j VD. (If these
conditions are violated for some index or j, then all the flows on arcs incident to
the offending node can be set to zero and the relevant constraint removed from the
problem.)

In order to develop the row-action algorithms, we need to express the problems
in compact matrix notation. Let S be the mo n matrix:

011 G12 OllmD

with entries aj given by

Og21 Og22 Og2mD

Ogmol Ogmo2 OgmomD

1, ifj(11) cij O, otherwise,

and the remaining entries of S all zeros. D is the mD x n matrix

mol
mo2

with entries /ij given by

(12) 0, otherwise,

and the remaining entries of D all zeros.
Finally, let

where I is the n x n identity matrix, and = () (u), for all t e (n), denotes
the th column of , the transpose of . Also, let

7 and d
0

MASSIVELY PARALLEL TRANSPORTATION ALGORITHMS 377

Then equations (6)-(8) can be written in the form

(13) ’ _< Ox _< 5.

The relationship between the algebraic formulation (5)-(8) and the compact matrix
notation is made precise by imposing a lexicographic ordering of the arcs, i.e., t
(i- 1)mo / j. Hence, xt and ut indicate xj and uj, respectively, for some arc
(i, j) E vc Finally, we denote by z mo+mD+n the vector of dual variables:

7rD

r

2.2. The row-action framework. In this section we summarize the general
row-action algorithm for interval convex programming of Censor and Lent [7]. The
specialized transportation algorithms will be derived later from this general frame-
work. We will start with some preliminary discussion. Let F" A C_ n and let
g/= be an open convex set such that its closure C_ A. The set is called the
zone of F if F is strictly convex and continuous on , continuously differentiable on, and if F is a Bregman function over (see [7]).

Let D(x, y) F(x) F(y) (VF(y), x y), and let H(a, b) be the hyperplane
H(a, b) {x e n (a, x/= b}. The D-projection (or Bregman projection) of a point
y onto H(a, b) is defined by

(14) PH(a,b)(Y) arg min D(x, y).
xeH a,b)ffi

A function F, which belongs to the family of Bregman functions as character-
ized by Censor and Lent [7], has the zone consistency property with respect to the
hyperplane H(a, b) if the D-projection of every y onto H(a, b) is also in . If a
function is zone-consistent with respect to H(a, b), then it can be shown [7, Lemma
3.1] that the D-projection of y onto H(a, b) is the point x given by the unique solution
of the system of equations in x and /:

VF() VF() + Z.a,
(a,x)

The unique real number/ is known as the Bregman parameter. It can be interpreted
as the stepsize that maximizes the dual functional along the dual price coordinate for
equation (a,x -b. (See, for example, [23] or [24].)

Both the quadratic and entropy are Bregman functions [7]. It is also easy to
verify that, under Assumptions 1-3, both functions have the strong zone consistency
property with respect to the hyperplanes H(t, ’t) and H(t, 51) for all rows of the
constraint matrix. Hence we can apply the following general iterative scheme.

Algorithm 2.1. General row-action algorithm.
Step 0: (Initialization). k 0. Get z and x n such that

(17) VF(x)

378 STAVROS A. ZENIOS AND YAIR CENSOR

Step 1: (Iterative step over equality constraints). Choose a row index l(k) from the
equality constraints and solve the following system for Xk+l/2 and /k"

(18) VF(xk+1/2)
(19) Zk+l/2 Zk --/kel(k),

where /k is the Bregman parameter associated with the D-projection of
xk on the hyperplane H(l(k),’l(k)). {/(k)} is the control sequence of the
algorithm, henceforth abbreviated as l(k). e E -o+mD+n is the th
standard basis vector having 1 in the th coordinate and zeros elsewhere.

Step 2: (Iterative step over interval constraints). Choose a row index l(k) from the
interval constraints. Calculate the Bregman parameters Fk and Ak associ-
ated with the D-projection of Xk+l/2 on the hyperplanes specified when the
left and right inequalities, respectively, of the interval constraints hold with
equality (i.e., xk+I/2 is projected on the hyperplanes H(l(k),/l(k)) and

H(l(k),5(k)), respectively). Using the operation "mid" (i.e. if x _< y _< z,
then mid{x,y,z} y), update xk+l and zk+ as follows:

(20)

Step 3: Let k k + 1, and return to Step 1.

2.3. Algorithms for the generalized network problems. Consider now the
generalized network problem. Constraints (6) and (8) are inequality constraints, and
the iterative step can be obtained from Step 2 of the general Algorithm 2.1. Con-
straints (7) are equality constraints, and the iterative step is obtained by applying
Step 1 of the general row-action algorithm. We first iterate over constraints (6), then
over (7), and finally project on the bounds, i.e., constraints (8). Of course, any other
almost cyclic control sequence (see, e.g., [7]) will do, but we have found the sequence
proposed here slightly more efficient in practice than other sequences.

2.3.1. Entropy optimization algorithm. We now formulate the iterative al-
gorithm for solving generalized networks with entropy objective function. The it-
erative step for the entropy objective function (see (18)-(19) or (21)-(22)) is the
following:

xk+ xkexp(/k), t=l 2, 3,...,n,(2a)

For 1, 2, 3,..., mo the parameter/k is obtained from Step 2 of Algorithm 2.1 as:

(24) /k min((r)k, Pk },

where Pk is obtained by solving

(25) yt--xktexp(pk),
(u,

t 1,2,3,...,n,

MASSIVELY PARALLEL TRANSPORTATION ALGORITHMS 379

Substitute the first equation above into the second, and use the facts that is the th
column of ST with values aj E {0, 1}, as defined in (11), and that t (i 1)too + j
is the lexicographic ordering of xj for j E 6+. We get

8i(26) exp(p)

This value of Pk goes into (24) to get k, which is then used by (23) to complete the
iterative step.

For mo + 1, mo + 2, mo + 3,..., mo + mD, the parameter k is obtained
from Step 1 of Algorithm 2.1 by solving the system:

f y, xtk exp(flk), t 1,2,3,...,n,(27) (y,) d.

Substituting the first equation into the second and using the fact that is the
"- (l-mo)th column of DT with values/ij as given in (12), and t (i- 1)mo /j

is the lexicographic ordering of xij for -, we get:

k(28) Z mijxiJ exp(kmij) dj.

Now denote exp(k) and rewrite (28) as a nonlinear equation in

k .rnj(29) (wk) mjxjwk

The existence of a solution to this equation is guaranteed by the feasibility Assump-
tion 1. However, solving (29) for wk requires an iterative procedure (e.g., Newton’s
algorithm). An approximate solution of (29) in closed form can be obtained by taking
one secant step as follows: Consider the line through (0,-dj) and (1, (1)) instead
of the graph of (wk). This line intersects the wk-axis at

dj

and we use this value of &k as an approximation to the solution of (29). It has been
shown (see [8]) that using this approximation preserves asymptotic convergence of
the algorithm. The value &k is used to set /k ln&k and in turn to complete the
iterative step in (23).

Finally, to avoid the exponentiation terms in stating the algorithm, we use the
exponents of the dual prices, which we denote by (o), (?), and (ij), and use the
fact that

In min(exp x, exp y) min(x, y).

The algorithm also permits user-chosen relaxation parameters {Ak} that may vary
between successive iterations as the algorithm iterates on different constraints. To

380 STAVROS A. ZENIOS AND YAIR CENSOR

preserve asymptotic convergence, it is required that 0 < e <_ Ak <_ 1. We use A to
indicate the appropriate use of relaxation parameters with the understanding that
the numerical value of A may vary as explained above. The entropy optimization
algorithm for generalized transportation problems is stated as follows.
Algorithm 2.2. Entropy optimization for generalized transportation prob-
lems.
Step 0: (Initialization). Set k 0. Get x > 0, (T), (TO)0,0 such that:

aij(31) xj (/o)0(()0)mrij
--0

Step 1: (Iterative step over constraint set (6)). Pick a relaxation parameter A and,
for 1, 2, 3,..., mo, calculate:

(a:)

(33) Ap/k min{(o)k, p/k},
(34) xij xij

p
Step 2: (Iterative step over constraint set (7)). Pick a relaxation parameter A and,

for j 1, 2, 3,..., roD, calculate:

Step 3: (Iterative step over constraint set (8)). Pick a relaxation parameter A and,
for all (i, j) e 3, calculate:

Step 4: Replace k k + 1 and return to Step 1.

2.3.2. Quadratic optimization algorithm. Consider now the generalized net-
work transportation problem with a quadratic objective function. The iterative step

MASSIVELY PARALLEL TRANSPORTATION ALGORITHMS 381

for this algorithm is derived again from Algorithm 2.1. It can be written (see (18)-(19)
or (20)-(21)) in the form:

+ + (/,)(Z), t= ...,,
(42) z+l Zk kel"
For 1, 2, 3,..., mo, the parameter /k is

(43) /k min{(r)k, Pk }
where Pk is obtained by solving

() { (,=_x)=+.(1/)(), t , , a,..., ,
Substitute the first equation above into the second, and use the facts that is a
column of ST with values aij e {0, 1}, as defined in (11), and that t (i 1)mo + j
is the lexicographic ordering of xij for j . We get

This value of Pk goes into (43) to get , which in turn goes into (42) to complete
the iterative step.

For mo + 1, mo + 2, mo + 3,..., mo + mD, the parameter is obtained by
solving

(46) x + (/)(Z),
(Y, 1/= dr.

Substitute the first equation into the second, and then using the fact that Ct is the
(1- mo)th column of DT with values ij as given in (12), and t (i- 1)mo + j

is the lexicographic ordering of xij for i E 5, we get’

This value of k is used in (42) to complete the iterative step. It is worth noting
that this iterative step for the quadratic optimization problem performs an exact
minimization along the j th coordinate of the dual vector 7rD Contrast this to the
computation of /k for the entropy optimization algorithm (28) where a closed form
solution could not be obtained and an approximation was used instead.

Once more, relaxation parameters are allowed and they may take different values
for each update that involves a single constraint. To guarantee the asymptotic con-
vergence of the algorithm they must be confined to the interval 0
for some positive e. In the interest of keeping the algorithm description simple we
just write , whenever a relaxation parameter should appear.
Algorithm 2.3. Quadratic optimization for generalized transportation prob-
lems.

382 STAVROS A. ZENIOS AND YAIR CENSOR

Step 0: (Initialization). Set k ,-0. Get x, 0r), (7i’D)0’/.0 such that:

1
(48) xij + + +

Step 1: (Iterative step over constraint set (6)). Pick a relaxation parameter and,
for 1, 2, 3,..., mo, calculate:

(49) p=
EeC1/wj - ’ x

(50) Ap min{(r), p},
k k P(51) Xj Xj +--, j ,

Step 2: (Iterative step over constraint set (7)). Pick a relaxation parameter A and,
for j 1, 2, 3,..., mD, calculate:

(53)

(54) k k k mij EXij <--" Xij -}-O’j
Wij

(55) (Tr?)k+l (1.?) k k

Step 3: (Iterative step over constraint set (8)). Pick a relaxation parameter A and,
for all (i, j) E $, calculate:

k(56) Akj mid

;zij Xij
Wij

k

Step 4: Replace k k / 1 and return to Step 1.

Awijxkj }

2.4. Algorithms for pure network problems. The algorithms for the pure
network problem [PTR] can now be obtained as special cases of the generalized net-
work algorithms of the previous section. Just observe that the nonzero entries of the
matrix D for the pure network problem are all equal to one. Hence, we can substitute
mij 1 in Algorithms 2.2 and 2.3 to obtain algorithms for the pure network prob-
lems. It is worth pointing out, however, that for the entropy optimization algorithm
on pure network problems, the value of &k given in (30) is an exact solution to the
nonlinear equation (28). This is likely to be an important practical advantage for the
solution of pure networks.

The algorithm for entropy optimization over the pure transportation constraints
is the following.
Algorithm 2.4. Entropy optimization for pure transportation problems.

MASSIVELY PARALLEL TRANSPORTATION ALGORITHMS 383

Step 0: (Initialization). Set k 0 and get x > 0, (o)o _> 0, (D)O
_

0, and o >_
0 such that"

o aij
o-o"

Step 1: (Iterative step over constraint set (2)). Pick a relaxation parameter A and,
for 1, 2, 3,..., mo, calculate"

(60)

(6)

(62)

pk 8i
k

k k k
Xij +-- XijP j e 5i+,

Step 2: (Iterative step over constraint set (3)). Pick a relaxation parameter A and,
for j 1, 2, 3,..., roD, calculate:

(63)

(64)

(65)

Xij +--Xij(Tj

k
j

Step 3: (Iterative step over constraint set (4)). Pick a relaxation parameter A and,
for all (i, j) e , calculate"

(67)

(68)

rij xkij
xk+l k kA

ij Xij -ij,
-k

-k+ rij
rij Ai

Step 4: Replace k - k + 1 and return to Step 1.
Note that N and D are irrelevant for the equality-constrained problem and,

therefore, need not be iterated upon. In the case where the starting point is taken
as xi aij, uij c, for all (i, j) , and the price updating steps are ignored,
Algorithm 2.4 coincides with the RAS algorithm for matrix-balancing problems (see,
e.g., [22]). Note that the constraints xij _> 0 in (4) are automatically enforced due to
the multiplicative nature of the iterative steps (13) and (19), the positive initialization
of x and Assumption 3.

The algorithm for quadratic optimization of pure network problems is obtained
as a special case of Algorithm 2.3 by setting mij 1. It can be stated as follows.

384 STAVROS A. ZENIOS AND YAIR CENSOR

Algorithm 2.5. Quadratic optimization for pure transportation problems.

Step 0: (Initialization). Set k -0. Get x, (r), (Ti’D)0’ .0 such that:

1
(69) xj

wj

Step 1: (Iterative step over constraint set (2)). Pick a relaxation parameter A and,
for 1, 2, 3,..., mo, calculate:

Step 2: (Iterative step over constraint set (3)). Pick a relaxation parameter A and,
for j 1, 2, 3,..., mD, calculate:

(74) xij xj +, E
wj

--rjo

Step 3: (Iterative step over constraint set (4)). Pick a relaxation parameter A and,
for all (i, j) $, calculate:

(76)

(77)

(78)

t _,wiixkimid {r,)wij(uiy xij), },

x+

Step 4: Replace k - k + 1 and return to Step 1.

2.5. The Connection Machine CM-2. We now briefly introduce the char-
acteristics of the Connection Machine (model CM-2) [14] that are relevant to our
parallel implementations. The Connection Machine is a fine-grain SIMD (i.e., single
instruction stream, multiple data stream) system. Its basic hardware component is
an integrated circuit with 16 processing elements (PEs) and a router that handles
general communication. A fully configured CM has 4,096 chips for a total of 65,536
PEs. The 4,096 chips are interconnected as a 12-dimensional hypercube. Each pro-
cessor is equipped with local memory of 8Kbytes, and for each cluster of 32 PEs a
floating-point accelerator handles floating-point arithmetic.

Operations by the PEs are under the control of a microcontroller that broadcasts
instructions from a front-end computer (FE) simultaneously to all the elements for

MASSIVELY PARALLEL TRANSPORTATION ALGORITHMS 385

execution. A flag register at every PE allows for no-operations; i.e., an instruction
received from the microcontroller is executed if the flag is set, and ignored otherwise.

Parallel computations on the CM are in the form of a single operation executed
on multiple copies of the problem data. All processors execute identical operations,
each one operating on data stored in its local memory, accessing data residing in the
memory of other PEs, or receiving data from the front end. This mode of computa-
tion is termed data level parallelism in contradistinction to control level parallelism,
whereby multiple processors execute their own control sequence, operating either on
local or shared data.

To achieve high performance with data level parallelism one needs a large number
of processors. The CM provides the mechanism of virtual processors (VPs) that allows
one PE to operate in a serial fashion on multiple copies of data. VPs are specified
by slicing the local memory of each PE into equal segments and allowing the physical
processor to loop over all slices. The number of segments is called the VP ratio (i.e.,
ratio of virtual to physical PEs). Looping by the PE over all the memory slices is
executed, in the worst case, in linear time. The set of virtual processors associated
with each element of a data set is called a VP set.

The CM supports two addressing mechanisms for communication. The send ad-
dress is used for general purpose communications via the routers. The NEWS address
describes the position of a VP in an n-dimensional grid that optimizes communication
performance. The send address indicates the location of the PE (hypercube address)
that supports a specific VP and the relative address of the VP in the VP set that
is currently active. NEWS address is an n-tuple of coordinates which specifies the
relative position of a VP in an n-dimensional Cartesian-grid geometry. A geometry
is an abstract description of such an n-dimensional grid. Once a geometry is associ-
ated with the currently active VP set, a relative addressing mechanism is established
among the processors in the VP set. Each processor has a relative position in the n-
dimensional geometry and NEWS allows the communication across the North, East,
West, and South neighbors of each processor, and enables the execution of operations
along the axes of the geometry. Such operations are efficient since the n-dimensional
geometry can be mapped onto the underlying hypercube in such a way that adjacent
VPs are mapped onto vertices of the hypercube connected with a direct link. This
mapping of an n-dimensional mesh on a hypercube is achieved through a Gray coding
(see, e.g., [4, p. 50]).

The algorithm was implemented using C/Paris. Paris is the lowest level protocol
by which the actions of the data processors of the CM are controlled by the front
end. Before invoking Paris instructions from a program the user has to specify the
VP set, create a geometry, and associate the VP set with the geometry. Thus a
communications mechanism is established (along both send and NEWS addresses).
Paris instructions--parallel primitives--can then be invoked to execute operations
along some axis of the geometry (using NEWS addresses), to operate on an individual
processor using send addresses, or to translate NEWS to send addresses for general
interprocessor communication or communication with the front end.

Parallel primitives that are relevant to our implementation are the scans and
spreads of Blelloch [5]. The @-scan primitive, for an associative, binary operator
(R), takes a sequence {x0, x,... ,x,} and produces another sequence {y0, Y,"’, Yn}
such that yi x0 (R) x (R)... (R) xi. For example, add-scan takes as an argument a
parallel variable (i.e., a variable with its th element residing in a memory field of
the th VP) and returns at VP the value of the parallel variable summed over

386 STAVI:tOS A. ZENIOS AND YAII:t CENSOR

Processing Element
X

Segment Bits (Sb)

Y add-scan(X, Sb)
copy-scan(Y, Sb)

reverse-copy-scan(Y, Sb)

0 1 2 3 4 5 6 7 8 9
5 1 3 4 3 9 2 6 1 0
1 0 1 0 0 0 1 0 0 1

0 5 6 3 7 10 19 2 8 9
0 0 0 6 6 6 6 19 19 19
6 6 19 19 19 19 9 9 9 9

FIG. 1. An example of the segmented add-scan and copy-scem primitives.

j 0,’", i. User options allow the scan to apply only to preceding processors (e.g.,
sum over j 0,..., 1) or to perform the scan in reverse. The @-spread primitive,
for an associative, binary operator (R), takes a sequence {x0, xl,..., xn} and produces
another sequence {y0, Yl,’", yn} such that y x0 (R) x (R)... (R) x,. For example,
add-spread takes as an argument a parallel variable residing in the memories of n
active data processors and returns at VP the value of the parallel variable summed
over j 0,...,n.

Another variation of the scan primitives allows their operation within segments of
a parallel variable. These primitives are denoted as segmented-Q-scan. They take as
arguments a parallel variable and a set of segment bits which specify a partitioning of
the VP set into contiguous segments. Segment bits have a one at the starting location
of a new segment and zeros elsewhere. A segmented-@-scan operation restarts at the
beginning of every segment. Figure 1 illustrates the use of segmented-add-scan and
segmented-copy-scan. When processors are configured as a NEWS grid, scans within
rows or columns are special cases of segmented scans called grid-scans.

3. Data level parallel implementations. We discuss in this section the imple-
mentation of Algorithms 2.4 and 2.5 for the pure network problem on the Connection
Machine CM-2. The implementations can be easily extended to Algorithms 2.2 and
2.3 in order to handle generalized networks.

The Connection Machine is based on very simple processing elements, each run-
ning at approximately 7 MHz of clock cycle. Furthermore, the processing elements are
bit-serial and floating-point calculations are performed by a floating-point accelerator
that is shared among 32 processing elements. Hence, implementations of an algorithm
that do not fully exploit the large number of PEs are likely to be very inefficient. We
will show in this section that the algorithms of this paper can be implemented in a
way that takes advantage of the architecture. As a result, the implementations are
very efficient and solve the large test problems within a few seconds of solution time.

The key to the implementations is the layout of the problem data on some user-
specified configuration of the processing elements. The algorithm is then executed by
multiple PEs operating on local data, and communicating with each other through the
prespecified configuration grid. We first give details of dense implementations of both
algorithms, and then discuss the data structures required for sparse implementations.
The layout of the PEs for both implementations is borrowed from [27], but the memory
of each PE is partitioned into different fields as required for the entropy or quadratic
optimization algorithms, respectively.

3.1. Dense implementation of the entropy optimization algorithm. The
CM-2 is configured as a two-dimensional NEWS grid. One dimension is set equal to
the number of origin nodes mo rounded up to the nearest integer that is a power

MASSIVELY PARALLEL TRANSPORTATION ALGORITHMS 387

Axis

Axis

Context flag

Memory fields

scale

FIG. 2. NEWS grid configuration and memory partitioning for dense implementation of the
entropy optimization Algorithm 2.4.

of two, and the other dimension is set equal to the number of destination nodes mD
rounded up in the same fashion. Virtual processors outside the mo x mD grid have
their context flags set to 0 and hence do not participate in the computations. The
memory of virtual processor with NEWS address (i, j) is partitioned into the following
data fields:

1. Supply and demand, s and d.
2. pii, pij, and r to store the dual prices, N, D, and P.
3. upp to store the upper bound u.
4. Current iterate x.
5. A scaling factor scale used to store p, a, or intermediate results.
The configuration of the CM-2 as a two-dimensional grid and the memory par-

titioning of each virtual processor are illustrated in Fig. 2. One iteration of entropy
optimization Algorithm 2.4 is executed as follows:

Step 1" A spread-with-add operation along the 1-axis of the geometry computes the
k for each origin node (i.e., each row of the grid). Thispartial sums

result is spread to the scale memory fields of all VPs in the same row.
A division operation of local fields s by scale computes the scaling factor
(pk of (60)), which again is stored in memory field scale. The scaling factor

388 STAVROS A. ZENIOS AND YAIR CENSOR

/* Scaling of origin nodes */
CM_spread_with f add_IL(scale x, axis_news[l], S, E);
CM f sub mult iL(scale, s scale odeg S, E)
CM f mult add iL(x invcfl scale, x S, E);
CM f subtract 2 IL(pii, scale S, E);

/* Scaling of destination nodes */
CM_spread_with f add_iL(scale x, axis_news[0], S, E);
CM f sub mult iL(scale, d scale ideg S, E)
CM f mult add iL(x invcfl scale x S, E);
CM f subtract 2 IL(pij, scale S, E)

/* Scaling of bounds */
CM f multiply. 3 IL(scale, cfl x
CM f negate 1 IL (scale
CM f max 2 IL (scale, r
CM f sub mult IL (scr upp x, cfl
CM f min 2 IL (scale, scr
CM f mult add IL (x invcfl, scale, x
CM f subtract 2 IL(r scale

S, E) /* Lower bound */
S, E)
S, E)
S, E) /* Upper bound */
S, E)
S, E); /* Scale */
S, E)

FIG. 3. C/Paris implementation of entropy optimization Algorithm 2.4.

/* Scaling of origin nodes */
CM_spread_with f add_IL(scale x, axis_news[l], S, E);
CM f divinto 2 IL (scale s S, E)
CM f multiply_2_iL (x scale S, E)
CM f divinto 2 IL (pii scale S, E)

/* Scaling of destination nodes */
CM_spread_with f add_iL(scale x, axis_news[0], S, E);
CM f divinto 2 IL (scale d S, E)
CM f multiply. 2 IL (x scale S, E)
CM f divinto 2 IL (pij scale S, E);

/* Scaling of bounds */
CM f divide 3 IL (scale, upp x
CM f min 2 IL (scale, r
CM f multiply 2 iL(x scale
CM f divinto 2 IL (r scale

S, E);
S, E)
S, E);
S, E)

FIG. 4. C/Paris implementation of quadratic optimization Algorithm 2.5.

updates the local field x by multiplication and the local field pii by division.
Step 2: This step is similar to Step 1 with the exception that the spread-with-add

operation is executed along the 0-axis. The local fields used in the calculations
are those pertaining to destination nodes (i.e., d and pij).

Step 3: The ratio of local fields upp over x is stored in scale. A min operation
computes the correction term Aik/ of equation (66), which is once again stored
in scale and is used in turn to update the local value of x and r.

Figure 3 gives the C/Paris implementation of one complete iteration of the algorithm.

3.2. Dense implementation of the quadratic optimization algorithm.
The quadratic optimization algorithm is implemented using the configuration of the
CM-2 given in the previous section. The memory of each virtual processor with NEWS

MASSIVELY PARALLEL TRANSPORTATION ALGORITHMS 389

address (i, j) is partitioned into the following data fields:
1. Supply and demand, s and d.
2. pii, pij, and r to store the dual prices r rD and r.
3. upp to store the upper bound u. (The lower bound is assumed to be equal

to zero and hence it is treated as a constant.)
4. Current iterate x.
5. A scaling factor scale used to store p, a, or intermediate results.
6. Constants: two fields ideg and odeg hold the terms

1 1
and

respectively, cfl holds tvi and icfl holds 1/wi.
With his configuration of the CM-2, one ieration of the algorithm is executed

as follows:
Step 1: A spread-with-add operation along the 1-axis of the geometry computes the

partial sums Ee+ a for each origin node ti.e., each row of the grid). This

result is spread to the scale memory fields of all VPs in the same row.
The sb-mult instruction is an optimized implementation of the operation
a{x- b). It is used to compute the scaling factor p {70). The scaling factor
updates the local field a by addition and the local field pii by subtraction
({71) and t72), respectively).

Step 2: This step is similar to Step 1 with the exception that the spread-ith-add
operation is executed along the 0-axis. The local fields used in the calculations
are those pertaining to destination nodes {i.e.,d and pi} and the scaling
factor a.

Step 3: A combination of min and max operations computes the mid of equation (76)
as follows:

mid{a, b, c} max{a, min{b, c}}.

(It is easy to verify that the expression on the right is identical to the expres-
sion on the left when a _< c. To evaluate equation (76) set a --Awijxkj and
c Awj(uij -xij).) The result of the mid operation is then used to update
the local field x by a mult-add operation (77) and local field r (78).

Figure 4 gives the C/Paris implementation of one complete iteration of the algorithm.

3.3. Sparse data structures. The solution of dense transportation problems
has a natural mapping onto the two-dimensional NEWS grid. It is possible to solve
sparse transportation problems using the same data representation of 3.1 and 3.2
and turning off VPs corresponding to arcs that are not present in the transportation
graph. In essence, a sparse problem is represented as a dense problem, and operations
of the algorithm simply ignore zero values. It is possible, however, to represent the
problem as a sparse transportation graph. This representation will reduce the memory
requirements, thus allowing the solution of much bigger problems.

To represent sparse problems, we use a simplification of the data structures of
Zenios and Lasken [25], that were also used in the implementation of matrix-balancing
algorithms in Zenios [27]. While the configuration of the CM-2 as a one-dimensional
NEWS grid is identical to the one used in the matrix-balancing applications, the
data fields allocated in the memory of the virtual processors are different for each
algorithm.

390 STAVROS A. ZENIOS AND YAIR CENSOR

NEWS address

of VP

s-orig

x-orig

p-orig

p-dest

d

x-dest

s-dest

2 4 6 7 8 9 10 11 12

0 0 0 0 0

X12 X13 X14 X15 X21 X31 X42 X43 X52 X53 X54

’1 S1 S1 S1 S2 S3 84 S4 S5 S5 S5

6 9 11 2 4 7 8 10

6 7 9 2 8 10 11 4

d d d2 d2 d2 d3 d3 d3 d4 d4 d5

X21 X31 X12 X42 X52 X13 X43 X53 X14 X54 X15

0 0 0 0 0

FIG. 5. Representation of a sparse transportation problem.

In this sparse implementation we use VPs in the one-dimensional NEWS grid to
operate only on arcs that are present in the transportation graph. Every arc is stored
twice: once in a format that allows efficient execution of iterations over the origin
nodes and once in a format that allows efficient execution of the iterations over the
destination nodes. This scheme has some redundancy in the use of virtual processors,
but allows the efficient use of segmented-scan operations along the axis of the NEWS
grid, as explained later.

Figure 5 illustrates the sparse representation of a small problem. The memory of
each VP is partitioned into the following data fields:

1. Field s-orig of segment bits. It is used to partition the VP set into segments
such that VPs in the th segment correspond to arcs (i, j) for all j E 5/+.

2. Field x-orig that holds the value of the current iterate xkj. The entries are
sorted by origin node: arcs outgoing from node belong to the same segment
as delimited by s- orig.

3. Field s holds the supply values si. All VPs that correspond to the same
node (i.e., are in the same row segment) hold identical values in this field.

4. A second field of segment bits s-dest partitions the VP set into segments,
such that VPs in the j th segment correspond to arcs (i, j) for all E 5-.

k sorted by destination5. Field x-dest holds the value of the current iterate xij
node: arcs incoming into node j belong to the same segment as delimited by
s-dest. This field provides redundant information, since the nonzero entries

MASSIVELY PARALLEL TRANSPORTATION ALGORITHMS 391

/* Get send address coordinates for permutation arrays

CM deposit news_coordinate_IL (vec_geometry send orig
vec_axis_news[axis] p_org LINT

CM_deposit_news coordinate IL (vec_geometry send dest
vec_xis_news [axis] p_det LINT

/* Scaling of origin nodes */

CM_scan_with f add_iL (scale x_orig vec_axis_news [axis
S_REAL E_REAL CM_upward
CM inclusive, CM start bit, s orig

CM f divinto 2 IL (scale s S REAL E REAL);

CM_scan_with_copy_iL (scale scale vec axis news [axis
REAL CM_downward CM_Tncluive
CM start bit, cs orig

CM f multiply 2 IL (x_orig scale S_REAL E_REAL

/* Copy x from origin to destination */
CM_send_iL (x_dest send_orig x_orig REAL 0);

/* Scaling of destination nodes */

CM scan with f add iL(scale x dest vec axis news[axis],
S_REAL E_REAL CM_upward
CM inclusive, CM start uit, s dest

CM f divinto 2 IL (scale d S REAL E REAL);

CM scan_with_copy_iL (scale scale vec axis news[axis
REAL CM_downward CM_inclusive
CM start bit, s dest

CM f multiply. 2 IL (x_dest scale S_REAL E_REAL);

/* Copy x from destination to origin */
CM send IL (x orig send dest x dest REAL 0

FIG. 6. Sparse implementation of entropy optimization Algorithm 2.4 in C/Paris.

have already been stored by origin node in field x-orig.
6. Field d holds the demand values dj. All VPs that correspond to the same

column (i.e., are in the same segment as delimited by s-dest) hold identical
values.

7. Field scale is used as a register for temporary storage of intermediate results.
8. Two fields p-orig and p-dest hold pointers to map the nonzero entries from

the origin field x-orig to the destination field x-dest and vice versa.

With this representation of sparse problems, one iteration of the entropy Algo-
rithm 2.4 is executed as shown in Fig. 6. First the permutation arrays p-orig and
p-dest, which are pointers to the NEWS addresses, are translated into send addresses.
This allows transferring of data between the row and column representation using the
routers. A segmented-add-scan operation on field x-orig over the origin node seg-
ments computes the sum of outgoing flows from each node. This partial sum is then

392 STAVROS A. ZENIOS AND YAII:t CENSOR

used to divide the supply field s, thus computing the scaling factors. Note that only
the last processor in each segment has the sum of all the outgoing flows and hence only
the scaling factor of the last VP is the correct one. A reverse segmented-copy-scan is
used to copy the correct scaling factor to all VPs in the same segment. Finally, each
VP proceeds to multiply its copy of the current iterate x-orig with its local copy of
the scaling factor.

Before the algorithm can proceed with the iteration over destination nodes the
current iterate x-orig, just scaled following the origin node operations, have to be
copied into field x-dest. This is a rearrangement of the contents of the memory field
x-orig according to the sparsity structure of the graph. The NEWS addresses stored
in the pointer field p-orig have already been converted into send addresses and router
communications are used to copy the nonzero entries of the matrix from the row field
x- orig to the column field x- dest.

4. Computational results. We implemented the algorithms for pure network
problems on a Connection Machine CM-2, as explained in the previous section. The
algorithms were implemented in C/Paris under release Bh.1, microcode 5110, using
single precision arithmetic (i.e., 23 digits in the mantissa). The programs were com-
piled with the optimization flags -O and object code was optimized for the CM-2
(-cm2 option of the compiler). All experiments were carried out on the CM-2 at the
North-East Parallel Architectures Center (NPAC) at Syracuse University, Syracuse,
NY. The particular configuration has 32K PEs and each PE has 8Kbytes of local mem-
ory. The front end is a VAX8700 running Unix BSD4.2. All times are in seconds,
exclusive input and output, and were obtained using the Paris instructions CM-start-
timer and CM-stop-timer. The relaxation parameter is set equal to Ak A 1 in all
experiments.

4.1. Test problems. Test problems for the entropy optimization algorithm were
randomly generated as follows: For a given dimension of the transportation problem,
we specify the density factor of the transportation graph, the range of flows on each
arc, and the range of cost coefficients. For every origin-destination pair, the generator
will either add an arc with flow uniformly distributed in the prespecified range, or will
determine that no arc exists. Presence or absence of arcs is determined by the density
factor. The flows on all the arcs incident to a node are added up to determine the
supply or demand at each node. The flows are then discarded, and the coefficients
{aj} are generated for all arcs from the prespecified cost range. The characteris-
tics of the entropy optimization problems are summarized in Table 1. Coefficients
{aij} are uniformly distributed in the range 1 to 10. The entropy test problems are
uncapacitated.

The quadratic optimization problems were generated by a modified version of
NETGEN of Klingman, Napier, and Stutz [17]. The code was modified to generate
coefficients for a quadratic function of the form: 1/2wx2 + cx. The coefficients w
are randomly generated from the interval [5, 10], c is generated from the interval
[1, 1000], and supply/demand vectors have all their components in the interval [1,
1000]. We use the test problems generated by Chajakis and Zenios [9] to evaluate
dual relaxation algorithms for strictly convex network problems on a shared memory
multiprocessor. Hence, a direct comparison of the two approaches is possible. The
parameters specified for the NETGEN code are identical to those used by Tseng [23]
in his experiments with dual coordinate ascent methods for problems with strictly

MASSIVELY PARALLEL TRANSPORTATION ALGORITHMS 393

TABLE 1
Test problem characteristics: Entropy optimization problems.

Problem

ENT1
ENT2
ENT3
ENT4
ENT5
ENT6
ENT7
ENT8
ENT9
ENT10
ENTll
ENT12

Supply/Demand
range
0- 1238
0- 1178
0- 1301
0- 1021
0- 1009
0- 1043
0- 974
0- 1021
0- 1646
0- 1680
0- 2088
0- 1669

Number of
nodes

500 x 500
750 x 750
1000 x 1000
1250 x 1250

5OO
75O
1000
1250

500
750
1000
1250
1000 1000
1000 1000
1000 1000
1000 1000

Number of
arcs
5016
7355
9965
12318
9950
14453
19600
24239
39064
97752

360219
601131

TABLE 2
Test problem characteristics: Quadratic optimization problems.

Problem Nodes Arcs
TSENG1 500 500
TSENG2 750 750
TSENG3 1000 1000
TSENG4 1250 1250
TSENG5 500 500
TSENG6 750 750
TSENG7 1000 1000
TSENG8 1250 1250

5063
7611
10126
12665
10051
15086
20134
25153

convex costs. Hence, the results of the two methods can again be compared. The
characteristics of the quadratic optimization problems are summarized in Table 2.

4.2. Solving the entropy optimization problems. The entropy optimization
D 1 1 and 0 for all (i, j) Ealgorithm was initialized with N 1, xij aij

The termination criteria are 1-pi I_< 10-6 and 1-aj I<_ 10-6 With this
termination criteria, the final error defined by

max{ si +x,s dj-’]xi}d
is always less than 10-6 Testing the termination criteria is an expensive step, since
it involves communication among all the processors of the grid. Hence, we test for
convergence only every fifth iteration. Table 3 summarizes the performance of the
algorithm on the entropy test problems. Under the column "No. of Iterations" we
report the number of iterative steps of the parallel algorithm over all the nodes of
the graph. For example, 20 iterations on problem ENT4 correspond to scaling and
updating 20 2500 50000 nodes.

To obtain an estimate of the solution time when solving the test problems on a
fully configured CM-2 with 64K PEs we solved one of the test problems (ENT1) using

Numerical results appeared in the technical report by Tseng, but are not included in the pub-
lished article. The results in Table 5 were obtained from the technical report [23].

394 STAVI:tOS A. ZENIOS AND YAIR CENSOR

TABLE 3
Solution of the entropy optimization test problems using the dense C/Paris implementation

Algorithm 2.4 on a 32K CM-2.

Problem

ENT1
ENT2
ENT3
ENT4
ENT5
ENT6
ENT7
ENT8
ENT9
ENT10
ENT11
ENT12

VP ratio

8
32
32
128

8
32
32
128

iterations
15
15
20
20
10
10
10
10

32
32
32
32

10
5
5
5

CM time

0.09
0.29
0.39
2.00
0.06
0.20
0.20
1.00
0.21
0.11
0.10
0.11

Total
time
0.10
0.30
0.39
2.00
0.07
0.20
0.20
1.00
0.22
0.13
0.11
0.11

Estimated CM time
on 64K CM-2

0.05
0.15
0.19
0.75
0.03
0.10
0.10
0.38
0.11
0.06
0.05
0.06

different VP ratios (ranging from 8 to 256). The degradation in performance of the
algorithm as the VP ratio increases is recorded in Fig. 7. From this figure we compare
the solution time for solving a given problem under one VP ratio on the 32K CM-2,
with the solution time for the same problem on the 64K CM-2 under a different VP
ratio (equal to one half of the VP ratio on the 32K CM-2). This information has been
provided for all the test problems in Table 3. Finally, we mention that the algorithm
achieves a computing rate of approximately 600 MFLOPS on the 64K CM-2 when
solving 1000 1000 dense problems. The FLOPS rate is estimated by multiplying the
total number of Paris floating-point instructions by the number of VPs and dividing
by the CM time. The useful computing rate decreases proportionally to the sparsity
of the problem. For example, when solving a 1000 1000 problem with 500,000 arcs
(i.e., 50 percent sparse), the algorithm achieves a computing rate of 300 MFLOPS
since only half of the one million VPs are active.

4.3. Solving the quadratic optimization problems. The quadratic opti-
mization algorithm was initialized with o 0, 7rD --0,/’ 0, and x -(cj/wj)
for all (i, j) E $. The termination criteria are"

mx 8i- E xij dj E xij < 1- 8i + E dJi,j n

The algorithm terminates following a projection on the bounds, hence the bounds
are satisfied exactly. Termination conditions are tested every fifth iteration. Table
4 summarizes the performance of the dense implementation of the algorithm on the
quadratic test problems %r termination tolerances e equal to 10-3 10-4 and 10-6

respectively. It is quite remarble that the algorithm can achieve a very tight toler-
ance (i.e., 1 10--6), even when implemented using single precision arithmetic. We
observe, however, a significant increase in the number of iterations with the increase
of the desired level of accuracy.

The TSENG test problems have very large upper bounds. While several variables
are at the lower bound (i.e., 0) at the optimal solution, none of the upper bounds are
active. We modified TSENG5 to force some of the upper bounds to be active at the

MASSIVELY PARALLEL TRANSPORTATION ALGORITHMS 395

CM time at shown VP ratio

CM time at VP ratio 32

7-

6-

5-

4.

3.

2-

1-

Linear

30 60 90 120 150 10 2i0 20
VP ratio

FIG. 7. Degradation in performance of the C/Paris implementation of the entropy optimization
Algorithm 2.4 with varying VP ratios.

CM time at shown VP ratio
CM time at VP ratio 16

L

20 40 60 80 100 120 140

VP ratio

FIG. 8. Degradation in performance of the C/Paris implementation of the quadratic optimiza-
tion Algorithm 2.5 with varying VP ratios.

396 STAVROS A. ZENIOS AND YAIR CENSOR

TABLE 4
Solution of the quadratic optimization test problems with different levels of accuracy using the

dense C/Paris implementation of Algorithm 2.5 on a 32K CM-2.

Problem

TSENG1
TSENG2
TSENG3
TSENG4
TSENG5
TSENG6
TSENG7
TSENG8

VP ratio

8
32
32
128
8
32
32
128

el 10-3

Itns. CMtime
250 1.91
300 6.52
250 5.43
250 18.64
200 1.53
400 8.71
250 5.43
200 15.05

el 10-4

Itns. CMtime
360 3.06
3000 66.98
530 12.01
400 30.53
650 5.86
890 22.00
790 17.51
850 66.27

el 10-6

Itns. CMtime
850 6.75
5000 121.58
1200 29.82
4050 353.61
1000 7.84
1700 38.97
1250 27.95
1150 93.48

optimal solution, by reducing the upper bounds. When the number of active bounds
would increase from 0 to 15 percent of the total number of variables, we observed
a very small increase in the number of iterations. As the number of variables with
active bounds was increased to 20 percent the test problem would become infeasible.

To obtain an estimate of the solution time when solving the test problems on a
64K CM-2, we conducted the experiment outlined in 4.2. Solving problem TSENG1
with different VP ratios, we obtain the curve of Fig. 8. The results of the figure are
used in estimating the solution time on a 64K CM-2 when the VP ratio is half of the
ratio needed on a 32K CM-2: the CM times reported in Table 4 for the 32K CM-2
should be divided by 1.7 to obtain estimated run times on the 64K CM-2.

The algorithm achieves a peak computing rate of approximately 1.75 GFLOPS
when solving dense 1000 1000 problems on the 64K CM-2. The FLOPS rate is
estimated by multiplying the total number of Paris floating-point instructions by the
number of VPs and dividing by the CM time. The useful computing rate decreases
proportionally to the sparsity of the problem. For example, when solving a 1000

1000 problem with 500,000 arcs (i.e., 50 percent sparse) the algorithm achieves a
computing rate of 800 MFLOPS since only half of the one million VPs are active.
An optimal implementation is also possible (see McKenna and Zenios [18]), which
runs at 3 GFLOPS. Hence, all the times reported in Table 4 would be reduced by
a factor of 0.58 if they were obtained with the optimal implementation. However,
the latter implementation was carried out in CMIS microcode and direct timings are
not reported here, since we want to emphasize the efficiency of implementations in a
high-level language.

4.4. Comparing the dense with the sparse implementations. The bipar-
tite transportation problems match naturally with the two-dimensional NEWS grid
of the Connection Machine. However, for the very sparse problems we are solving
here, the NEWS grid representation could be inefficient. Especially, for the bigger
TSENG4 and TSENG8 problems the algorithm is using a NEWS grid of dimension
2048 2048 for a total of 4 million virtual processors. For TSENG4 only 12665 VPs
are active and for TSENG8 only 25153. In contrast, the sparse implementation uses
only mo / mD + 2n virtual processors, rounded up to the nearest integer power of 2.
For TSENG4 and TSENG8 this corresponds to 32K and 64K virtual processors, re-
spectively. Hence, for a given machine size the sparse implementation runs at a much
lower VP ratio than the dense implementation. However, the sparse implementation
uses a general router communication step which is substantially more expensive than

MASSIVELY PARALLEL TRANSPORTATION ALGORITHMS 397

TABLE 5
Comparing the dense code on a 32K CM-2 with the sparse code on the 16K CM-2. Solution

times in CM seconds.

Problem Dense code Sparse code
VP ratio CM time VP ratio CM time

TSENG1
TSENG2
TSENG3
TSENG4
TSENG5
TSENG6
TSENG7
TSENG8

8
32
32
128

8
32
32
128

1.91
6.52
5.43

18.64
1.53
8.71
5.43

15.05

1.55
2.45
2.03
2.06
1.63
3.43
3.45
2.85

the NEWS grid operations of the dense implementation.
To compare the dense with the sparse implementations we solved the test prob-

lems at a tolerance of 1 10-3. The sparse code was executed on a 16K CM-2, and
run at VP ratios ranging from 1 to 4. The dense code was executed on the 32K CM-2,
and run at VP ratios ranging from 8 to 128. Results are summarized in Table 5. We
observe that the sparse code is significantly faster for most problems. TSENG5 is the
only exception to this observation. For this problem the dense code runs at a VP
ratio of 8 and the sparse code at a VP ratio of 2. For this difference in VP ratios
the efficiency of the NEWS communications in the dense code balances the lower VP
ratio of the sparse code.

4.5. Comparisons with other methods. We compare the results from Ta-
ble 5 with the work reported in Chajakis and Zenios [9] and Wseng [23] (see footnote
1). Chajakis and Zenios use a dual relaxation algorithm, specialized for vector and
parallel computing on an Alliant FX/8. Their most efficient implementation on eight
processors is compared to the results with our quadratic programming algorithm.
Tseng is using a dual relaxation algorithm on a microVAX-II workstation. He im-
plements two versions of the algorithm, one with exact line searches (LNS1) and one
with a simple line search procedure that is easy to implement but is inexact (LNS2).
In Table 6 we summarize the solution times with all three methods. (Termination
tolerance el 10-3 was used by all authors.)

Finally, we generated and solved some very large quadratic transportation prob-
lems according to the specifications given in the paper by Nagurney, Kim, and Robin-
son [20, p. 58, Table 1, Growth Factor=l]. These problems were solved by Nagurney,
Kim, and Robinson using a row-equilibration algorithm on an IBM 3090 vector su-
percomputer, with a termination tolerance 10-2. A smaller problem has also
been solved by Klincewicz [16] on the IBM 3090 using an exact Newton algorithm.
(Klincewicz’s termination criteria are not directly comparable to ours.) The results
from all three approaches are summarized in Table 7.

5. Conclusions. Several conclusions can be drawn from the results of this study.
First, the row-action algorithm is a simple version of the relaxation algorithms of
Tseng and Chajakis and Zenios. As such, it can be implemented on a fine-grain
SIMD architecture like the Connection Machine, while the relaxation algorithm with
line search can be implemented very effectively on a coarse-grain MIMD architec-
ture like the Alliant FX/8. We observe from the results of Table 6 that the mas-
sively parallel implementation of the simple algorithm can significantly outperform

398 STAVROS A. ZENIOS AND YAIR CENSOR

TABLE 6
Solution times o] the quadratic optimization algorithm on the CM-2 compared with the results

reported in Chajakis and Zenios [9] on an Alliant FX/S, and the results of Tseng [23] on a microVAX-
II.

Problem

TSENG1
TSENG2
TSENG3
TSENG4
TSENG5
TSENG6
TSENG7
TSENG8

CM-2
16K PEs 32K PEs

1.55
1.47
1.22
1.23
0.98
2.05
2.07
1.71

1 proc.
Alliant FX/8

8 proc.
1.55
2.45
2.03
2.06
1.63
3.43
3.45
2.85

15.63
44.03
38.26
43.14
27.60
39.51
52.74
71.77

3.01
14.47
7.31
9.24
4.33
6.61
9.15

11.41

MicroVax II
LNS1
27.07
42.40
58.18
70.67
54.40
78.92

106.24
135.62

LNS2
55.86
83.59
130.50
127.34
139.34
188.49
259.24
307.63

TABLE 7
Comparing the row-action algorithm on the CM-2 with the equilibration algorithm of Nagurney,

Kim, and Robinson [20] and the exact Newton algorithm of glincewicz [16] on the IBM 3090 .for the
solution of dense quadratic optimization problems. Times in CM and CPU hrs:min:sec, respectively.

Problem
size

500 x 500
1000 x 1000
2000 x 2000

Row-action
CM-2
0:00:18
0:00:22
0:00:47

Equilibration
IBM 3O90
0:01:09
0:08:03
1:03:43

Exact Newton
IBM 3090
0:30:00
NA
NA

the coarse-grain parallel implementation of the more complex algorithm. Secondly,
the results of Table 7 quote two of the most recent papers on the solution of very
large quadratic transportation problems using vector supercomputers, like the IBM
3090. The massively parallel implementation of the simple row-action algorithms once
more outperforms the more complex algorithms implemented on vector supercomput-
ers. Thirdly, we observe from both tables that the massively parallel algorithms are
insensitive to the problem size: TSENG8 is solved in 1.71 seconds, which is slightly
higher than the 1.55 seconds required for the solution of the smaller TSENG1. The
increase in solution time with problem size observed in Table 7 is much slower with
the massively parallel algorithm, than with the equilibration algorithm on the vector
supercomputer.

In empirical studies of the sort reported in the second half of this paper, one wants
to compare the best algorithms implemented on different computer architectures. Of
course, such a task is very difficult since it is by no means clear which algorithm
is "best" for these applications. Our work has shown that the simple row-action
algorithms on a massively parallel architecture can outperform by a large margin
serial algorithms on vector supercomputers (like the IBM 3090) and competing parallel
algorithms (i.e., relaxation) on coarse-grain parallel architectures.

Of course, any comparison among competing computer architectures should take
into account the relative price/performance ratio. It is worth pointing out that the
vector supercomputer and the coarse-grain architecture can be viewed as general pur-
pose systems, while it is not clear at present whether the massively parallel SIMD
architecture can solve as broad a range of applications. Such issues, although im-
portant, are beyond the scope of our study. However, our results provide additional
evidence to an increasing body of literature that claims that massively parallel com-

MASSIVELY PARALLEL TRANSPORTATION ALGORITHMS 399

puters with suitably structured numerical algorithms can significantly outperform
vector supercomputers and coarse-grain parallel systems.

Acknowledgments. We would like to acknowledge insightful comments from
two anonymous referees that led to substantial improvements in our presentation.
Access to the Connection Machine CM-2 was made possible through the North-
East Parallel Architectures Center (NPAC) of Syracuse University, Syracuse, NY,
and Thinking Machines Corporation, Cambridge, MA.

REFERENCES

[1] D. P. AHLFELD, R. S. DEMBO, J. M. MULVEY, AND S. A. ZENIOS, Nonlinear programming on
generalized networks, ACM Trans. Math. Software, 13 (1987), pp. 350-368.

[2] A. BACHEM AND B. KORTE, Minimum norm problems over transportation polytopes, Linear
Algebra Appl., 31 (1980), pp. 103-118.

[3] D. P. BERTSEKAS, P. HOSSEIN, AND P. TSENG, Relaxation methods for network flow problems
with convex arc costs, SIAM J. Control Optim., 25 (1987), pp. 1219-1243.

[4] D. P. BERTSEKAS AND J. N. TSITSIKLIS, Parallel and Distributed Computation: Numerical
Methods, Prentice Hall, Englewood Cliffs, NJ, 1989.

[5] G. E. BLELLOCH, Vector Models .for Data-Parallel Computing, The MIT Press, Cambridge,
MA, 1990.

[6] L. M. BREGMAN, The relaxation method for finding the common point of convex sets and its
application to the solution of problems in convex programming, USSR Comput. Math. and
Math. Phys., 7 (1967), pp. 200-217.

[7] Y. CENSOR AND A. LENT, An iterative row-action method for interval convex programming, J.
Optim. Theory Appl., 34 (1981), pp. 321-353.

[8] Y. CENSOR, A. R. DE PIERRO, T. ELFVING, G. T. HERMAN, AND A. N. IUSEM, On iterative
methods for linearly constrained entropy maximization, in Numerical Analysis and Math-
ematical Modelling, Vol. 24, A. Wakulicz, ed., Banach Center Publications, PWN-Polish
Scientific Publishers, Warsaw, Poland, 1990, pp. 145-163.

[9] E. D. CHAJAKIS AND S. A. ZENIOS, Synchronous and asynchronous implementations of relax-
ation algorithms for nonlinear network optimization, Parallel Comput., (1991), to appear.

R. S. DEMBO, J. M. MULVEY, AND S. A. ZENIOS, Large scale nonlinear network models and
their application, Oper. Res., 37 (1989), pp. 353-372.

W. ELFVING, An algorithm .for maximum entropy image reconstruction from noisy data, Math.
Comput. Modelling, 12 (1989), pp. 729-745.

L. R. FORD, JR. AND D. R. FULKERSON, Flows on Networks, Princeton University Press,
Princeton, NJ, 1962.

F. HARRIGAN AND I. BUCHANAN, A quadratic programming approach to input-output estimation
and simulation, J. Regional Science, 24 (1984), pp. 339-358.

W. D. HILLIS, The Connection Machine, The MIT Press, Cambridge, MA, 1985.
L. V. KANTOROVICH, On the translocation of masses, Compt. Rend. Acad. Sci. U.R.S.S., 37

(1942), pp. 366-422.
[16] J. G. KLINCEWICZ, Implementing an exact Newton method for separable convex transportation

problems, Networks, 19 (1989), pp. 95-105.
[17] D. KLINGMAN, A. NAPIER, AND J. STUTZ, NETGEN--a program for generating large-scale

un capacitated assignment, transportation, and minimum cost]tow network problems,
Management Science, 20 (1974), pp. 814-822.

[18] M. MCKENNA AND S. A. ZENIOS, An optimal parallel implementation of a quadratic transporta-
tion algorithm, in Fourth SIAM Conference on Parallel Processing for Scientific Computing,
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990, pp. 357-363.

[19] D. L. MILLER, J. F. PEKNEY, AND G. L. THOMPSON, Solution of large dense transportation
problems using a parallel primal algorithm, Management Science Research Report No. 546,
Carnegie-Mellon University, Pittsburgh, PA, 1988.

[20] A. NAGURNEY, D-S. KIM, AND A. G. ROBINSON, Serial and parallel equilibration of large-scale
constrained matrix problems with application to the social and economic sciences, Internat.
J. Supercomput. Appl., 4 (1990), pp. 49-71.

[21] A. OHUCHI AND I. KAJI, Lagrangian dual coordinatewise maximization algorithm for network
transportation problems with quadratic costs, Networks, 14 (1984), pp. 515-530.

[22] M. H. SCHNEIDER AND S. A. ZENIOS, A comparative study of algorithms .for matrix balancing,
Oper. Res., 38 (1990), pp. 439-455.

[10]

[11]

[12]

[13]

[14]

400 STAVROS A. ZENIOS AND YAIR CENSOR

[23] P. TSENG, Dual ascent methods for problems with strictly convex costs and linear constraints: a

unified approach, SIAM J. Control Optim., 28 (1990), pp. 214-242; also appeared as Tech.
Report LIDS-P-1792, Laboratory for Information and Decision Systems, Massachusetts
Institute of Technology, Cambridge, MA, July 1988.

[24] P. TSENG AND D. P. BERTSEKAS, Relaxation methods for problems with strictly convex costs
and linear inequality constraints, Math. Oper. Res., to appear.

[25] S. A. ZENIOS AND R. A. LASKEN, Nonlinear network optimization on a massively parallel
Connection Machine, Ann. Oper. Res., 14 (1988), pp. 147-165.

[26] S. A. ZENIOS AND J. M. MULVEY, Relaxation techniques]or strictly convex network problems,
Ann. Oper. Res., 5 (1986), pp. 517-538.

[27] S. A. ZENIOS, Matrix balancing on a massively parallel Connection Machine, ORSA J. Com-
put., 2 (1990), pp. 112-125.

[28] G. T. HERMAN AND A. LENT, A family of iterative quadratic optimization algorithms for
pairs of inequalities, with application in diagnostic radiology, Math. Programming Stud.,
9 (1978), pp. 15-29.

[29] C. HILDRETH, A quadratic programming procedure, Naval Res. Logist. Quart., 4 (1957), pp. 79-
85. Erratum, ibid., p. 361.

[30] A. LENT AND Y. CENSOR., Extensions of Hildreth’s row-action method for quadratic program-
ming, SIAM J. Control Optim., 18 (1980), pp. 444-454.

SIAM J. OPTIMIZATION
Vol. 1, No. 3 pp. 401-423, August 1991

()1991 Society for Industrial and Applied Mathematics
OO6

ON DUAL CONVERGENCE AND THE RATE OF PRIMAL
CONVERGENCE OF BREGMAN’S CONVEX PROGRAMMING

METHOD*

ALFREDO N. IUSEM

Abstract. Bregman’s method is an iterative algorithm for solving optimization problems with
convex objective and linear inequality constraints. It generates two sequences: one, the primal one,
is known to converge to the solution of the problem. Under the assumption of smoothness of the
objective function at the solution, it is proved that the other sequence, the dual one, converges to
a solution of the dual problem, and that the rate of convergence of the primal sequence is at least
linear.

Key words, convex programming, iterative algorithms, entropy maximization, large and sparse
matrices

AMS(MOS) subject classification. 10C30

1. Introduction. Bregman’s method is an iterative algorithm for solving opti-
mization problems with convex objective and linear inequality constraints. It generates
two sequences: one of so-called primal variables, which, under adequate assumptions,
converges to a solution of the problem, and another of so-called dual variables, asso-
ciated with the constraints, which play the role of Kuhn-Tucker multipliers.

Constraints are used one at a time, and the constraint matrix is not changed along
the algorithm, thus preserving sparsity and making the method useful for problems
with a huge number of variables and constraints. Methods with these characteristics
are called "row-action" algorithms (see [3]).

The algorithm has been mostly applied to entropy maximization problems, which
arise in a large variety of applications; see, e.g., [8], [10], [11], and [16].

Relevance of the method has been enhanced by the fact that some other methods
for entropy maximization (like MART, widely used in image reconstruction) have
been shown to be particular instances of Bregman’s method with a special relaxation
strategy (see [4], [5]), and the theory behind Bregman’s method has been used to
extend convergence results for such methods.

The status of the convergence theory of Bregman’s method is the following: under
reasonable hypotheses the primal sequence converges to the solution of the problem
and it is known that if the dual sequence converges, its limit is a dual solution. With
additional conditions on the constraints (like nonnegativity of the matrix), it can be
proved that the dual sequence is bounded and that the difference between consecutive
iterates tends to zero, but even in such favorable cases the issue of convergence of the
dual sequence was until now an open problem.

The question is relevant because in some cases the dual problem may be of in-
terest on its own. Recent studies on the duality of optimization problems involving
entropy functionals (see [1]) led to formulations whose duals are problems that can be
solved with Bregman’s method. In [15] we present an algorithm for maximum likeli-
hood estimation, akin to the Expectation-Maximization algorithm, whose convergence

*Received by the editors December 11, 1989; accepted for publication (in revised form) De-
cember 18, 1990. This research was partially supported by Conselho Nacional de Desenvolvimento
Cientffico e Tecnolhgico grant 301280/86.

Instituto de Matemtica Pura e Aplicada, Rio de Janeiro 22460, Brazil.

401

402 ALFREDO N. IUSEM

results from the fact that the sequence it generates can be seen as the dual sequence
of Bregman’s method when applied to Burg’s entropy.

We prove convergence of the dual sequence with the additional hypothesis of
smoothness of the objective function at the solution. This condition is essential, as
shown by a counterexample presented in 8. In order to prove dual convergence, we
establish first that the rate of convergence of the primal sequence under that hypothesis
is linear, an important result on its own. Our proof is based on the approximation of
the objective function by a quadratic one near the solution and the linear convergence
rate of the quadratic version of Bregman’s method, known as Hildreth’s (see [14]).

In this paper and <, denote the Euclidean norm and inner product, V and
V2 are the gradient and Hessian matrix of a function, superindex T denotes transpose,
R>o is he nonneive orhn of Rn nd e is he vector wih components ej
(Ironeeker’s delta).

2. Bregman functions and Bregman’s algorithm. Consider an open and
convex set S c R’ with closure S and a function f" S R.

Define:

(1) DI," S x S ----> R, Df(x,y f(x) f(y) (Vf(y),x y)

Rl(y,h) {x 6 S" Dl,(x,y) <_ h}
R2(x,h) {y e S" Dt,(x,y) <_ h}.

DEFINITION 1. A function f is said to be a Bregman function with zone S if and
only if

(i) f is continuously differentiable on S.
(ii) f is strictly convex and continuous on .
(iii) For every h R, the level sets R(y,h), R2(x,h) are bounded for every

y S, every x S, respectively.
(iv)

""-’-- 0.yk k--"* y* 6 S =} Dr(y*, yk)
k---}

(v) If
Dt,(xk yt:) O, yk y. S

and {xk} is bounded, then
xk ---, y*.

DI is used as a sort of distance, because Dt,(x y) >_ 0 and D.f(x, y) 0 if and
only if x y.

Given a hyperplane L {x Rn (a,x) =/} and a point y S we say that x
is the Bregman projection of y onto L if and only if

(2) x argmin Di(z, y).
z6LS

Existence and uniqueness of Bregman projections when L N S = are guaranteed
by Lemma 2.2 of [7]. By definition, the Bregman projection of a point in S lies in .
For Bregman’s algorithm to work, we need to have such projections in S. So we have
the following definition.

DEFINITION 2. A Bregman function f is said to be strongly zone consistent with
respect to the hyperplane L if and only if for all y S and any hyperplane L’ parallel

ON THE CONVERGENCE RATE OF BREGMANS METHOD 403

to L that lies between y and L, L N S is nonempty and the Bregman projection of y
onto L belongs to S.

TakeAERmn,bERm. Leta be the rows of A. Assumeai0 (lgi<m).
Let

(3) Li (x Rn (x,a) bi} (1 < g m).

We make an additional assumption, concerning both f and A, b:
(vi) f is strongly zone consistent with respect to Li (1 < < m).
Bregman’s algorithm is used to solve the problem:

(4) rain f(x)
(5) s.t Ax <_ b

e s.

Bregman’s algorithm generates two sequences: (xk} C Rn and (zk } C Rm, called
the primal and dual sequences, respectively. A general description of the algorithm
is the following: at iteration k, pick up an index i(k) in the set (1,... ,m} M and
compute xk+l as the Bregman projection of xk onto a hyperplane L parallel to Li(k)
and lying between xk and Li(k) whose exact location depends upon the value of zk.
Formally the algorithm is as follows:

(a) Control sequence. Consider a sequence i(k) (k -0, 1,...) of elements in M such
that there exists an integer r so that for all M and all k > 0, i(/) for some
I between k + 1 and k + r. Such a sequence is called almost cyclical and r is the
constant of almost cyclicality, i(k) indicates the row of A to be used in the kth
iteration. Every row is used at least once in any cycle of r consecutive iterations.

(b) Relaxation. Consider a sequence of real numbers (cck} C (c, 1], for some c > 0.
The ak’s will be called relaxation parameters.

(c) Initialization. Take z R0, and let x be such that Vf(x) --ATz.
(d) Iterative step. Given (xk, z) Rn+m"

(i) Solve the system:

Vf(t)- #ai(k) Vf(xk),

(8) (t, ai(k)} akbi(k) + (1 ak) (xk, ai(k) }

in the unknowns t, #. Let #k # and

(9) 7k min{z/k(k), #k}.

(ii) Solve the system

(10) Vf(y) Vf(xk) + 7kai(k)

in the unknown y.
(iii) Take

(11) xk+l y,

404 ALFREDO N. IUSEM

(12) zk+l zk /kei(k).

The properties of Bregman functions and hypothesis (vi) guarantee that both
systems have unique solutions. In fact, t is the Bregman projection of xk onto the
hyperplane

{x: +

parallel to Li(k) and lying between xk and Ls(k), because 0 <_ a <_ 1. The use of an
almost cyclical control sequence is convenient because in some cases the order in which
the rows of A are used may change along time. In [7] an algorithm is discussed for a
feasible region of the form b <_ Ax <_ b. Each double inequality is taken as a unique
constraint, but convergence is proved by showing that the algorithm is equivalent to
Bregman’s algorithm with 2m inequalities and a control sequence with r m + 1. If
r m the control is cyclical. Finally we note that strong zone consistence guarantees
that {xk} C S.

Bregman’s algorithm was first proposed in [2] and further analyzed in [7] (which
incorporates almost cyclical control) and [9] (which adds relaxation).

In principle, each iterative step of the algorithm requires the solution of (7)-(8),
a system of n + 1 equations in n + 1 unknowns, and, if ,k = #k, the solution of (10), a
system of n equations in n unknowns. Note that these systems are nonlinear unless f is
quadratic. Numerical solution of such systems would make the algorithm rather slow.
Fortunately, in many cases of interest the situation is not that bad. To begin with,
for many separable functions f the system Vf(x) a can be solved in closed form.

nSuch is the case, for instance, when f is Shannon’s entropy (f(x) j= xj log xj)
or Surg’s entropy (f(x) -jn= log xj). When this happens (7) and (10) are solved
immediately and substitution of (7) into (8) gives rise to a single nonlinear equation
in the real unknown #. However, even this single equation can be avoided: under
a particular choice of the sequence of relaxation parameters {ak} this equation can
be solved in closed form. Such analysis is carried over in [4] for Shannon’s entropy.
The resulting algorithm, called MART, was already known and widely used in Image
Reconstruction from Projections. The fact that it happens to be a particular case
of Bregman’s method made it possible to obtain more general convergence results.
In [5], [6] a similar approach is followed for Burg’s entropy, resulting in several new
algorithms which employ only closed formulae. Since Bregman’s method is a row-
action algorithm (see [3]) all these algorithms become preferable to other algorithms
for linearly constrained convex programming in cases where A is huge and sparse,
since A is not modified at all and therefore there is no fill-in whatsoever. The same
applies to the algorithm for Maximum Likelihood Estimation presented in [15].

A complete analysis of (7)-(12) and a proof of convergence of the sequence {xk }
can be found in [9]. We will use the following results.

PROPOSITION 1. (i) Vf(xk) ----ATzk for all k.
(ii) z >_ 0 for all k.
(iii) There exists crk such that 0

_
ak

_
ak and xk+ is the Bregman projection of

xk onto the hyperplane Lk {x" (x, hi(k)) akbi(k) + (1 ak) (Xk, as(k))}.
Lk is parallel to Li(k) and lies between xk and Ls(k).

(iv) The sequence {xk} converges to the unique solution x* of (4)-(6).
(v) If (aS(k), x} < bs(a) then #

_
O.

These statements are, respectively, Propositions 4.2, 4.3, 4.4, Theorem 4.1, and
Proposition 2.2 of [9].

ON THE CONVERGENCE RATE OF BREGMAN’S METHOD 405

3. Bregman’s algorithm with quadratic objective. Consider a function
](x) + qTx + 1/2xTQx, with E R, q E Rn, Q E Rnn, where Q is symmetric
positive-definite. Then] is a Bregman function with

D](x, y) (x y)TQ(x y)

and it is easy to verify the following proposition.
PROPOSITION 2. The Bregman projection of x E Rn onto a hyperplane L {x:

(a, x } is the orthogonal projection of x onto L with respect to the inner product
(, IQ defined as (x, ylQ xTQy.

Proof. The proof follows immediately from (13). D
We remark that in this case the Bregman projection y of x is defined by:

aTQa
Q-a=x+

il 5,

where Q-la.
Bregman’s algorithm with a quadratic objective is known as Hildreth’s algorithm,

first presented in [12], and further analyzed in [17] (which incorporates almost cyclical
control) and [13] (where a simultaneous, rather than sequential, version is presented).

We end this section with some consequences of Propositions 1 and 2.
LEMMA 1. If f is quadratic, {xk} is the sequence generated by (7)-(12), Q

72f(x), "di Q-la (1 <_ <_ m), u Li(k), and /k is as defined in (12), then:
(i)

(14)

(ii)

1
(15) - IIQ.

Proof. Let 3 be the orthogonal projection of xk onto Li(k) with respect to (,
By Propositions l(iii) and 2, xk+ is in the segment between xk and 3. The definition
and nonexpansiveness of orthogonal projections insure that for all u Li(k),

(16)

From (12),

Vf(xk+) kai(k) + Vf(xk) = xk+ x + /kQ-ai(k) xk + k’5i(k) =
1 1 1

II I1 ()11
where we use (17), (16) and xk+ between xk and 3. (ii) is proved. (i) results from
convexity of

406 ALFREDO N. IUSEM

4. The convergence rate of Hildreth’s algorithm. In [14] it is proved that
the rate of convergence of Hildreth’s algorithm is linear. Since we intend to establish
the rate of convergence of Bregman’s algorithm through approximation of the function

f by a quadratic function in a neighborhood of the solution, we need to examine in
detail the results of [14].

A block of r consecutive iterations as defined by (7)-(12) will be called a major
iteration (r is the constant of almost cyclicality, i.e., in each major iteration each
row of A is used at least once). As could be expected, the linear convergence rate
will apply to major iterations. [14] considers the case in which the matrix Q is the
identity. More specifically, the problem considered in [14] is:

(18) min IIx xll 2

(19) s.t {ai,x}

_
b (1

_ _
m).

We are interested in problems of the form:

min(x c)TQ(x]c)
s.t {ai, x}

_
b,

which can be rewritten as:

2(20) min IIx 211Q
< < <

with i Q-lai.
Going through the proofs in [14], it can be verified that they hold when {, }Q

substitutes for {, }, with the obvious changes. Also, [14] considers a fixed relaxation
parameter a, rather than ak, changing with the iteration. On the other hand it allows
a E (0, 2]. Overrelaxation (i.e., a > 1) does not work for nonquadratic objectives.

The main result of [14] is the following proposition.
PROPOSITION 3. There exists ko such that for k > ko,

(22)

where (k} is the primal sequence obtained by applying (7)-(12) to (18)-(19), 5" is
the solution of (18)-(19), and D is a real number in (0, 1) such that

1 (2 a)a02(23) 1 +52 1 + a2(r- 1)

and 0 is defined in the following way: Let

I={i’(ai,*}= Li {x (ai,x} bi}, V= NLi,
iI

and let Lx be the hyperplane lying farthest away from x among Li (i I). Then

d(x, Lx)(24) 0 jfy d(x, V)

ON THE CONVERGENCE RATE OF BREGMANS METHOD 407

where the distances in (24) are those derived from the Euclidean norm.

Proof. The proof is in Theorem 1 of [14].
A revision of the proof of Theorem 1 in [14] shows that when we have ck e (c, 1]

instead of c (0, 2), (23) can be changed to

1 c2

(25) +-
p r

(26) p

where is defined as in (24) but with the distances taken with respect to (,/Q and
-5 Q-a substituting for a in the definition of Li. So Proposition 3 becomes
Proposition 3.

PROPOSITION 3. If (’Zk} is the primal sequence generated by Bregman’s algorithm
when applied to (20)-(21) andS* is the solution of (20)-(21), then there exists ko such
that for k > ko"

(27)

where p is given by (26).
We can find more explicit expressions or lower bounds for (along the lines of

[18], for instance) but we remark that all of them will naturally include Q. When we
apply Proposition 3 to Bregman’s method for a general Bregman function f (6), Q
will be V2f(x*), where x* is the solution of (4)-(6). Since, of course, we do not know
x*, our asymptotic error constant (which can be taken as any > p, as we will prove
below) cannot be estimated a priori, unless we have upper and lower bounds of the
eigenvalues of V2f(x) for x in the feasible set of (4)-(6), which is rather unlikely. In
practical terms, (27) means that there is a p (0, 1) such that (27) holds, but does
not allow for estimation of (27) until problem (4)-(6) has been solved.

5. Outline and preliminaries of the convergence rate proof. Our aim is
a result similar to (27), but for the sequence resulting from application of Bregman’s
method to a general Bregman function f. We will proceed as follows. First we will
generate the sequence {xk} with (7)-(12) until xk is close enough to the solution
x* that we may approximate f by a quadratic around x*. Starting from zk we will
consider a major iteration of the algorithm with f, producing xk+ and also a major
iteration with the quadratic approximation] producing k+r. For k+r we should
have a relation like (27), and then we show that for xk close enough to x* the distance
between xk+r and k+r is o(llxk -x*ll), so that a formula like (27) holds for some
p (p, 1), with xk+ and xk instead of k+r and k.

In order to proceed along this path, two technical issues must be dealt with. First,
for a quadratic approximation of f to hold at the solution x*, we need differentiability
at x*. So we impose an additional hypothesis on problem (4)-(6)"

(vii) f is twice continuously differentiable at the solution x* of (4)-(6), and
V2f(x*) is nonsingular.

This condition is rather harmless if x* S: most Bregman functions of interest
are analytical in the interior of their domains. But x* may be in the boundary of S,
where f is required to be just continuous. In fact, technical hypotheses (iii), (iv), (v)

408 ALFREDO N. IUSEM

are required only for the case of x* in the boundary and f nondifferentiable there, i.e.,
Dl(x, y) undefined for y E S- S. We will further elaborate upon the consequences of
(vii) in 8.

Second, Proposition 3’ states that (27) holds only for k larger than a certain k0. If
we proceed as announced, i.e., switching from f to f at a certain iteration after using
f up until then, we are indeed starting with the algorithm for] at that point, and we
cannot use Proposition 3’ right away. So we must once again restate Proposition 3 in
more appropriate terms.

A careful perusal of the proof of Theorem 1 of [14] shows that, in fact, (27)
holds for any k which satisfies conditions (i), (ii) and (iii) below (Lemmas 1 and 2 of
[14] prove that for the quadratic case, there exists k0 such that (i), (ii), and (iii) are
satisfied for k > k0; for the nonquadratic case we will present a new proof).

Let 5" be the solution of (20)-(21) and I {i’(ai,’2*l < b}. Let T {z >_ 0"
ATz--Q(*-)} k-- {i =k+r 0}

(i) /k=0foriei.
(ii) (ai,k+s)<biforieI,0<s<r.
(iii) There exists e T such that i 0 for all e k, where (k}, (k} is the

sequence generated by Bregman’s algorithm for problem (20)-(21).
We state that the proof of Theorem 1 in [14] makes it possible to rephrase the

theorem as Proposition 3".
PROPOSITION 3". If k is such that (i), (ii), and (iii) hold, then

(28)

with p as in (26).
The next two propositions on the sequence (x%} for a general f will be used to

show that when we switch from f to the quadratic f at iteration k, xk and zk will be
such that we can apply Proposition 3" to the algorithm for] starting with zk.

Let (xk}, (zk } be the sequences generated by (7)-(12) for a Bregman function f.
Let x* be the solution of problem (4)-(6), I {i’(a,x*> < b}.

PROPOSITION 4. There exists ko such that .for k > ko,

(29) zki =0 for e I.

Proof. Since lim xk x*, by Proposition 1(iv),
k---*c

(30) lim (hi- <ai,xk>) bi (a

(31) lira 0.
k---*c

(32)

Use (30), (31) to find k-0 such that, for k > 0 -r and E I:

1
>

c
(hi-<ai, x*)).(33) IIx <

3 II ll

ON THE CONVERGENCE RATE OF BREGMANS METHOD 409

Note that the ith component of zk changes only at iterations k such that i(k)
_kT1and that if "Yk #k, then zi(k) 0, because of (9), (12). Take E I and k > k0. Let

t+l 0, whicht be the last iteration before k such that i(/) i. If / #, then z
implies z/k -0, as required.

Assume "t #. Then (7) and (10) are identical and by uniqueness of the
Bregman projection, xTM satisfies (7) and (8); so

(34)

By almost cyclicality, I > k0 -r, so we may use l in (32), (33) which, combined
with (34), produces

a contradiction. So t #t and the result holds. [:]

Let x* be the solution of (4)-(6) and T {z" Vf(x*) --ATz}. Let M
{1,...,rn}. For J C i let Vj {z zs 0 for all E g}, Tj d(T, Vj)
inf{I]z-zPll z T,z Vj}. Let T min{TZ" g C M, Tj > 0}. IfTj 0 for all
J C M set T . Let {xk}, {zk } be the primal and dual sequences generated by
eregman’s algorithm for problem (4)-(6). Define k {i: zk+r _< ’/2m}.

PROPOSITION 5. There exists o such that, for k > ko, there exists z T with
zs 0 for all I.

Proof. Two cases are immediate. If Ik for large enough k, any z E T works
and the result holds. IfT C, Ik M for all k, i.e., we need0 T. Note that
T C implies d(T, Vj) 0 for g M, in which case Vj {0}, d(T, {0}) 0. Since
T is a polyhedron, it follows that 0 T and the result holds with ko 0.

Next, assume the result is false. This means that there exists a subsequence with
indices {jk} such that for all z T, zs 0 for some Ij. Since the set of possible
Ij’s is finite, one of them occurs infinitely often and we may assume without loss of
generality that Ij =Ij+l J - . So, no z EThaszs 0 for alli J,
i.e., T N Vj . Since T and Vj are polyhedra, it follows that d(T, Vj) O, implying
d(T, Vj) <_ T.

Define k Vj as"

{0 ifiJ
j+r ifiJ.z

j+rSince J Ij, z < T/2m for J. Then,

(35)
2m -2"

Take any z E T and use (35) to obtain

implying IlzJ +r zll >_ T/2. Since z is any element of T, conclude that

T
(36) d(zJ+r, T) >_ -.

410 ALFREDO N. IUSEM

From Proposition l(iv), limk__,oo xk x*, from Proposition l(i), Vf(xk) --ATz.
It follows that limk-o ATzk --Vf(x*), which implies limk--,oo d(zk, T) 0 and
henceforth limk-c d(zJk+r, T) 0, in contradiction with (36).

Although these last two propositions are rather technical, they become more
meaningful if we think that

Zk Z*
k (:x:)

a vector of Kuhn-Tucker multipliers for problem (4)-(6), which will be proved in 7.
Clearly, z* 0 for E I by complementarity, so that

jk+r then *zk 0 foriEI and ifz 0, zi -0.

The linear nature of the constraints allows for the stronger statements of Propositions
4 and 5" For e I, zk reaches 0 at a finite k and there is a bound (namely, T/2m)
such that if z is infinitely often below it, then z 0. The formulation and proof of
both propositions becomes somewhat cumbersome because we do not yet know that
{zk } converges.

6. Proof of linearity of the convergence rate. First, we present a lemma
on the closeness of the quadratic approximation of f. Informally, the lemma works as
follows: we are going to make an iteration of (7):(12) with respect to a hyperplane.
We take a point u* in the hyperplane and call f the quadratic approximation of f
around u*. Consider two pairs (x, z) (/= 1, 2) which will be used in an iteration of
(7)-(12), with the x’s as primals and the z’s as duals. We iterate with (xl,z1) using f
and with (x2, z2) using f. The lemma states that if x2 is close enough to u* and the
distance between both pairs is o([[x2 -u* [[), then the distance between the two pairs
resulting from the iteration will still be o([[x2 -u*[[). The nature of (7)-(12) makes
this rather intuitive, but the formal statement is somewhat involved. The proof is
even more so, and we relegate it to an appendix.

We start by presenting an iteration of the algorithm in "operator" form. Let f
be a Bregman function with zone S, L {x: (a,x) =/} a hyperplane such that f
is strongly zone consistent with respect to it (a Rn, R), M, and a E (0, 1].
Define PI S Ro --, S Ro in the following way:

(i) Take (u,) S R.
(ii) Solve in t, #:

(37)
(3s)

Vf(t) p.a Vf(u)
+ .)

(iii) Take , min(#, vi}.
(iv) Solve in y: Vf(y)
(v) Take w v -ei. Then (y, w) Pl,(u, v).
As observed after equation (2) of this paper Lemma 2.2 of [7] together with the

stong zone consistence hypothesis guarantee that P: is well defined.
Take u* L N 5’ such that f is twice continuously differentiable at u*. Define

(39)
1
(u u*)TV2f(u*)(w *).fi(u) f(u*) + Vf(u*)T(u- U*) + -Call H V2f(u*). H is symmetric and positive-definite by Definition l(ii) and

hypothesis (vii). For a matrix B, let

[]B[]H sup ([IBx[II-I I

ON THE CONVERGENCE RATE OF BREGMAN’S METHOD 411

where]IH is as defined in 3. Note that I]H-1]]H I]H-X]l. Let H-a, where a
is the vector which defines L.

LEMMA 2. With the notation above, take (u, v) E Rn x R0 (/ 1,2); W,a,
g, E R>0, and a neighborhood U o] u* such that:

(i)
<

g
for all u U,

(ii) u1 U 3 S,
(iii) I[u2 u*l[H _< a,
(iv) Ilu u=llH < a,
(v) IIv v211 < ,

1(vi) g < 3"
Let (y, wx) Pf(u, vl), (y2, w2) p](u2, v2), with] as in (39), and assume:

(40) IIIIH- 1,

Then:

(41) Ily y211H < 6(+), IlwX w211 < 6(+)

This is proved in the Appendix. Note that the existence of U is guaranteed by
the hypothesis of smoothness of f at u*. D

Next we prove_that the solution x* of (4)-(6) is not altered if we substitute f by
its approximation f as in (39) at x*.

PROPOSITION 6. Let x* be the solution of (4)-(6) and take f as in (39) with x*
instead of u*. Then x* is the solution of min f(x) such that Ax < b.

Proof. The proof is elementary, r3

Now we prove that the rate of convergence of Bregman’s algorithm is linear.
Consider problem (4)-(6). Assume f, A, b satisfy hypotheses (i)-(vii). Let (xk, zk)

be the primal and dual vectors generated by (7)-(12), and x* be the solution of (4)-
(6). Let p be the asymptotic error constant, as in (26), of algorithm (7)-(12) when
applied to the quadratic function f defined by

(42) f(X) f(x*) "4" Vf(x*)T(x X*) "t- 1/2(X x*)TV2f(x*)(X X*).

Take any such that:

(43) p < < 1.

Define

3 x 6s+l 2 x 6s -6
(44) As

5
(0 < s).

Note that

(45) Ao 2,

(46) As+ 6(s + 1).

412 ALFREDO N. IUSEM

Define

1
(4) -(-),

where r is the constant of almost cyclicality.
Let H V2f(x*). Define

(48) i H_lai (1 _< g m).

Observe that the primal sequence generated by Bregman’s algorithm is invariant
through scaling of A, b. More precisely, if {xk}, {zk} are sequences generated by (7)-
(12) for problem (4)-(6), then {xk}, {k} will be the sequences generated by (7)-(12),
starting at o, for the problem min f(x) such that .x _< , x E , where TTA,

7ibi(1 <_ <_ m), k Tizki (1 _<

_
m, k _> 0), and E Rm, r > 0. Thus, for the

study of the convergence rate of the primal sequence we may assume, without loss of
generality, that"

(49) 11hil[H 1 (1 _<i_< m).

Also, {zk } converges if and only if {k} converges, so (49) entails no loss of
generality regarding convergence of the dual sequence.

For i > 0, let Ue {x "llx-x*llH _< i}. Let I {i M’(ai,x*} < bi}. Take
i > 0 such that"

(i) For] as in (42), e as in (47), and all x e Ue,

(ii) For all e I, x e U(l+e),

(51) (hi,X) < bi,

where e is as in (47).
(iii)

T
5 <

with T as defined before Proposition 4. Take ko such that
(iv)

k0 >

with ko, k0 as in Propositions 4 and 5.
(v) For k >_ k0,

(54) xk Us.

The existence of 5 satisfying (50) results from hypothesis (vii), and the existence
of k0 satisfying (54) results from Proposition l(iv).

ON THE CONVERGENCE RATE OF BREGMAN’S METHOD 413

THEOREM 1. For k >_ ko defined as above and-fi as in (43),

Proof. Take k >_ k0. We will consider two pair of sequences: (xk+8, zk+8), (k+,
k+s) (0 <_ s <_ r). The first one is already defined and consists of applying (7)-(12)
to f. The second one applies (7)-(12) to f as in (42), starting at

(55)

(56) x* H-l(Vf(x*) + ATz).

Since

(57) Vf(x) Vf(x* + H(x x*),

it follows that V](k) --ATk, i.e., (k,k) satisfy the initialization condition for
algorithm (7)-(12)with].

The proof consists of three parts, which prove the following three statements:
(I)

[]k+s+l- X,[[g _< I[k+s- X,[[g (0 _<s _<r-- 1),

"k+S E U((lq_) (0

__
8

__
r).

(II)

(III)
1II x*ll. 2p)II a *IIH"

Before proceeding to the proof of (I), (II), (III), we note that (II) and (III) imply
the result of the theorem:

Proof of (I). First we show that E U(+). As observed before, V](k)
--ATk. From (55) and Proposition 1(i), conclude that V](k) Vf(xk). So,

(5s)
H(xk k) V](xk) V](k) V](xk) Vf(xk) =

xk k H_(V](xk) Vf(xk)).

Using (50) and (54) in (58),

(59)

i.e., k E U(i+e).
From (51),

(60) (ai,k><bi foriI.

414 ALFREDO N. IUSEM

Next we consider two cases"

(i) If i(k) e I, from (53), (55), and Proposition 4,

Take k and k as the values of #k, k obtained in (7), (9) when (7)-(12) is applied
to k with f. From (6) and Proposition l(v), k -> 0. From (9) and (61), k 0 and
from (10), (12),

k+ k k+ k
so I1/ x, I1 II x, I1 a/ /).

(ii) If i(k) I, then x* e n(k) and from Lemma l(i),

and
=k+ 0 for 6 I.k+l 6 Us(l+e), z

-k+l 0 forIn both cases, we get [[k/l_ x IIH <-II- x I[H’ g(/), z
iI.

So we may use recurrently the arguments of (i), (ii) for xk+8 (1 _< s _< r- 1) and
the result follows.

Proof of (II). Define

(62)

with A, e as in (44), (47). We will use Lemma 2 inductively to prove the following
statements:

(i)

(ii)

(64) IIzk+s -gk+ll <_ e8 II- x*ll H (0 <_ s <_ r).

(a) s- 0: (ii)is trivial because zk gk. For i, from (59),

(b) Assume true for s _< r- 1.
Consider two cases. If i(k + s) 6 I, then gk+s+ gk+s, gk+s+ -2k+s as in

case (i) of part (I). The same argument holds for the nonquadratic sequences {xk},
=k+s{zk}: by Proposition 4, Zi(k) O; by (54) and (51), (hi(k+) x+} < bi(k+), so that

#k+ _> O, implying ’k+ 0 and therefore xk++ xk+8, zk++ zk+. So, using
the inductive hypothesis,

observing that es < es+ by (46). The same argument applies for (64).

ON THE CONVERGENCE RATE OF BREGMANS METHOD 415

If i(k + s) I, we will apply Lemma 2 with

We must check the hypotheses of Lemma 2: x* E Li(+s) because i(k + s) I,
(i) holds because of (50), (ii) because of (54) and strong zone consistence, (iii) means
113k+s- x*ll H < 113k- x*IIH, which is true because of part (I), (iv) and (v) are the
inductive hypotheses, and (vi) follows from (44)-(47). (40) follows from (49). Next,
observe that the definitions of Pf, P] imply that

yl xk+s+l y2 3k+s+l wl zk+s+l w2 k+s+l

Conclude from Lemma 2 and (46), (62) that

The same argument applies for (64).
(63) and (64) are therefore established and we look at (63) with s- r"

(65)

Using (59)in (65),

4 2

because (43)-(47)imply e < 1/2. (II)is proved.

Proof of (III). We will apply Proposition 3" to the sequences {3k}, {k}. As
noted before, (3k,gk) is an admissible starting pair for application of (7)-(12) to].
We need to check that conditions (i), (ii) and (iii) of 5 are satisfied. (i) follows from
(53), (55) and Proposition 4.

(ii) follows from Part (I) and (51). We prove (iii)" Take E/k so that -k+r 0.Zi
Then using (64), with s r, and the argument of (66),

(67)

The last two inequalities_ of (67) result from (54) an_d (52).
From (67), Ik. We have shown that Ik C Ik. Now use (53) and Proposition

5 to conclude that there exists z T such that zi 0 for all Ik, and therefore
z 0 for all q]k. We claim that such z can be used in (iii) because T "Remember that T {z’ATz -Vf(x*)}, {z:ATz Vf(3*)} where x* and
3" are the solutions of the respective problems. By Proposition 6, x* 3*, and from

416 ALFREDO N. IUSEM

(57), Vf(x*) V/(x*). So the conclusion of Proposition 3" holds and, again using
Proposition 6, (59), p < 1 from (43), and r >_ from (45),

(68)

Part (III) has been proved. [3

The use of IIH in the theorem is just a matter of convenience. If , ’ are the
smallest and the largest eigenvalues of H, we have Ilxll <_ IIXlIH <_ ’ Ilxll; therefore,
iterating the inequality of the theorem, for any k,

IIxo+" x*ll <_ IIxo+" *IIH <- IIxo *IIH <-- ’ IIxo x*ll,
which implies IIxo+- *11 _< c IIxo- x*ll where C is the condition number of
H, i.e., the asymptotic error constant is the same for the Euclidean norm: IIxk x* II
goes to zero as k.

7. Convergence of the dual sequence. One of the main consequences of the
linear rate of convergence is the convergence of the dual sequence {zk}. We need a
preliminary result.

Take e as in (47), el as in (62). Define

(69) -- (1 + el)(1 + e).

PROPOSITION 7. Take ko satisfying (53), (54), xk, "Yk defined by (7)-(12), and x*
the solution of (4)-(6). If the hypotheses of Theorem 1 hold, then

(70)

Proof. If i(k) E I, it follows from (53), Proposition 4, and Proposition l(v) that

zk() 0, # >_ 0; so "y 0 and (70) holds.

Assume i(k) I. So x* E L(k). Consider the sequence {k} as defined in
Theorem 1. Use (55), (64) with s 1, Lemma l(ii), and (59), to obtain

THEOREM 2. If problem (4)-(6) satisfies hypotheses (i)-(vii), then the dual se-
quence {zk} generated by (7)-(12) converges to an optimal dual solution, i.e., to a
vector z* Rm >_ O, which satisfies

(71) V](x*) --ATz*

(72) (Ax* b)Tz* O,

ON THE CONVERGENCE RATE OF BREGMANS METHOD 417

where x* is the solution of problem (4)-(6).
Proof. Take E M, k0 as in Theorem 1, and let K {l _> 0: i(ko + t) i}.
The ith component of the dual vector is updated by substraction of ’k at those

iterations such that i(k) i, so

(73)
kr-1

/
/

--0
tE K

We claim that the series in the right-hand side of (73) is absolutely convergent, hence
the following is convergent:

kr-1 kr-1 k-1 r-1 k-1 r-1

=0 =0 j=0 s=0 j=0 s=0
EK

r--1 r--1 r--1

j=o s:o 1 -fi Zs=o Ilxk+s x*llg

where we use Proposition 7 in the second inequality and Theorem 1 in a recurrent
way in the next one. The claim is established. So there exists z such that

(74) lim zki +kr *
k--cx)

z

So variables z/k converge after major iterations from zk0. In order to see that the limit
is the same for intermediate iterations, note that

(75)
1

---0/kai(k) Vf(xk/l) --Vf(xk) ==== Ikl f(xk/) Vf(xk)]

because of Proposition 1(iv) and hypothesis (vii). Therefore, for p such that 1 _< p _<
r-l,

(76) zkoq-krq-p zki oq-kr _[_

kr+p

Z "ko+

The first term in the right-hand side of (75) tends to z and the second one tends to
0, because the summation contains at most r- 1 terms, each of which tends to 0 by
(74). We conclude that z -lim__.o z/k.

From Proposition l(i), Vf(xk) --ATzk. Taking limits as k tends to infinity,

Vf(x*) --ATz*.

In view of Proposition l(ii), since Ax* <_ b, (72) just means that z 0 for those
such that (ai, x*) < bi. From Proposition 4, for k > 0, z/k 0 for such an i, so that

z limk_ z/k 0. [:]

8. Discussion on the hypothesis of smoothness at the solution. We dis-
cuss here the implications of hypothesis (vii), smoothness at the solution, on the
applicability of the algorithm. Although the method is proposed for a rather general

418 ALFREDO N. IUSEM

objective function, in practice it has been applied to just a few. In the first place
we have convex quadratic objectives. Obviously, they satisfy hypothesis (vii) in all
Rn. Another function that has been used in connection with Bregman’s algorithm is
Burg’s entropy, defined as f(x) jn__ log xj. The zone of f is R>0 and in fact f is
not continuous in the boundary of S, i.e., it does not satisfy hypothesis (ii). However,
Bregman’s method works. It has been shown in [5] that when f is discontinuous at a
certain subset of-S, the convergence results still hold provided that the distances
from the level sets R(y, h), R2(x, h) to are strictly positive for all x, y, h. Several
special algorithms for this f, resulting from applying specific relaxation strategies in
(7)-(12), are studied in [6]. It is clear that when the constraint set {x: Ax <_ b} inter-
sects R0 the solution x* is strictly positive, and f is analytical at x*, so our results
apply. Otherwise, the problem is not meaningful.

Finally, the most significant example of a Bregman function may be Shannon’s
entropy, defined as f(x) =xj logxj for x E R0, with the convention 0 log0 0.
In this case the zone is S R0 and f satisfies (i)-[vi) (which in fact were introduced
with this function in mind). Hypothesis (vii) holds if x* is strictly positive, but it does
not hold if x* is in the boundary of the positive orthant. The relevance of Bregman’s
method for this function is enhanced by the existence of several methods for entropy
maximization, like MART, that can be shown to be particular cases of Bregman’s
method under a special relaxation strategy (see [4]).

We show next an example of an application of Bregman’s method to f, with
solution in the boundary of the positive orthant, sublinear primal convergence, and
dual divergence.

Counterexample.

(77)

m=n=r-2,
2

f(x) y xj log xj, Ok 1,

We apply MART to this case. The iteration of MART for this f is:

")’k min zi(k), sg(bi(k) log (ai-i-xk)

k+ k exp(ka.(k)),(78) x x

(79) zk+l Zk ykei(k)

with initialization

-1
z R_o, xj 1 + zx-’= aiJ zi

(1 _< j _< n).

See [4] for the details of the reduction of Bregman’s method to (77)-(79).
We take i(k) {1, 2, 1, 2, 1, 2,...}.

ON THE CONVERGENCE RATE OF BI:tEGMANS METHOD 419

It can easily be shown, from (77)-(79), that

(so) + + 1 + xk’

(81) x+ 1 + xk’

(82) xk+2 1.

It follows from (80), (82) that, calling x w, we have

(sa)
1 +kw’

(84)

So
x2k x*

but the rate is sublinear. IIx2k+2 -x*ll xk, and assuming xk+2 < px2k
0 < p < 1, we get from (83), after some algebra, that for all large enough k,

1 1
(S) 0 < < ,

w 1-p

which is clearly false.
It also follows from (80)-(82) that

with

(86)
k

II+(j+I)w]Z12k+2= Zl
0 + log

j=0
1 +jw

and the series in (86) diverges (its general term is greater than 1/2j).
This counterexample shows that hypothesis (vii) is indeed essential for our results.
We remark that the counterexample above is somewhat patological, as shown in

the next Proposition: The solution is in the boundary only when the whole feasible
set is contained in the boundary.

nPROPOSITION 8. Consider problem (4)-(6) with f(x) =1 xj logxj. If there
exists x > 0 such that Ax <_ b, then x* > O.

Proof. Assume by contradiction that for the solution x*, g {j: x 0} ,
but there exists y > 0 such that Ay <_ b. Take x(h) x* / h(y x*), which is feasible
for h e [0, 1]. Let (h) f(x(h)).

’(h) (y x){1 + log[x + h(yj x)l} + yj[1 + log(hy)],
jJ jEJ

limh--0 ’(h) - (because the first summation is bounded below for h E [0, 1]),
meaning that decreases near h 0, so f(x(h)) < f(x*) for h close to 0, in contra-
diction with the optimality of x*.

420 ALFREDO N. IUSEM

Proposition 8 means that our results hold when a Slater condition is satisfied:
existence of a strictly positive feasible solution, for in such a case, x* is strictly positive
and f is analytical at x*. It also suggests that, if it is possible to preprocess the linear
system in order to detect those components xj that have to be zero in order for x
to be feasible (and of course eliminate them from the problem), it may pay to do so,
because then the rate of convergence becomes linear.

Appendix.
Proof of Lemma 2. From the definitions of Pf, P] the following relations hold:
(I)

Vf(t #a Vf(u),
<a,t1) (- (1 o)<a, ul),

min{#, v },
v/(u) V/(u) +,

wl V --1el.

(II)

(I’)

(II’)

Vf(t2) -/z2a Vf(u2),
(, t2) Z + ()(, u),
2 min{p2, v},

v]() v]() + a,
W2 V2 2i.

Let A(u) Vf(u)- V](u). Using (57), after some algebra, (I) and (II) can
be rewritten as:

t2 2--- U2
(-5, t2)H aft + (1 a)(-5, U2)H

},’2 min{#2, v

y2 u2 +
w2 V2 2ei.

Let u u -u2, v v -v2, t t -t2, y yl_ y2, w w -w2

#1 #2, 1 -2.
From (I’), (II’),

(87)
(88)
(89)
(90)
(91)

ON THE CONVERGENCE RATE OF BREGMANS METHOD 421

Let rl -Ilu -u*llH, r2 -lit -u*ll H, r3- Ily -u*ll g.
Substituting (87)in (88),

(92)

-a (, Ulg / (, H-I(A(u1) A(tl))IH ==
H

using (40) and hypotheses (i)and (iv).
Using (92) in (87), together with (i), (iv), and (40),

(93) Iltllg <_ # ll6llH + IlUll H / IIH-II (IIA(u)IIH + IIA(tl)llH < 2(ga + grl + gr2).

From (89), (91), and (v),

(94)

From (90), (94), (i), and (iv),

(95) < 3ga + 297rl + gTr2 + gr3.

Next we find bounds on 71"1,71"2, 71"3"

(96) 71"1

using (iii), (iv).

(97)

The last inequality follows from the argument of the proof of Lemma 1(i), noting that
t2 is the orthogonal projection of u2 with respect to <, >H onto a hyperplane parallel
to L and lying between u2 and L.

From (97), (iii),

(98) r2 IltllH +

using Lemma l(i) and (iii).
Substituting (96), (98)into (93),

(100)
2o"

2g
(g + 2g + gg).

Substituting (100)into (98),

(101) r2 < i 2 (1 + e + 2g + 2gg).

422 ALFREDO N. IUSEM

Substituting (96) and (101)into (94),

(102) [’)’[<- (1 2g) (4- g).

Substituting (96), (99), and (101)into (95),

(103) +a
(3g + 4g 4gg 4g2 gg) <_

(1 2g)(1

using (vi)in (103),

(104) [lY Y2[IH]]Y[]H --< 6(g + g)0".

From (91), (102), and (v),

(lO5) Ilwll (1-2g)

using (vi)in (105),

(106)

((104) and (106) are the required inequalities).

REFERENCES

[1] A. BEN-TAL, M. TEBOULLE, A. CHARNES, The role of duality in optimization problems involv-
ing entropy functionals with applications to information theory, J. Optim. Theory Appl.,
58 (1988), pp. 209-223.

[2] L. BREGMAN, The relaxation method of finding the common points of convex sets and its ap-
plication to the solution of problems in convex programming, USSI:t Comput. Math. and
Math. Phys., 7 (1967), pp. 200-217.

[3] Y. CENSOR, Row-action methods .for huge and sparse systems and their applications, SIAM
Rev., 23 (1981), pp. 444-464.

[4] Y. CENSOR, A. DE PIERRO, T. ELFVING, G. HERMAN, AND A. IUSEM, On iterative methods
for linearly constrained entropy maximization, in Numerical Analysis and Mathematical
Modelling, Vol 24, Banach Center Publications, 1989, pp. 147-165.

[5] Y. CENSOR, A. DE PIEttlO, AND A. IUSEM, On maximization of entropies and a generalization
of Bregman’s method .for convex programming, Tech. Report MIPGll3, Department of
Radiology, University of Pennsylvania, 1986.

[6] ., Optimization of Burg’s entropy over linear constraints, Appl. Numer. Math., 7 (1991),
pp. 151-165.

[7] Y. CENSOR AND A. LENT, An iterative row-action method.for interval convex programming, J.
Optim. Theory Appl., 34 (1981), pp. 321-353.

[8] J. N. DARIOCH AND D. RATCLIFF, Generalized iterative scaling for log-linear models, Ann.
Statist., 43 (1972), pp. 1470-1480.

[9] A. DE PIEttRO AND A. IUSEM, A relaxed version of Bregman’s method for convex programming,
J. Optim. Theory Appl., 5 (1986), pp. 421-440.

S. ERLANDEI:t, Entropy in linear programs, Math. Programming, 21 (1981), pp. 137-151.
G. HERMAN, Image Reconstruction from Projections. The Fundamentals of Computerized To-

mography, Academic Press, New York, 1980.
C. HILDR.ETH, A quadratic programming procedure, Naval Res. Logist. Quart., 4 (1957), pp. 79-

85. Erratum, Naval Res. Logist. Quart., 4 (1957), p. 361.
A. IUSEM AND A. DE PIEPdO, A simultaneous iterative method for computing projections on

polyhedra, SIAM J. Control, 25 (1986), pp. 231-243.

[10]

[12]

[13]

ON THE CONVERGENCE RATE OF BREGMANS METHOD 423

[14] , On the convergence properties of Hildreth’s quadratic programming algorithm, Math.
Programming, 47 (1990), pp. 37-51.

[15] A. IUSEM AND M. TEBOULLE, A Primal Dual Iterative Algorithm .for a Maximum Likelihood
Estimation Problem, Math. Programming, to appear.

[16] B. LAMOND AND N. F. STEWART, Bregman’s balancing method, Transportation Res. B, 15
(1981), pp. 239-249.

[17] A. LENT AND Y. CENSOR, Extensions of Hildreth’s row-action method .for quadratic program-
ming, SIAM J. Control, 18 (1980), pp. 444-454.

[18] J. MANDEL, Convergence of the cyclical relaxation method for linear inequalities, Math. Pro-
gramming, 30 (1984), pp. 218-228.

SIAM J. OPTIMIZATION
Vol. 1, No. 4, pp. 425-447, November 1991

(C) 1991 Society for Industrial and Applied Mathematics

001

AN AUCTION ALGORITHM FOR SHORTEST PATHS*

DIMITRI P. BERTSEKAS’

Abstract. A new and simple algorithm for finding shortest paths in a directed graph is proposed. In
the single origin-single destination case, the algorithm maintains a single path starting at the origin, which
is extended or contracted by a single node at each iteration. Simultaneously, at most one dual variable is
adjusted at each iteration so as to either improve or maintain the value of a dual function. For the case of
multiple origins, the algorithm is well suited for parallel computation. It maintains multiple paths that can
be extended or contracted in parallel by several processors that share the results of their computations.
Based on experiments with randomly generated problems on a serial machine, the algorithm substantially
outperforms its closest competitors for problems with few origins and a single destination. It also seems
better suited for parallel computation than other shortest path algorithms.

Key words, shortest path, network optimization, auction, parallel algorithms

AMS(MOS) subject classifications, primary 90C47" secondary 90C05

1. Introduction. In this paper we propose a new algorithm for finding shortest
paths in a directed graph (V,). For the single origin and single destination case, our
algorithm is very simple. It maintains a single path starting at the origin. At each
iteration, the path is either extended by adding a new node, or contracted by deleting
its terminal node. When the destination becomes the terminal node of the path, the
algorithm terminates.

To get an intuitive sense of the algorithm, think of a mouse moving in a graphlike
maze, trying to reach a destination. The mouse criss-crosses the maze, either advancing
or backtracking along its current path. Each time the mouse backtracks from a node,
it records a measure of the desirability of revisiting and advancing from that node in
the future (this will be represented by a price variablemsee 2). The mouse revisits
and proceeds forward from a node when the node’s measure of desirability is judged
superior to those of other nodes. Our algorithm efficiently emulates this mouse search
process using simple data structures.

In a parallel computing environment, the problem of multiple origins with a single
destination can be solved by running in parallel a separate version of the algorithm
for each origin. However, the different parallel versions can help each other by sharing
the interim results of their computations, thereby substantially enhancing the
algorithm’s performance. The recent Master’s thesis [Po191] discusses a number of
parallel asynchronous implementations of our algorithm, and reports on simulations
suggesting a significant speedup potential. Generally, our algorithm seems better suited
for parallel computation than all of its competitors.

The practical performance of the algorithm and its numerous variations remain
to be fully investigated, particularly using parallel machines. Preliminary experimental
results with randomly generated problems on a serial machine, and a comparison with
the state-of-the-art shortest path codes of Gallo and Pallotino [GaP88] have been very
encouraging. In particular, a code implementing one version of our algorithm outper-
forms by a large margin its closest competitors for the case of few origins and one

Received by the editors August 30, 1990; accepted for publication (in revised form) March 28, 1991.
This research was supported by National Science Foundation grant DDM-8903385 and by Army Research
Office grant DAAL03-86-K-0171.

? Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139.

425

426 DIMITRI P. BERTSEKAS

destination; see 7. In a parallel computing environment, the relative advantage of
our algorithm should increase, but this remains to be verified in future work.

The worst case running time of the algorithm is pseudopolynomial; it depends
on the shortest path lengths. This in itself is not necessarily bad. Dial’s algorithm (see
[Dia69], [DGK79], [AMOS9], [GAP88]) is also pseudopolynomial, yet its running
time in practice is excellent, particularly for a small range of arc lengths. Another
popular method, the D’Esopo-Pape algorithm [Pap74], has exponential worst case
running time [Ker81], ShW81], yet it performs very well in practice [DGK79], [GAP88].
Nonetheless, under mild conditions, our algorithm can be turned into a polynomial
one by using the device of arc length scaling. However, in our computational experi-
ments, this scaling device was entirely unnecessary, and, in fact, degraded the
algorithm’s performance.

To place our algorithm in perspective, we note that shortest path methods are
traditionally divided into two categories: label setting (Dijkstra-like) and label correct-
ing (Bellman-Ford-like); see the surveys given in [AMO89], [GAP86], [GAP88], and
the references quoted there. Our algorithm shares features from both types of
algorithms. It resembles label setting algorithms in that the shortest distance of a node
is found at the first time the node is labeled (becomes the terminal node of the path
in our case). It resembles label correcting algorithms in that the label of a node may
continue to be updated after its shortest distance is found.

As we explain in 6, our method may be viewed as a dual coordinate ascent or
relaxation method. In reality, the inspiration for the algorithm came from the author’s
auction and e-relaxation methods [BerT9], [Ber86] (extensive descriptions of these
methods can be found in [Ber88], [BEE88], [BET89], and [Ber90]). If one applies the
e-relaxation method for a minimum cost flow formulation of the shortest path problem
(see 6), but with the important difference that e 0, then one obtains an algorithm
which is very similar to the one provided here.

Our algorithm may also be viewed as a special case of the so called naive auction
algorithm, applied to a special type of assignment problem, which is derived from the
shortest path problem (see, e.g., [Law76, p. 186]). The naive auction algorithm, first
proposed by Bertsekas in [Ber81] as part of the relaxation method for the assignment
problem, and also discussed more recently in the tutorial paper [Ber90], is the same
as the auction algorithm, except that the parameter e that controls the accuracy of the
solution is set to zero. The naive auction algorithm is not guaranteed to solve general
assignment problems, and is primarily useful as an initialization method for other
assignment algorithms, such as relaxation (as described in [Ber81]) or sequential
shortest path (as described in [JoV87]). Nevertheless, it is guaranteed to solve the
special type of assignment problem, which is relevant to the shortest path context of
the present paper.

The paper is organized as follows: In 2, we describe the basic algorithm for the
single origin case and we prove its basic properties. In 3, we develop the polynomial
version of the algorithm using arc length scaling. In 4, we describe various ways to
improve the performance of the algorithm. In 5, we consider the multiple origin case
and we discuss how the algorithm can take advantage of a parallel computing environ-
ment. In 6, we derive the connection with duality and we show that the algorithm
may be viewed both as a naive auction algorithm and as a coordinate ascent (or
Gauss-Seidel relaxation) method for maximizing a certain dual cost function. Finally,
7 contains computational results.

2. Algorithm description and analysis. We describe the algorithm in its simplest
form for the single origin and single destination case, and we defer the discussion of

AUCTION FOR SHORTEST PATHS 427

other and more efficient versions for subsequent sections. Our main assumption is that
all cycles have positive length, although we will see shortly that the initialization of the
algorithm is greatly simplified if, in addition, all arc lengths are nonnegative.

To simplify the presentation, we will also assume that each node except for the
destination has at least one outgoing incident arc; any node not satisfying this condition
can be connected to the destination with a very high length arc without materially
changing the problem and the subsequent algorithm. We also assume that there is at
most one arc between two nodes in each direction, so that we can unambiguously refer
to an arc (i, j). Again, this assumption is made for notational convenience; our algorithm
can be trivially extended to the case where there are multiple arcs connecting a pair
of nodes.

Let node 1 be the origin node and let be the destination node. In the following,
by a path we mean a sequence of nodes (il, i2,"" ", ik) such that (im, im+) is an arc
for all m 1, , k 1. If, in addition, the nodes il, i2, , ik are distinct, the sequence
(il, i2,""", ik) is called a simple path. The length of a path is defined to be the sum
of its arc lengths.

The algorithm maintains at all times a simple path P (1, il, i2," ", ik). The node
ik is called the terminal node of P. The degenerate path P- (1) may also be obtained
in the course of the algorithm. If ik+l is a node that does not belong to a path
P (1, il, i2,""", ik) and (ik, ik+) is an arc, extending P by ik+l means replacing P by
the path (1, i, i2, ., ik, ik/l), called the extension ofP by ik+l. If P does not consist
of just the origin node 1, contracting P means replacing P with the path
(1, i, i_, ik-).

The algorithm also maintains a variable Pi for each node (called price of i) such
that

(la) p,<-aij+p V(i,j),

(lb) pi a +p for all pairs of successive nodes and j of P.

We denote by p the vector of prices p. A pair (P, p) consisting of a simple path P
and a price vector p that satisfies the above conditions is said to satisfy complementary
slackness (or CS for short). (When we say that a pair (P, p) satisfies the CS conditions,
we implicitly assume that P is simple.)

The CS terminology is motivated by a formulation of the shortest path problem
as a linear minimum cost flow problem; see 6. In this formulation, the prices p can
be viewed as the variables of a problem which is dual in the usual linear programming
duality sense. The complementary slackness conditions for optimality of the primal
and dual variables can be shown to be equivalent to the conditions (1). For the moment,
however, we ignore the linear programming context, and we simply note that if a pair
(P, p) satisfies the CS conditions, then the portion of P between node 1 and any node
P is a shortest path from 1 to i, while Pl--Pi is the corresponding shortest distance.

To see this, observe that, by (lb), pl-p is the length of the portion of P between 1
and i, and by (la) every path connecting 1 and must have length at least equal to Pl -Pi.

We will assume that an initial pair (P, p) satisfying CS is available. This is not a
restrictive assumption when all arc lengths are nonnegative, since then one can use
the default pair

P (1), p,=O

When some arcs have negative lengths, an initial choice of a pair (P, p) satisfying CS
may not be obvious or available, but 4 provides a general method for finding such
a pair.

428 DIMITRI P. BERTSEKAS

We now describe the algorithm. Initially, (P, p) is any pair satisfying CS. The
algorithm proceeds in iterations, transforming a pair (P, p) satisfying CS into another
pair satisfying CS. At each iteration, the path P is either extended by a new node or
else is contracted by deleting its terminal node. In the latter case the price of the
terminal node is strictly increased. A degenerate case occurs when the path consists
by just the origin node 1; in this case the path is either extended, or else is left
unchanged with the price Pl being strictly increased. The iteration is as follows:

TYPICAL ITERATION
Let be the terminal node of P. If

(2) p < min (ao +p),
(i,j)

(3)

go to Step 1; else go to Step 2.
Step 1: (Contract path). Set

Pi := min {ao + pj},
i,j) 4

(4)

and if 1, contract P. Go to the next iteration.
Step 2: (Extend path). Extend P by node ji where

ji arg min {ai +p}.
(i,j)e

If ji is the destination t, stop; P is the desired shortest path. Otherwise, go to the
next iteration.

It can be seen that, following the extension Step 2, P is a simple path from 1 to
j. Indeed, if this were not so, then adding j to P would create a cycle, and for every
arc (i, j) of this cycle we would have p ao+p. Thus, the cycle would have zero
length, which is not possible by our assumptions.

Figure 1 provides an example of the operation of the algorithm. In this example,
the terminal node traces the tree of shortest paths from the origin to the nodes that
are closer to the origin than the given destination. We will see that this behavior is
typical when the initial prices are all zero.

PROPOSITION 1. The pairs (P, p) generated by the algorithm satisfy CS. Further-
more, for every pair of nodes and j, and at all iterations, p-p is an underestimate of
the shortest distance from to j.

Proof We first show by induction that (P, p) satisfies CS. Indeed, the initial pair
satisfies CS by assumption. Consider an iteration that starts with a pair (P, p) satisfying
CS and produces a pair (P,/5). Let be the terminal node of P. If

min {aj +p},(5) p, ,
then P is the extension of P by a node j and/5 p, implying that the CS condition
(lb) holds for all arcs of P as well as arc (i, ji) (since j attains the minimum in (5);
cf. condition (4)).

Suppose next that

p < min {a +p}.
(i,j)

Then if P is the degenerate path (1), the CS condition holds vacuously. Otherwise, P
is obtained by contracting P, and for all nodesj P, we have/3 pj, implying conditions
(la) and (lb) for arcs outgoing from nodes of P. Also, for the terminal node i, we have

/5i min { aij + p},
(i,j)

AUCTION FOR SHORTEST PATHS 429

P2=2

2 pl

Or ation

P3=2

Shortest path problem with arc
lengths as shown

Trajectory of terminal node
and final prices generated by
the algorithm

Iteration
Path P Price vector p Type of action

prior to the iteration prior to the iteration during the iteration

(1) (0, 0, 0, 0) contraction at
2 (1) (1, 0, 0, 0) extension to 2
3 (1,2) (1, 0, 0, 0) contraction at 2
4 (1) (1, 2, 0, 0) contraction at
5 (1) (2, 2, 0, 0) extension to 3
6 (1, 3) (2,2, 0, 0) contraction at 3
7 (1) (2,2,2, 0) contraction at
8 (1) (3, 2, 2, 0) extension to 2
9 (1, 2) (3, 2, 2, 0) extension to 4
10 (1,2,4) (3,2,2,0) stop

FIG. 1. An example illustrating the algorithm starting with P- (1) and p--O.

implying condition (la) for arcs outgoing from that node as well. Finally, since/i > Pi
and /k Pk for all k # i, we have Pk <= akj+ for all arcs (k, j) outgoing from nodes
k P. This completes the induction proof.

Finally, consider any path from a node to a node j. By adding the CS condition
(la) along the path, we see that the length of the path is at least p-p, proving the
last assertion of the proposition.

PROPOSITION 2. IfP is a path generated by the algorithm, then P is a shortest path
from the origin to the terminal node of P.

Proof This follows from the CS property of the pair (P, p) shown in Proposition
1; see the remarks following the CS conditions (1). Furthermore, by the CS condition
(la), every path connecting 1 and must have length at least equal to Pl-P. r]

2.1. Interpretation of the algorithm. The preceding propositions can be used to
provide an intuitive interpretation of the algorithm. Denote for each node

(6) D shortest distance from the origin 1 to node i,

with D1 0 by convention. By Proposition 1, we have, throughout the course of the
algorithm,

pl -pj <= Dj Vj c df,

while by Proposition 2, we have

Pl--P Di for all in P.

430 DIMITRI P. BERTSEKAS

It follows that

Di + pi pt <-_ Dj + pj pt l P and j.

Since by Proposition 1, Pi-Pt is an estimate of the shortest distance from to t, we
may view the quantity

Dj +p -pt

as an estimate of the shortest distance from 1 to using only paths passing through j.
Thus, intuitively, it makes sense to consider a node j as "eligible" for inclusion in the
algorithm’s path only if D +p-p, is minimal.

Based on the preceding interpretation, it can be seen that:
(a) The algorithm maintains a path consisting of "eligible" candidates for partici-

pation in a shortest path from 1 to t.

(b) The algorithm extends P by a node j if and only ifj is an "eligible" candidate.
(c) The algorithm contracts P if the terminal node has no neighbor which is

"eligible." Then, the estimate of i’s shortest distance to is improved (i.e., is increased),
and becomes "ineligible" (since D +p-p, is not minimal anymore), thus justifying
its deletion from P. Node will be revisited only after Di +p-p, becomes minimal
again, following sufficiently large increases of the prices of the currently "eligible"
nodes.

The preceding interpretation suggests also that the nodes become terminal for the
ofirst time in the order of the initial values D +pj _p,O, where

(7) pO initial price of node i.

To formulate this property, denote for every node

(8) d, D, +p
Let us index the iterations by 1, 2,. ., and let

(9) k the first iteration index at which node becomes a terminal node,

where, by convention, kl 0 and k if never becomes a terminal node.
PROPOSITION 3. (a) At the end of iteration ki we have Pl--d.
(b) If k < k;, then di <= d;.
Proof. (a) At the end of iteration ki, P is a shortest path from I to by Proposition

2, while the length of P is Pl _pO.
(b) By part (a), at the end of iteration k, we have p d, while at the end of

iteration k;, we have pl d;. Since p is monotonically nondecreasing during the
algorithm and k < k, the result follows.

Note that the preceding proposition shows that when all arc lengths are nonnega-
tive, and the default initialization p 0 is used, the nodes become terminal for the first
time in the order of their proximity to the origin.

2.2. Termination and running time of the algorithm. The following proposition
establishes the validity of the algorithm.

PROPOSITION 4. If there exists at least one path from the origin to the destination,
the algorithm terminates with a shortest path from the origin to the destination. Otherwise
the algorithm never terminates and pl o.

Proof Assume first that there is a path from node 1 to the destination t. Since by
Proposition 1, p-p, is an underestimate of the (finite) shortest distance from 1 to t,
p is monotonically nondecreasing, and pt is fixed throughout the algorithm, Pl must
stay bounded. We next claim that p must stay bounded for all i. Indeed, in order to

AUCTION FOR SHORTEST PATHS 431

have pi 0% node must become the terminal node of P infinitely often, implying (by
Proposition 1) that p-Pi must be equal to the shortest distance from 1 to infinitely
often, which is a contradiction since Pl is bounded.

We next show that the algorithm terminates finitely. Indeed, it can be seen with
a straightforward induction argument that for every node i, Pi is either equal to its
initial value, or else it is the length of some path starting at plus the initial price of
the final node of the path; we call this the modified length of the path. Every path
starting at can be decomposed into a simple path together with a finite number of
cycles, each having positive length by assumption, so the number of distinct modified
path lengths within any bounded interval is bounded. Now Pi was shown earlier to be
bounded, and each time becomes the terminal node by extension of the path P, Pi
is strictly larger over the preceding time that became the terminal node of P,
corresponding to a strictly larger modified path length. It follows that the number of
times can become a terminal node by extension of the path P is bounded. Since the
number of path contractions between two consecutive path extensions is bounded by
the number of nodes in the graph, the number of iterations of the algorithm is bounded,
implying that the algorithm terminates finitely.

Assume now that there is no path from node 1 to the destination. Then, the
algorithm will never terminate, so by the preceding argument, some node will become
the terminal node by extension of the path P infinitely often and Pi oo. At the end
of iterations where this happens, pl-Pi must be equal to the shortest distance from 1
to i, implying that p--> oo. U

We will now estimate the running time of the algorithm, assuming that all the arc
lengths and initial prices are integer. Our estimate involves the set of nodes

(10) #-{ild,<=d,};
by Proposition 3, these are the only nodes that ever become terminal nodes of the
paths generated by the algorithm. Let us denote

(11) ! number of nodes in #,

(12) G maximum out-degree (number of outgoing arcs) over the nodes in

and let us also denote by E the product

(13) E=I.G.

PROPOSITION 5. Assume that there exists at least one path from the origin 1 to the
destination t, and that the arc lengths and initial prices are all integer. The worst case

running time of the algorithm is O(E(D,+p-p)).
Proof Each time a node becomes the terminal node of the path, we have

Pi Pa- Di (cf. Proposition 2). Since at all times we have p-< D, +pO (cf. Proposition
1), it follows that

and using the definitions d, D, + pO and di Di + pO, and the fact di => dm (cf. Proposi-
tion 3), we see that throughout the algorithm, we have

(14) pi -Pi < dt di < dt dl Ot + pt -pl
Therefore, since prices increase by integer amounts, D, +prO_ plo + 1 bounds the number
of times that Pi increases (with an attendant path contraction if 1). Since the
computation per iteration is bounded by a constant multiple of the out-degree of the
terminal node of the path, we see that the computation corresponding to contractions
and price increases is O(E(D, + pO plo)).

432 DIMITRI P. BERTSEKAS

The number of path extensions with becoming the terminal node of the path
is bounded by the number of increases ofpi, which in turn is bounded by D, +p,-p+ 1.
Thus the computation corresponding to extensions is also O(E (Dr +pO pol)). El

Note that we have Dt <-_ hL, where

(15) L max aij,
(i,j)

(16) h--minimum number of arcs in a shortest path from 1 to t.

Then in the special case where all arc lengths are nonnegative, and for the default
price vector p 0, Proposition 5 yields the running time estimate

(17) O(EhL).

As the preceding estimate suggests, the running time can depend on L, as illustrated
in Fig. 2 for a graph involving a cycle with relatively small length. This is the same
type of graph for which the Bellman-Ford method starting with the zero initial
conditions performs poorly (see [BET89, p. 298]).

Origin Destination

FIG. 2. Example graph for which the number of iterations of the algorithm is not polynomially bounded.
The lengths are shown next to the arcs and L> 1. By tracing the steps of the algorithm starting with P (1)
and p O, we see that the price of node 3 will be first increased by and then it will be increased by increments

of 3 (the length of the cycle) as many times as necessary for P3 to reach L.

In the next section we will modify the algorithm to improve its complexity.
However, we believe that the estimate of Proposition 5 is far from representative of
the algorithm’s "average" performance. For randomly generated problems, it appears
that the number of iterations can be estimated quite reliably (within a constant factor
roughly equal to two) by

n,-l+ (2n, 1),
,q,i

where n is the number of nodes in a shortest path from 1 to i; for example, for the
problem of Fig. 1, the above estimate is exact.

2.3. The case of multiple destinations. We finally note that when there is a single
origin and multiple destinations, the algorithm can be applied with virtually no change.
We simply stop the algorithm when all destinations have become the terminal node
of the path P at least once. If, initially, we choose pi 0 for all i, the destinations will
be reached in the order of their proximity to the origin, as shown by Proposition 3.
We also note that the algorithm can be similarly applied to a problem with multiple
origins and a single destination, by first reversing the roles of origins and destinations,
and the direction of each arc.

3. Arc length scaling. Throughout this section (and only this section) we will
assume that all arc lengths are nonnegative. We introduce a version of the algorithm

AUCTION FOR SHORTEST PATHS 433

where the shortest path problem is solved several times, each time with different arc
lengths and starting prices. Let

(18) K= [logLJ+l

and for k= 1,..., K, define

(19) ao(k)= 2K_k V(i,j) e

Note that ao(k) is the integer consisting of the k most significant bits in the K-bit
binary representation of a0. Define

(20) /= min {k_-> 1 leach cycle has positive length}.

The following algorithm is predicated on the assumption that k is a small integer that
does not grow beyond a certain bound as K increases. This is true for many problem
types; for example, when the graph is acyclic, in which case k 1. For the case where
this is not so, a slightly different arc length scaling procedure can be used; see the
next section.

The scaled version of the algorithm solves K k + 1 shortest path problems, called
subproblems. The arc lengths for subproblem k, k k, , K, are a0(k) and the starting
prices are obtained by doubling the final prices p*i(k) of the previous subproblem

(21) p(k+l)=2p*(k) VieW,

except for the first subproblem (k k), where we take

p,.(): o vi.

Note that we have ao(K ao for all (i,j), and the last subproblem is equivalent
to the original. Since the length of a cycle with respect to arc lengths a0(k) is positive
(by the definition of k) and from the definition (19), we have

(22) O<-ao(k+l)-2ao(k)<-I V(i,j) s,
it follows that cycles have positive length for each subproblem. Furthermore, in view
of (22) and the doubling of the prices at the end of each subproblem (cf. (19)), the
CS condition

(23) p(k+l)<=py(k+l)+ao(k+l) V(i,j) s
is satisfied at the start of subproblem k + 1, since it is satisfied by p*(k) at the end of
subproblem k. Therefore, the algorithm of the preceding section can be used to solve
all the subproblems.

Let D,(k) be the shortest distance from 1 to for subproblem k and let

(24) h(k) the number of arcs in the final path from 1 to in subproblem k.

It can be seen using (22) that

D,(k+ 1) =< 2D,(k) + h(k),

and in view of (21), we obtain

P,(k + 1) <= 2(p*(k) -p*, (k)) + h(k) p(k + 1) -p,(k + 1) + h(k).

Using Proposition 5, it follows that the running time of the algorithm for subproblem
k,k=k+l,. ,K, is

(25) O(E(k)h(k)),

434 DIMITRI P. BERTSEKAS

where E(k) is the number of the form (12) corresponding to subproblem k. The running
time of the algorithm for subproblem k is

(26) O(E(k)D,(k)),

where D,(k) is the shortest distance from 1 to corresponding to the lengths aij(k). Since

aij() < 2

we have

(27) D,(/7) < 2h(/7).
Adding over all k k, ., K, we see that the running time of the scaled version of
the algorithm is

(28) 0 2E(/)h(/)+ E(k)h(k)
k=/+!

Assuming that k is bounded as L increases, the above expression is bounded by
O(NGh log L), where h maxk=,...,/ h(k), N is the number of nodes, and G is the
maximum out-degree of a node. These worst-case estimates of running time are still
inferior to the sharpest estimate O(A+ N log N) available for implementations of
Dijkstra’s method, where A is the number of arcs. The estimate (28) compares favorably
with the estimate O(Ah) for the Bellman-Ford algorithm when 2 maxk E(k) is much
smaller than A; this may occur if the destination is close to the origin relative to other
nodes, in which case maxk E(k) may be much smaller than A.

We finally note that we can implement arc length scaling without knowing the
value of k. We can simply guess an initial value of k, say k 1, apply the algorithm
for lengths aij(k), and at each path extension, check whether a cycle is formed. If so,
we increment k, we double the current prices, we reset the path to P (1), and we
restart the algorithm with the new data and initial conditions. Eventually, after a finite
number of restarts, we will obtain a value of k which is large enough for cycles never
to form during the rest of the algorithm. The computation done up to that point,
however, will not be entirely wasted; it will serve to provide a better set of initial prices.

4. Efficient implementation, two-sided algorithm, and preprocessing. The main com-
putational bottleneck of the algorithm is the calculation of mini,j) {aij+p}, which
is done every time node becomes the terminal node of the path. We can reduce the
number of these calculations using the following observation. Since the CS condition
(la) is maintained at all times, if some arc (i, ji) satisfies

it follows that

Pi aiji + Pj,,

min {a + pa},aiji + PJi
i,j)e .g

so the path can be extended by j if is the terminal node of the path. This suggests
the following implementation strategy: each time a path contraction occurs with
being the terminal node, we calculate

min {a + p},
i,j)a

together with an arc (i,j) such that

ji arg min {a +p}.
i,j)e ag

AUCTION FOR SHORTEST PATHS 435

At the next time node becomes the terminal node of the path, we check whether the
condition Pi aij, +pj, is satisfied, and if so, we extend the path by node j without
going through the calculation of min(.) {ai+p}. In practice, this device is very
effective, typically saving from a third to a half of the calculations of the preceding
expression. The reason is that the test p a, + PJi is rarely failed; the only way it can
fail is when the price pji is increased between the two successive times became the
terminal node of the path.

The preceding idea can be strengthened further. Suppose that whenever we
compute the "best neighbor"

ji arg min {ai +p}
i,j .l

we also compute the "second best neighbor" ki given by

k arg min {a + pj},
(i,j) 4,j Ji

and the corresponding "second best level"

Wi aitq h-Pkg.

Then, at the next time node becomes the terminal node of the path, we can check
whether the condition a, +pg -< w is satisfied, and if so, we know that j still attains
the minimum in the expression

min (aj +p},
i,j .4

thereby obviating the calculation of this minimum. If on the other hand we have
ajg +Pi > w (due to an increase of p, subsequent to the calculation of wi), we can
check to see whether we still have w akg + Pkg if this is so, then ki becomes the "best
neighbor,"

k arg min {a; + p; }
(i,j)

thus obviating again the calculation of the minimum.
With proper implementation, the devices outlined above can typically reduce the

number of calculations of the expression min(i,j) {aij+p} by a factor in the order
of three to five, thereby dramatically reducing the total computation time.

4.1. The two-sided algorithm. In shortest path problems, one can exchange the
role of origins and destinations by reversing the direction of all arcs. It is therefore
possible to use a destination-oriented version of our algorithm which maintains a path
R that ends at the destination and changes at each iteration by means of a contraction
or an extension. This algorithm, presented below and called the reverse algorithm, is
equivalent to the algorithm in 2, which will henceforth be referred to as the forward
algorithm. The CS conditions for the problem with arc directions reversed are

P <-- ai + ffi V i, j 4,

/j a0 +p for all pairs of successive nodes and j of R,

where/ is the price vector. By replacing/ by -p, we obtain the CS conditions in the
form of (1), thus maintaining a common CS condition for both the forward and the
reverse algorithm. The following description of the reverse algorithm also replaces/
by -p, with the result that the prices are decreasing instead of increasing. To be
consistent with the assumptions made regarding the forward algorithm, we assume
that each node except for the origin has at least one incoming arc.

436 DIMITRI P. BERTSEKAS

In the reverse algorithm, initially, R is any path ending at the destination and p
is any price vector satisfying the CS conditions (1) together with R; for example,

g (t), pi=O Vi,

if all arc lengths are nonnegative.

TYPICAL ITERATION OF THE REVERSE ALGORITHM
Let j be the starting node of R. If

pj > max { Pi aij },
(i,j).

go to Step 1; else go to Step 2.
Step 1: (Contract path). Set

pg := max {p aig},
i,j)

and if j t, contract R (that is, delete the starting node j of R). Go to the next
iteration.
Step 2: (Extend path). Extend R by node ig, (that is, make ig the starting node of
R, preceding j), where

/ arg max {Pi- aij}.
i,j),4

If ij is the origin 1, stop; R is the desired shortest path. Otherwise, go to the next
iteration.

The reverse algorithm is really the forward algorithm applied to a reverse shortest
path problem, so by the results of 2, it is valid and obtains a shortest path in a finite
number of iterations, assuming that at least one path exists from 1 to t.

We now consider combining the forward and the reverse algorithms into one. In
this combined algorithm, we initially have a price vector p and two paths P and R
satisfying CS together with p, where P starts at the origin and R ends at the destination.
The paths P and R are extended and contracted according to the rules of the forward
and the reverse algorithms, respectively, and the combined algorithm terminates when
P and R have a common node. Both P and R satisfy CS together with p throughout
the algorithm, so when P and R meet, say at node i, the composite path consisting of
the portion of P from 1 to and the portion of R from to will be shortest.

COMBINED ALGORITHM
Step 1: (Run forward algorithm). Execute several iterations of the forward
algorithm (subject to the termination condition), at least one of which leads to
an increase of the origin price Pl. Go to Step 2.
Step 2: (Run reverse algorithm). Execute several iterations of the reverse algorithm
(subject to the termination condition), at least one of which leads to a decrease
of the destination price pt. Go to Step 1.

To justify the combined algorithm, note that Pl can only increase and Pt can only
decrease during its course, while the difference Pl- Pt can be no more than the shortest
distance between 1 and t. Assume that the arc lengths and the initial prices are integer,
and that there is at least one path from 1 to t. Then, Pl and Pt can only change by
integer amounts and Pl-P is bounded. Hence, pl and p can change only a finite
number of times, guaranteeing that there will be only a finite number of executions
of Steps 1 and 2 of the combined algorithm. By the results of 2, each Step 1 and
Step 2 must contain only a finite number of iterations of the forward and the reverse

AUCTION FOR SHORTEST PATHS 437

algorithms, respectively. It follows that the algorithm must terminate in a finite number
of iterations. Note that this argument relies on the requirement that Pl increases at
least once in Step 1 and Pt decreases at least once in Step 2. Without this requirement,
one can construct examples showing that the combined algorithm may never terminate.
Note also that our termination proof depends on the problem data being integer. For
real problem data, we have been unable to prove termination or to disprove it with a
counterexample.

One motivation for the combined algorithm is that two processors can be used in
parallel to maintain the forward and the reverse paths while sharing the same price
vector. However, there is another motivation. Based on our computational results, the
combined algorithm is much faster than both the forward and the reverse algorithms.

4.2. Initialization and preprocessing. In order to initialize the algorithm, one should
have a price vector p satisfying Pi -< a0 +Pj for all arcs (i, j). When some arc lengths
are negative, the default choice p 0 does not satisfy this condition, and there may
be no obvious initial choice for p. In other situations, even when all arc lengths are
nonnegative, it may be preferable to use a "favorable" initial price vector in place of
the default choice p 0. This possibility arises in a reoptimization context with slightly
different arc length data, or with a different origin and/or destination. However, the
"favorable" initial price vector may not satisfy the preceding condition.

To cope with situations such as the above, we provide a preprocessing algorithm
for obtaining an appropriate initial vector p satisfying the condition pi _-< a0 +p for all
arcs (i, j) (except for the immaterial outgoing arcs from the destination t).

To be precise, suppose that we have a vector/5, which, together with a set of arc
lengths {i/}, satisfies/-<_ 0 +/Sj for all arcs (i, j), and that we are given a new set of
arc lengths {a0}. We describe a preprocessing algorithm for obtaining a vector p
satisfying p _-< a0 +pj for all arcs (i, j). (Thus, to deal with the case where some arc
lengths are negative and no appropriate initial vector is known, one can take/ 0
and j max {0, a0).) The algorithm maintains a subset of arcs and a price vector
p. Initially,

= {(i,j) 6 g[a0 < ao, # t},

The typical iteration is as follows:

TYPICAL PREPROCESSING ITERATION
Step 1: (Select arc to scan). If is empty, stop; otherwise, remove an arc (i, j)
from g and go to Step 2.
Step 2: (Add affected arcs to). If p > ag + pg, set

Pi := aij +p
and add to every arc (k, i) with k # that does not already belong to .
We have the following proposition.
PROPOSITION 6. Assume that each node is connected to the destination with at

least one path. Then the preprocessing algorithm terminates in afinite number ofiterations
with a price vector p satisfying

(29) p <= ao + pg V i, j 6 g with iCt.

Proof We first note that by induction we can prove that throughout the algorithm
we have

{(i,j)6 lpi > aq+pj, iS t}.

438 DIMITRI P. BERTSEKAS

As a result, when becomes empty, the condition (29) is satisfied. Next, observe that
by induction it can be seen that throughout the algorithm, Pi is equal to the modified
length of some path starting at (the length of the path plus the initial price of the
final node of the path; see the proof of Proposition 4). Thus, termination of the
algorithm will follow as in the proof of Proposition 4 (using the fact that cycle lengths
are positive and prices are monotonically nonincreasing throughout the algorithm),
provided we can show that the prices are bounded from below. Indeed, let

distance from k to if k t,
Pk*=

/, if k= t,

and let r be a sufficiently large scalar so that

p, >-p* r

We show by induction that throughout the algorithm we have

(30) Pk >=P r lk t.

Indeed, this condition holds initially by the choice of r. Suppose that the condition
holds at the start of an iteration where arc (i, j) with is removed from . We then
have

ai +p > ao + pj.* r > min {a, +p } r p* r,
i,m),.

where the last equality holds in view of the definition of Pk* as a constant plus the
shortest distance from k to t. Therefore, the iteration preserves the condition (30) and
the prices p remain bounded throughout the preprocessing algorithm. This completes
the proof.

If the new arc lengths differ from the old ones by "small" amounts, it can be
reasonably expected that the preprocessing algorithm will terminate quickly. This
hypothesis, however, must be tested empirically on a problem-by-problem basis.

In the preceding preprocessing iteration, node prices can only decrease. An
alternative iteration where node prices can only increase starts with

={(i,j)Clao<o,j 1}, p=p.
and operates as follows:

ALTERNATIVE PREPROCESSIN6 ITERATION
Step 1: (Select arc to scan). If is empty, stop; otherwise, remove an arc (i, j)
from ’ and go to Step 2.
Step 2: (Add affected arcs to d). If Pi > aij + pj, set

Pj :-- Pi ai

and add to every arc (j, k) with k 1 that does not already belong to .
This algorithm is the preceding preprocessing algorithm (where prices decrease

monotonically), but is applied to the reverse shortest path problem, where the arc
directions have been reversed and the roles of origin and destination have been
exchanged (cf. the two-sided algorithm given earlier). The following proposition
therefore follows from Proposition 6.

PROPOSITION 7. Assume that the origin node 1 is connected to each node with at
least one path. Then the alternative preprocessing algorithm terminates in a finite number
of iterations with a price vector p satisfying

P,<=aij+pi V(i,j)e withj l.

AUCTION FOR SHORTEST PATHS 439

The preprocessing idea can also be used in conjunction with arc length scaling
in the case where the integer k of (20) is large or unknown. We can then use, in place
of the scaled arc lengths aij(k) of (19), the arc lengths

[aij];(k)=/2K_k[V(i,j),,

in which case we will have (k) > 0 if ai > 0. As a result, every cycle will have positive
length with respect to arc lengths {(k)} for all k. The difficulty now, however, is that
(22) and (23) may not be satisfied. In particular, we will have instead

1 --< tij(k + 1) 2tii(k) =< 0 V(i,j),

and

(31) p(k+l)<=p)?(k+l)+ij(k+l)+l l(i,j),

and the vector p(k+ 1) may not satisfy the CS conditions with respect to arc lengths
{(k/ 1)}. The small violation of the CS conditions indicated in (31) can be rectified
by applying the preprocessing algorithm at the beginning of each subproblem. It is
then possible to prove a polynomial complexity bound for the corresponding arc length
scaling algorithm, by proving a polynomial complexity bound for the preprocessing
algorithm and by using very similar arguments to those used in the previous section.

5. Parallelization issues. When there is a single destination and multiple origins,
several interesting parallel computation possibilities arise. The idea is to maintain a
different path pi for each origin i, and possibly, a reverse path R for the destination.
Different paths may be handled by different processors, and price information can be
shared by the processors in some way. There are several possible implementations of
this idea. We will describe two of these implementations, motivated by the architectures
of shared memory and message passing machines, respectively. For simplicity, we will
not consider the possibility of using the reverse path R. In [Po191], Polymenakos
discusses parallel two-sided algorithms.

5.1. Shared memory implementation. Here, there is a common price vector p stored
in memory that is accessible by all processors. For each origin i, there is a path pi

satisfying CS together with p. In a synchronous implementation of the algorithm, an
iteration is executed simultaneously for some origins (possibly all origins, depending
on the availability of processors). At the end of an iteration, the results corresponding
to the different origins are coordinated. To this end, we note that if a node is the
terminal node of the path of several origins, the result of the iteration will be the same
for all these origins, i.e., a path extension or a path contraction and corresponding
price change will occur simultaneously for all these origins. The only potential conflict
arises when a node is the terminal path node for some origin and the path of a
different origin is extended by as a result of the iteration. Then, if p is increased due
to a path contraction for the former origin, the path extension of the latter origin is
cancelled. An additional important detail is that an origin can stop its computation
once the terminal node of its path pi is an origin that has already found its shortest
path to the destination. Thus, the processor handling this origin may be diverted to
handle the path of another origin.

It is reasonable to speculate that the parallel time to solve the multiple origins
problem is closer to the smallest time over all origins to find a single origin shortest
path, rather than to the longest time. However, this conjecture needs to be tested
experimentally on a shared memory machine.

440 DIMITRI P. BERTSEKAS

The parallel implementation outlined above is synchronous, that is, all origins
iterate simultaneously, and the results are communicated and coordinated at the end
of the iteration to the extent necessary for the next iteration. An asynchronous
implementation is also possible, principally because ofthe monotonicity ofthe mapping

Pi := min {au + pj};
i, ,sd

see [Ber82] and [BET89]. We refer to [Po191] for a discussion of such an asynchronous
implementation.

5.2. Message passing implementation. Here, for each origin i, there is a separate
processor that executes the forward algorithm and keeps in local memory a price vector
p and a corresponding path P satisfying CS together with p. The price vectors are
communicated at various times to other processors, perhaps irregularly. A processor
operating on (P, p), upon reception of a price vector pJ from another processor j,
adopts as the price of each node n the maximum of the prices of n according to the
existing and the received price vectors, that is,

(32) Pin := max {p,, p} Vn .
The processor also uses the updated price vector p to delete successively, starting with
the terminal node, the arcs (m, n) of P for which the equality Pm am, +p, is violated.
The CS property is maintained in this way because it can be shown that the updated
price vector p satisfies the condition

Pm=< a,,, +p, V(m, n) .
This is the subject of the following proposition.

PRoPOSrrioN 8. Let p and p be two price vectors satisfying

p<=a,,+p’,,, p<--_a,,+p V(m,n).(33)

Then,

(34)

and

(35)

and

max{p’m,p}<--_a,,,.+max{p’,,,p} V(m, n) M,

min{p i,.,,, p} < a,.. + min {p p} V(m, n) 6 .
Proof. From (33), we have

p<am+max{p,,p{} V(m,n)s,

PJm amn "k- max {p i,,, p} V(m, n) 4.

Combining these two relations, we obtain (34). The proof of (35) is similar.
Note that even with no communication between the processors, the algorithm

would still involve considerable parallelism, since a multiple origin problem would be
solved in the time needed to solve a single origin problem. Combining the price vectors
of several processors, however, tends to speed up the termination of the algorithm for
all origins. In fact, if there are more processors than origins, it may still be beneficial
to create some additional artificial origins in order to obtain additional price vectors.
The drawback of this implementation is that communication of the price vectors may
be relatively slow, and that combining two price vectors according to (32) may be
time-consuming if no vector processing hardware is available at the processors.

AUCTION FOR SHORTEST PATHS 441

6. Relation to naive auction and dual coordinate ascent. We now explain how our
(forward) single origin-single destination algorithm can be viewed as an instance of
the application of the naive auction algorithm to a special type of assignment problem.

The naive auction algorithm is applicable to assignment problems where we have
to match n persons and n objects on a one-to-one basis. There is a cost cij for matching
person with object j and we want to assign persons to objects so as to minimize the
total cost. There is also a restriction that person can be assigned to object j only if
(i, j) belongs to a set of given pairs 1. Mathematically, we want to find a feasible
assignment that minimizes the total cost Yi= Ciji, where by a feasible assignment we
mean a set of person-object pairs (1,jl),’’’, (n,j,), such that the objects jl,’’’,j,,
are all distinct and (i, ji) for all i. (Auction algorithms are usually described in
terms of maximization of the total "benefit" of the assignment; see, for example,
[Ber90]. It is, however, convenient here to reformulate the problem and the algorithm
in terms of minimization; this amounts to reversing the signs of the cost coefficients
and the prices, and replacing maximization by minimization.)

The naive auction algorithm proceeds in iterations and generates a sequence of
price vectors p and partial assignments (that is, assignments where only a subset of
the persons have been matched with objects). At the beginning of each iteration, the
condition

min { cj +p}(36) Ciji -[-" pj
(i,J)

is satisfied for all pairs (i, j) of the partial assignment. The initial price vector-partial
assignment pair is required to satisfy this condition, but is otherwise arbitrary. If all
persons are assigned, the algorithm terminates. If not, some person who is unassigned,
say i, is selected. This person finds an object j, which is best in the following sense"

j arg min { ci + p};
i,j),

and then"
(a) Gets assigned to the best object ji; the person that was assigned to j at the

beginning of the iteration (if any) becomes unassigned.
(b) Sets the price of ji to the level at which he/she is indifferent between ji and

the second best object, that is, he/she sets p, to

PJi + Wi l.)i

where vi is the cost for acquiring the best object (including payment ofthe corresponding
price),

vi min {% + pj },
i,j .s

and wi is the cost for acquiring the second best object

wi= min {ci+p}.
i,j .sC,j #ji

This process is repeated in a sequence of iterations until each person is assigned to
an object.

The naive auction algorithm differs from the auction algorithm in the choice of
the price increase increment. In the auction algorithm the price p, is increased by
wi- vi + e, where e is a small positive constant. Thus the naive auction algorithm is
the same as the auction algorithm, except that e 0. This is, however, a significant
difference; while the auction algorithm is guaranteed to terminate in a finite number

442 DIMITRI P. BERTSEKAS

of iterations if at least one feasible assignment exists, the naive auction algorithm may
cycle indefinitely, with some objects remaining unassigned. If, however, the naive
auction algorithm terminates, the feasible assignment obtained upon termination is
optimal. The reason is that (36) may be viewed as a complementary slackness condition
for the linear programming problem associated with the assignment problem, and by
a classical linear programming result, this condition, together with feasibility, guaran-
tees optimality of the final assignment.

6.1. Formulation of the shortest path problem as an assignment problem. Now,
given the shortest path problem described in 2, with node 1 as origin and node as
destination, we formulate the following assignment problem.

Let 2,. , N be the "object" nodes, and for each node t, introduce a "person"
node i’. For every arc (i, j) of the shortest path problem with and j # 1, introduce
the arc (i’,j) with cost ai in the assignment problem. Also introduce the zero cost arc
(i’, i) for each iS 1, t. Figure 3 illustrates the assignment problem.

t=4

FIG. 3. A shortest path problem and its corresponding assignment problem. The arc lengths and the
assignment costs are shown next to the arcs.

Now consider applying the naive auction algorithm starting from a price vector
p satisfying the CS condition (la), i.e.,

(37) pi<=aij+p l(i,j) g,
and the partial assignment

(i’,i) ti#l,t.

This initial pair satisfies the corresponding condition (36), because the cost of the
assigned arcs (i’, i) is zero.

We impose an additional rule for breaking ties in the naive auction algorithm: if
at some iteration involving the unassigned person i’, the arc (i’, i) is the best arc and
is equally desirable with some other arc (i’,ji) (i.e., Pi--ai, +pj, min<i,) {ai +p}),
then the latter arc is preferred; that is, (i’,ji) is added to the assignment rather than
(i’, i). Furthermore, we introduce an inconsequential modification of the naive auction
iteration involving a bid of person 1’, in order to account for the special way of handling
a contraction at the origin in the shortest path algorithm. In particular, the bid of 1’
will consist of finding an object jl attaining the minimum in

min {alj +p},
(1,j)d

assigning jl to 1’, and deassigning the person assigned to j (in the case j t), but not

changing the price p,.

AUCTION FOR SHORTEST PATHS 443

It can now be shown that the naive auction algorithm under the preceding
conditions is equivalent to the (forward) shortest path algorithm of 2. In particular,
the following can be verified by induction:

(a) The CS condition (37) is preserved by the naive auction algorithm.
(b) Each assignment generated by the algorithm consists of a sequence of the form

(38) (1’, il), (i, i2),’’’, (i-1, ik),

together with the additional arcs

i’, i) for il, ik, t,

and corresponds to a path P (1, il, , ik) generated by the shortest path algorithm.
As long as ik t, the (unique) unassigned person in the naive auction algorithm is
person i, corresponding to the terminal node of the path. When ik t, a feasible
assignment results, in which case the naive auction algorithm terminates, consistently
with the termination criterion for the shortest path algorithm.

(c) In an iteration corresponding to an unassigned person i’ with i 1, the
arc (i’, i) is always a best arc; this is a consequence of the complementary slackness
condition (37). Furthermore, there are three possibilities: (1) (i’, i) is the unique best
arc, in which case (i’, i) is added to the assignment, and the price Pi is increased by

min { c./ +p} p
(/,j)

this corresponds to contracting the current path by the terminal node i. (2) There is
an arc (i’, ji) with ji t, which is equally preferred to (i’, i), that is,

Pi aiji "]"

in which case, in view of the tie-breaking rule specified earlier, (i’,ji) is added to the
assignment and the price pj, remains the same. Furthermore, the object ji must have
been assigned to j at the start of the iteration, so adding (i’,ji) to the assignment (and
removing (j,ji)) corresponds to extending the current path by node j. (The positivity
assumption on the cycle lengths is crucial for this property to hold.) (3) The arc (i’, t)
is equally preferred to (i’, i), in which case the heretofore unassigned object is
assigned to i’, thereby terminating the naive auction algorithm; this corresponds to
the destination becoming the terminal node of the current path, thereby terminating
the shortest path algorithm.

We have thus seen that the shortest path algorithm may be viewed as an instance
of the naive auction algorithm. However, the properties of the former algorithm do
not follow from generic properties of the latter. As mentioned earlier, the naive auction
algorithm need not terminate, in general. In the present context, it does terminate
thanks to the special structure of the corresponding assignment problem, and also
thanks to the positivity assumption on all cycle lengths.

6.2. Relation to dual coordinate ascent. We next explain how the single origin-
single destination algorithm can be viewed as a dual coordinate ascent method. The
shortest path problem can be written in the minimum cost flow format

(LNF) minimize , aoxo
(i,j)

(39) subject to xo xi s Vi /’,
{jl(i,j)} {jl(j,i)}

(40) 0 <-- xo V(i, j) ,91,

444 DIMITRI P. BERTSEKAS

where

S 1, S =-1,

si=O fi # l, t,

and is the given destination.
The standard linear programming dual problem is

maximize Pl -P,
(41)

subject to Pi Pj -< aij ’(i, j) 4,

and by a classical duality theorem [Chv83], [Dan63], [PaS82], [Roc84], the optimal
primal cost is equal to the optimal dual cost.

Let us associate with a given path P (1, il, i2,’’ ", ik) the flow

Xij__fl if andj are successive nodes in P,
[0 otherwise.

Then, the CS conditions (la) and (lb) are equivalent to the usual linear programming
complementary slackness conditions

p<aij+p t(i,j),

0<x =:> p ao + p. l i, j .
For a pair (x, p), the above conditions, together with primal feasibility (the conservation
of flow constraint (39) for all i V, which in our case translates to the terminal node
of the path P being the destination node) are the necessary and sufficient conditions
for x to be primal-optimal and p to be dual-optimal. Thus, upon termination of our
shortest path algorithm, the price vector p is an optimal-dual solution.

To interpret the algorithm as a dual ascent method, note that a path contraction
and an attendant price increase of the terminal node of P, corresponds to a step
along the price coordinate Pi that leaves the dual cost Pl-Pt unchanged if iS 1.
Furthermore, an increase of the origin price p by an increment 3 improves the dual
cost by 3. Thus the algorithm may be viewed as a finitely terminating dual coordinate
ascent algorithm, except that true ascent steps occur only when the origin price
increases; all other ascent steps are "degenerate," producing a price increase but no
change in dual cost.

7. Computational results. The combined (forward and reverse) version of the
algorithm without arc length scaling was implemented in a code called AUCTION_SP.
This code solves the problem with a single origin and a selected set of destinations.
It operates in cycles of iterations, alternating between the origin and one of the
destinations. In particular, the algorithm first performs a group of (forward) iterations
starting with the origin and proceeding up to the point where the origin again becomes
the terminal node of the forward path; then the algorithm performs a group of (reverse)
iterations starting at some destination, call it t, and proceeding up to the point where
becomes again the terminal node of the reverse path. The process is then repeated,

starting again at the origin and then starting at another destination, and so on. The
destinations are taken up cyclically, except that once the reverse path of some destina-
tion meets the forward path (in which case a shortest path for the given destination
has been found), this destination is not iterated upon any further. Naturally, the same
price vector p is used for the forward and all the reverse paths. The algorithm uses
the default initialization (p 0, P (1), R (t), for all destinations t), and terminates
when each of the reverse paths have met the forward path.

AUCTION FOR SHORTEST PATHS 445

We compared our code with the shortest path code SHEAP, due to Gallo and
Pallotino [GaP88]. This is an implementation of Dijkstra’s method that uses a binary
heap to store the nodes which are not yet permanently labeled. We made a simple
modification to this code so that it terminates when all the destinations (rather than
all the nodes) become permanently labeled. Our informal comparison with other
shortest path codes agrees with the conclusion of [GaP88] that SHEAP is a very
efficient state-of-the-art code for a broad variety of types of shortest path problems.
While other shortest path codes may produce faster solution times than SHEAP, we
believe that the differences are not sufficiently large to invalidate the qualitative nature
of our comparisons. We did not test our code against label correcting methods such
as the threshold algorithm [GKP85], [GAP88], since these methods are at a disadvantage
in the case of only a few origin-destination pairs.

We restricted our experiments to randomly generated shortest path problems
obtained using the widely available NETGEN program [KNS74]. Problems were
generated by specifying the number of nodes N, the number of arcs A, the length
range [1, L], and a single source and sink (automatically chosen by NETGEN to be
nodes 1 and N). The times required by the two codes on a Macintosh II are shown
in Tables 1 and 2, for the cases of one destination and four destinations, respectively.
The tables show that AUCTION_SP is much faster than SHEAP on NETGEN prob-
lems; this was confirmed by extensive additional testing.

For the case of a single destination, we have also experimented with a version of
SHEAP, called TWO_TREE_SHEAP, that builds a shortest path tree from the origin
and another shortest path tree from the destination. Recent computational research
[HKS88], [HKS89] has confirmed that using two trees in Dijkstra’s method, as
originally suggested in [Nic66], typically accelerates convergence, and our experience
agrees with this conclusion. Still, however, AUCTION_SP was substantially faster
than TWO_TREE_SHEAP, as shown in Table 1.

For multiple destination problems, we know of no Dijkstra-like algorithm that
uses multiple trees; one has to run a two-sided algorithm separately for each origin-
destination pair. Thus, in contrast with our algorithm, the advantage of a two-sided
Dijkstra algorithm is dissipated quickly as the number of destinations increases from
one. Therefore, based on our computational experience, we conclude that AUC-
TION_SP is by far the fastest code for random problems of the type generated by
NETGEN and for few destinations (more than one, but much less than the maximum
possible).

We note that for "one-to-all" problems, where there is a single origin and all other
nodes are destinations, AUCTION_SP has been running slower than the best label
correcting methods, including SHEAP. However, the differences in performance were
not overwhelming (a factor of the order of two to three), and it will be interesting to
make the corresponding comparison in a parallel computing environment.

The reader is warned that the computational results of the table are far from
conclusive. Clearly, one can find problems where AUCTION_SP is vastly inferior to
SHEAP in view of its inferior computational complexity, cf. Fig. 2 (although such a
problem was never encountered in our experiments with randomly generated problems).
An important issue is to delineate, through average complexity analysis and computa-
tional experimentation, the types of practical problems for which our algorithm is
substantially better than the best label setting and label correcting methods. We find
our computational results very encouraging, but further research and testing with both
serial and parallel machines must be done before we can reach solid conclusions on
the merits of our algorithm. We also note that the ideas in this paper are new and

446 DIMITRI P. BERTSEKAS

TABLE
Solution times in secs ofshortest path codes on a Mac H using problems generated by NETGEN

with one destination (node N). The lengths of all arcs were randomly generated from the range
1, 1000].

N A AUCTION_SP SHEAP TWO_TREE_SHEAP

1,000 4,000 0.033 0.250 0.033
1,000 10,000 0.050 0.200 0.133
2,000 8,000 0.017 0.017 0.017
2,000 20,000 0.067 0.867 0.150
3,000 12,000 0.067 0.983 0.100
3,000 30,000 0.033 1.117 0.100
4,000 16,000 0.067 1.233 0.100
4,000 40,000 0.033 0.383 0.100
5,000 20,000 0.050 1.383 0.083
5,000 50,000 0.033 0.550 0.100

TABLE 2
Solution times in secs of shortest path codes on a Mac H using

problems generated by NETGEN with four destinations (nodes N, N-
100, N- 200, N- 300). The lengths ofall arcs were randomly generated
from the range 1, 1000].

N A AUCTION_SP SHEAP

1,000 4,000 0.050 0.250
1,000 10,000 0.080 0.383
2,000 8,000 0.100 0.667
2,000 20,000 0.233 0.883
3,000 12,000 0.117 1.100
3,000 30,000 0.167 1.117
4,000 16,000 0.100 1.233
4,000 40,000 0.117 1.883
5,000 20,000 0.150 1.533
5,000 50,000 0.183 1.833

their potential is not yet fully developed. It is likely that as these ideas are better
understood, more efficient codes will become available.

[AMOS9]

[Ber79]

Ber81

[Ber82]

[Ber86]

[Ber88]

REFERENCES

R. K. AHUJA, T. L. MAGNANTI, AND J. B. ORLIN, Networkflows, Sloan Working Paper No.
2059-88, Sloan School of Management, Cambridge, MA, March 1989; also in Handbooks
in Operations Research and Management Science, Vol. 1, Optimization, G. L. Nemhauser,
A. H. G. Rinnooy-Kan, and M. J. Todd, eds., North-Holland, Amsterdam, 1989.

D. P. BERTSEKAS, A distributed algorithmfor the assignment problem, Laboratory for Informa-
tion and Decision Systems Working Paper, Massachusetts Institute of Technology,
Cambridge, MA, March 1979.
, A new algorithm for the assignment problem, Math. Programming, 21 (1981),

pp. 152-171.
, Distributed dynamic programming, IEEE Trans. Automat. Control, 27(1982),

pp. 610-616.
, Distributed relaxation methods for linear network flow problems, in Proc. 25th IEEE

Conference on Decision and Control, 1986, pp. 2101-2106.
, The auction algorithm: A distributed relaxation methodfor the assignmentproblem, Ann.

Oper. Res. 14 (1988), pp. 105-123.

AUCTION FOR SHORTEST PATHS 447

[Ber90]

[BEE88]

[BeT89]

[Chv83]
[Dan63]

[DGK79]

[Dia69]

[GAP86]

[GAP88]
[GKP85]

[HKS88]

[HKS89]

[JoV87]

[KNS74]

Ker81
[Law76]

[Nic66]

[Pap74]

[PASS2]

[Po191]

[Roc84]

[ShW81]

The auction algorithm for assignment and other network flow problems: A tutorial,
Interfaces, 20 (1990), pp. 133-149.

D. P. BERTSEKAS AND J. ECKSTEIN, Dual coordinate step methods for linear network flow
problems, Math. Programming Ser. B, 42 (1988), pp. 203-243.

D. P. BERTSEKAS AND J. N. TSITSIKLIS, Parallel and Distributed Computation: Numerical
Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

V. CHVATAL, Linear Programming, W. H. Freeman, New York, 1983.
G. B. DANTZIG, Linear Programming and Extensions, Princeton University Press, Princeton,

NJ, 1963.
R. DIAL, F. GLOVER, D. KARNEY, AND D. KLINGMAN, A computational analysis ofalternative

algorithms and labeling techniques for finding shortest path trees, Networks, 9 (1979),
pp. 215-248.

R. B. DIAL, Algorithm 360: Shortest path forest with topological ordering, Comm. ACM, 12
(1969), pp. 632-633.

G. GALLO AND S. PALLOTINO, Shortest path methods: A unified approach, Math. Programming
Stud., 26 (1986), pp. 38-64.

G. GALLO AND S. PALLOTINO, Shortest path algorithms, Ann. Oper. Res., 7 (1988), pp. 3-79.
F. GLOVER, D. KLINGMAN, N. PHILLIPS, AND R. F. SCHNEIDER, New polynomial shortest

path algorithms and their computational attributes, Management Science, 31 (1985),
pp. 1106-1128.

R. V. HELGASON, J. L. KENNINGTON, AND B. D. STEWART, Dijkstra’s two-tree shortest path
algorithm, Tech. Report 89-CSE-32, Department of Computer Science and Engineering,
Southern Methodist University, Dallas, TX, 1988.

R. V. HELGASON, J. L. KENNINGTON, AND B. D. STEWART, Computational comparison of
sequential and parallel algorithms for the one-to-one shortest-path problem, Tech. Report
89-CSE-32, Department of Computer Science and Engineering, Southern Methodist
University, Dallas, TX, 1989.

R. JONKER AND A. VOLEGNANT, A shortest augmenting path algorithm for dense and sparse
linear assignment problems, Computing, 38 (1987), pp. 325-340.

D. KLINGMAN, m. NAPIER, AND J. STUTZ, NETGEN--A program for generating large scale
(un) capacitated assignment, transportation, and minimum cost flow network problems,
Management Science, 20 (1974), pp. 814-822.

A. KERSHENBAUM, A note on finding shortest path trees, Networks, 11 (1981), pp. 399-400.
E. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Winston,

New York, 1976.
T. NICHOLSON, Finding the shortest route between two points in a network, Comput. J., 9 (1966),

pp. 275-280.
U. PAPE, Implementation and efficiency ofMoore-algorithmsfor the shortest path problem, Math.

Programming, 7 (1974), pp. 212-222.
C. H. PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall, Englewood Cliffs, NJ, 1982.
L. POLYMENAKOS, Analysis of parallel asynchronous schemes for the auction shortest path

algorithm, Master’s thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA, 1991.

R. T. ROCKAFELLAR, Network flows and monotropic programming, Wiley-Interscience, New
York, 1984.

D. R. SHIER AND C. WITZGALL, Properties of labeling methods for determining shortest path
trees, J. Res. Nat. Bur. Standards, 86 (1981), p. 317.

SIAM J. OPTIMIZATION
Vol. 1, No. 4, pp. 448-474, November 1991

() 1991 Society for Industrial and Applied Mathematics
0O2

DIRECT SEARCH METHODS ON PARALLEL MACHINES *

J. E. DENNIS, JR. AND VIRGINIA TORCZON?

Abstract. This paper describes an approach to constructing derivative-free algorithms for
unconstrained optimization that are easy to implement on parallel machines. A special feature of
this approach is the ease with which algorithms can be generated to take advantage of any number
of processors and to adapt to any cost ratio of communication to function evaluation.

Numerical tests show speed-ups on two fronts. The cost of synchronization being minimal, the
speed-up is almost linear with the addition of more processors, i.e., given a problem and a search
strategy, the decrease in execution time is proportional to the number of processors added. Even
more encouraging, however, is that different search strategies, devised to take advantage of additional
(or more powerful) processors, may actually lead to dramatic improvements in the performance of
the basic algorithm. Thus search strategies intended for many processors actually may generate
algorithms that are better even when implemented sequentially. The key difference is that the
additional processors are not used simply to enhance the performance of an inherently sequential
algorithm; they are used to spur the design of ever more ambitious--and effective--search strategies.

The algorithms given here are supported by a strong convergence theorem, promising computa-
tional results on a variety of problems, and an intuitively appealing interpretation as multidirectional
line search methods.

Key words, unconstrained optimization, direct search methods, multidirectional search, parallel
optimization, Nelder-Mead simplex algorithm

AMS(MOS) subject classifications. 65K05, 49D30

lem
1. Introduction. We consider the nonlinear unconstrained optimization prob-

min f(x)

where f :lRn IR. We do not use any derivatives or finite differences in our search
schemes. These schemes qualify as direct search methods since the search is driven
solely by function information. We require only that f be continuous on a compact
level set to prove convergence for these methods; however, to guarantee convergence
to a stationary point we require that f also be continuously differentiable. These
convergence results will be discussed further in 4.

Originally, our interest in direct search methods was based on the fact that there
had been only limited progress in designing effective parallel optimization algorithms
that could take advantage of a large number of processors over a fairly wide range
of problems. Meanwhile, current predictions suggest that achieving teraflop perfor-
mance by the end of the century will require machines with 8000 to 32,000 proces-
sors. Workstations with up to 1000 processors are on the drawing board. What is
needed are algorithms that can be easily scaled to accommodate ever larger numbers of
processors--as well as ever more powerful processors. We believe that the algorithms
we propose in this paper constitute progress in this direction.

The simplicity of direct search methods suggested to us that they might be easily
adapted to a parallel computing environment precisely because they would be more
amenable to scaling. A survey of the scientific literature also revealed that at least

Received by the editors September 26, 1990; accepted for publication (in revised form) April
10, 1991. This research was sponsored by Air Force Office of Scientific Research grant AFOSR-89-
0363. Equipment support was provided by the Center for Research on Parallel Computation, Rice
University, Houston, Texas 77251-1892.

Department of Mathematical Sciences, Rice University, Houston, Texas 77251-1892.

448

DIRECT SEARCH METHODS ON PARALLEL MACHINES 449

one direct search method, the Nelder-Mead simplex algorithm [16], numbers among
the more popular optimization methods in scientific computing. The simplicity of
the direct search methods certainly explains much of their popularity. It is also true
that a lack of derivatives, as well as "noise" in the function values, may preclude
the use of methods that require derivatives. Thus we believe that if we can use
parallelism to improve the performance of direct search methods, any improvement
will be of immediate interest and possible use. Recent experiments with problems
from cancer research [1], chemical engineering [8], and stability analysis for matrix
computations [9] have convinced us and our users that the approach given here is a
valuable addition to the optimizer’s toolkit.

The purpose of this paper is to describe these parallel direct search methods in
the context of our earlier work and then to give some preliminary numerical results
that indicate the potential for this approach. These results suggest the merit in
pursuing the further development of parallel direct search methods. One goal is
to demonstrate that, in the context of direct search methods, computing additional
function values at each iteration can reduce the elapsed time to completion of an
algorithm in a parallel computing environment and may actually reduce the total
number of function evaluations required to produce an acceptable solution since the
number of iterations required to reach a satisfactory solution may be significantly
reduced. Thus, even though we are doing more work at each iteration (by computing
more function values at each iteration), we learn so much more about the function
that we produce significantly better iterates and thus converge in far fewer iterations.
The net effect is that even with a more ambitious search strategy, we may actually
compute fewer total function values.

Our paper is organized as follows. Section 2 outlines the basic approach we have
taken to develop parallel direct search methods, and gives the assumptions we have
made about the general parallel computing environment as well. Section 3 contains a
brief description of direct search methods and the reason for our interest in them, as
well as a comparison of our approach with several parallel implementations of quasi-
Newton methods for solving the general unconstrained minimization problem. In 4
we review the multidirectional search algorithm, a direct search method that forms the
basis for our more general parallel schemes. We also state the applicable convergence
theorem from [22]. In 5, we show how to incorporate the basic multidirectional search
algorithm into a core step that can then be augmented to take better advantage of the
available computational resources while retaining the convergence properties of the
basic algorithm. In 6 we outline the new parallel multidirectional search algorithms
and discuss implementation details. In 7, we give some preliminary numerical results
that demonstrate speed-up on two fronts and report our experience with some "real"
problems. In 8, we close with some remarks concerning future directions for research.

2. Approach. The approach we take can be viewed as an extremely flexible
multidirectional line search method that can be easily scaled to fit the number of
processors available--regardless of the size of the problem to be solved. Complete
use of the available processors is accomplished in two ways. First, additional search
directions are introduced systematically in an order that in some sense reflects the
likelihood of producing descent. In addition, the simple line search conducted along
each direction is refined, with preference given to those directions that are deemed
more likely to produce descent. The work involved in determining the search direc-
tions and steps is minimal; we do not need to solve any linear systems of equations.
Furthermore, this approach involves a minimum of interprocessor communication (i.e.,

450 J.E. DENNIS, JR. AND V. TORCZON

synchronization) and places few restrictions on the function to be minimized. In par-
ticular, there is no need to assume that the function evaluations are expensive in
order to justify the overhead introduced by the parallelization. This added flexibility
is significant. If the function evaluations must be expensive to support the cost of the
synchronization, then as processors become ever faster, the range of problems that
can be solved efficiently on parallel machines becomes ever smaller. This limitation
will become even more of an issue as the number of processors grows since the cost of
access to remote memory will become even greater. As we shall see, one of the most
attractive features of the parallel direct search methods is that these methods allow
us to stack function evaluations on each processor until the cost of the computation
balances the cost of the communication.

Throughout this paper we will assume that n < p, where n is the dimension of
the problem to be solved and p is the number of available processors. While it is
certainly possible to use these algorithms when p _< n, the more interesting results
occur when, in fact, n << p (or, more accurately, when the total number of function
values computed at each iteration of the algorithm is significantly larger than the
dimension of the problem to be solved).

The results we will report in 7 have been taken from an implementation on an

iPSC/860, but these algorithms can be adapted to any sort of parallel computing
environment. This certainly includes either distributed-memory or shared-memory
multiprocessors. However, since these algorithms are both small and flexible, they
also are amenable for use on transputers or even on a network of computers that may
or may not have different performance characteristics. There is only one point of
synchronization, so modifications to suit a particular parallel computing environment
are straightforward. Furthermore, the information we require for the synchronization
is so small, regardless of the search strategy we employ, that even when global com-
munication or some other form of access to remote memory is relatively expensive,
it is still easy to choose a search strategy from among those we propose for which
this approach is viable. We have concentrated on multiple instruction, multiple data
(MIMD) machines only because we are ultimately interested in solving problems where
the function values are themselves the result of another (expensive) process, for in-
stance, a simulation or the solution of a differential equation. We choose to treat the
function evaluation routine as a "black box." However, with the proper restrictions on
the function evaluation routine, the ideas presented here could also be implemented
on single instruction, multiple data (SIMD) machines. Thus we have an approach
that is flexible enough to be of use in a wide range of computing environments.

3. Background. The methods given here belong to the large and often-used
class called direct search methods. Direct search methods are characterized by the
fact that they do not use derivatives. Derivative-free schemes are more widely ap-
plicable than gradient or quasi-Newton methods. Of course, there is little doubt
that derivatives, when they are available, can be used to speed up the average-case
performance of nonlinear optimization algorithms, but sometimes derivative approxi-
mations are simply not practical. In some control problems the objective calculation
is so expensive that finite differences are undesirable and the code involves so much
branching that automatic differentiation is currently out of the question, while an
expert might require weeks, or even years, to find an alternative adjoint approach to
derivative approximation. Derivative-free methods are also quite robust in dealing
with objective functions that can be evaluated to only a few significant digits, which
precludes the use of finite-difference derivative approximations, regardless of expense.

DIRECT SEARCH METHODS ON PARALLEL MACHINES 451

As an indication of how popular direct search methods are with users, one need
only consult the 1989 Science Citation Index [18], which lists more than 215 citations
for the classic Nelder-Mead paper. Both the number of citations and the range of
journals in which these citations occur has grown every year since the paper first ap-
peared in 1965. The most cited paper in the vast literature on quasi-Newton methods
appears to be the 1963 paper of Fletcher and Powell [7], which popularized what is
now known as the DFP variable metric secant update. In the 1989 Science Citation
Index the Fletcher-Powell paper has 114 citations. As a further indication of its
popularity, we note that the Nelder-Mead simplex algorithm also appears in most
commercially available software libraries. For instance, Nelder-Mead is a standard
feature of such packages as NAG, IMSL, and Matlab.

Given the popularity of the Nelder-Mead simplex algorithm, our first attempt
at a parallel direct search method consisted of a straightforward implementation of
the Nelder-Mead simplex algorithm on an iPSC hypercube (now referred to as an
iPSC/1). While we computed n + 4 function values simultaneously to complete all
the function evaluations that could possibly be required during the course of a single
iteration, the algorithm showed only a speed-up of order two, regardless of either the
size of the problem or the number of available processors. Careful examination of
the behavior of the sequential algorithm confirmed that, in fact, this was the best
we could expect to do with such a naive parallel implementation since the sequen-
tial algorithm typically required only two function values per iteration. Additional
experimentation led to two interesting results. The first was the development of a
new direct search method, which we call multidirectional search [21], that forms the
basis for the algorithms discussed here. The second was the unexpected discovery,
during our numerical testing, that the Nelder-Mead simplex algorithm can converge
to nonminimizers when the dimension of the problem becomes large enough [21]. This
behavior occurred for all the test problems we used from the Mor6, Garbow, Hillstrom
problem set [12] where the dimension of the problem could be varied. In all cases, we
started with a regular simplex (i.e., a simplex with edges of equal length) from the
standard starting point given in [12]. This behavior occurred even on such a simple
problem as

min f(x) xTx
x/R

for n >_ 16. One of the advantages of the multidirectional search algorithm is that,
unlike the Nelder-Mead simplex algorithm, it is backed by convergence theorems that,
our numerical testing indicates, are borne out in practice.

Initially our implementation of the basic multidirectional search algorithm on a
shared-memory multiprocessor suffered from the fact that the number of processors
that could be used was tied to the dimension of the problem. The challenge, then,
was to find ways to effectively use all available processors.

Our approach consists of embedding the original multidirectional search algo-
rithm in a family of algorithms. These algorithms have a very appealing interpre-
tation as multidirectional line search methods. The original multidirectional search
algorithm [21] performs a rudimentary line search along n search directions, hence
the dependence of the use of processors on the dimension of the problem. Our new
approach expands upon this idea by systematically introducing line searches along
new search directions while further refining the line search along the existing set of
search directions. As we shall see, this approach is extremely flexible, so that even for
a problem of a given dimension on a machine with a fixed number of processors, there

452 J.E. DENNIS, JR. AND V. TORCZON

is a family of closely related algorithms, any one of which could be implemented.
The idea for using all available processors, or scaling the algorithm to fit the prop-

erties of a given machine, is an idea that we have seen in other parallel optimization
algorithms. The key difference is that we do not use additional processors simply to
enhance the performance of an inherently sequential algorithm.

A Newton or quasi-Newton method is essentially a sequential algorithm that con-
sists of two distinct phases. First, a single search direction is constructed and then
a step that satisfies some notion of sufficient decrease in the objective function value
is determined. These methods are inherently sequential since a step for the current
iteration cannot be determined until after the search direction has been constructed,
while the search direction for the next iteration cannot be ascertained until a suc-
cessful step has been found. There can, however, be a significant amount of work
associated with each phase of the iteration. Thus, efforts to produce general, par-
allel Newton or quasi-Newton methods have concentrated on parallelizing the work
involved in each phase [6], [3], [4], [13], [14], [15]. These efforts have been successful at
accelerating the performance of Newton or quasi-Newton methods while preserving
their convergence properties. However, the inherently sequential nature of Newton’s
method limits the number of processors that can be successfully employed since the
fundamental algorithm remains essentially unchanged. These limitations arise in two
ways. Either a fairly small number of processors (i.e., no more than twenty) can be
used to parallelize the linear algebra involved at each iteration (but this requires the
assumption that the dimension of the problem is quite large so as to offset the cost
of the synchronization), or the processors can be used to calculate finite-difference
approximations to the gradient and either part or all of the Hessian. Then, for a fixed
number of processors, the range of the problems that can be solved is limited, both
by the dimension of the problem (i.e., O(n) < p < O(n2), where p is the number
of processors and n is the dimension of the problem) and by the relative cost of the
function evaluations, again to offset the cost of the synchronization.

Our approach is quite different. Given the dimension of the problem to be solved,
the number of available processors, and, ideally, some notion of the relative expense
of the function evaluations to communication (or synchronization) costs, we have a
simple initialization scheme that tailors the basic rnultidirectional search algorithm to
fit these specifications. The result is not just that we produce a different sequence of
iterates. We actually produce different algorithms with different performance char-
acteristics. The numerical results in 7 suggest that we often generate better direct
search algorithms. This improved performance is not accidental. We compute more
information about the function--more than we could easily justify in a sequential
computing environment--but we use all of the information we compute. Not too
surprisingly, we often construct a better sequence of iterates.

Before proceeding to a description of the multidirectional search algorithm, we
note that this is not the only direct search method we could use as a core step for our
more general parallel direct search schemes. Our investigation of the theoretical prop-
erties of the multidirectional search algorithm revealed that several well-established
sequential direct search methods, such as the original factorial design algorithm of

Byrd, Schnabel, and Shultz [3], [4] anticipate the search direction for the next iteration by
calculating, speculatively, the gradient associated with the trial step. The calculation is speculative
in the sense that the outcome of the trial step determines whether or not their guess was correct and
thus whether or not the information they have already computed can be used to calculate the new
search direction.

DIRECT SEARCH METHODS ON PARALLEL MACHINES 453

Box [2] or the pattern search algorithm of Hooke and Jeeves [10], also have the same
essential characteristics, and thus are amenable to both the convergence analysis given
in [22] and the general parallelization strategy given here in 5. The reason we have
chosen to use the multidirectional search algorithm as our basic algorithm is that it
requires only O(n) function evaluations per iteration to guarantee convergence. The
factorial design algorithm also falls under the same convergence analysis but requires
O(n2) function evaluations per iteration. Thus, when there is a limited number of
processors available (relative to the size of the problem), the multidirectional search
algorithm is more effective. Conversely, when the number of processors is quite large,
it is easy to construct examples for which the multidirectional search algorithm and
the factorial design algorithm of Box generate the same generalized direct search algo-
rithm. The similarities between these and other direct search algorithms are discussed
briefly in [22]; a more detailed discussion is being prepared for publication.

We now proceed with a description of our core algorithm.

4. The basic multidirectional search algorithm. An iteration of the ba-
sic multidirectional search algorithm begins with a simplex S in lR, with vertices
v0, vl,-., vn. The best vertex v0 is designated to be a vertex for which f(vo) _< f(vj)
for j 1,..., n. We now describe a complete iteration to arrive at a new simplex S+.

The first move of the iteration is to reflect v1,..., vn through the best vertex v0.
Figure 1 shows an example for n 2. The reflected vertices are labeled r and r2.

Y2

C2

Yl

el

FIG. 1. The three possible steps given the simplex S with vertices (v0, vl,v2).

If a reflected vertex gives a better function value than the best vertex, then the
reflection step is called successful and the algorithm tries an expansion step. The
expansion step consists of expanding each reflected edge (rj v0) to twice its length
to give a new expansion vertex ej. In Fig. 1 the expansion vertices are labeled e and
e2.

454 J.E. DENNIS, JR. AND V. TORCZON

In an iteration of this basic algorithm, the expansion step would be tried only
if the reflection step was successful, and it would be taken only if some expansion
vertex was better than all the reflection vertices. Thus, if we try the expansion step,
then the new simplex S+ is either the expansion simplex ((Vo, el, e2/in Fig. 1) or the
reflection simplex ((vo,rl,r2) in Fig. 1).

The other branch of the basic algorithm is the case where the reflection step was
unsuccessful, i.e., no reflection vertex has a better function value than f(vo). In this
case, we take S+ to be the contraction simplex formed by replacing each vertex of the
worst n-face in the original simplex by the point midway from it to the best vertex.
Thus, in Fig. 1, the contraction step takes S+ to be (vo, c, c2/.

To complete one iteration of the basic algorithm, we take Vo+ to be the best vertex
of S+.

Before giving the convergence result, we point out the line search flavor of the
algorithm. In the case n 1, we first try a step of a given length away from the
vertex with the larger function value (the reflection step). If that is successful, then
we try a longer step (the expansion step), but if it is not, then we try a step only
half as long in the other orientation (the contraction step). If none of the steps give
decrease, then the next iteration begins with a step in the same direction as the
previous iteration began with, but only half as long. Thus, an unsuccessful sequence
of iterations generates a backtracking line search with alternating orientations. (See
Fig. 2.) This simple observation forms an important part of the convergence proof.

vo

Fla. 2. A simple backtracking line search.

The following notation will be used in the statement of the convergence result.
Let {Vok } be the sequence of best vertices. Let v0 be the best vertex of the simplex
So used to start the algorithm. Define the level set of f at Vo to be

o) {x,S(x)_<
Given y E IRn, let the contour C(y) be

C(y) {x: f(x)= f(y)}.

Let X, be the set of stationary points of the function f in L(v).
THEOREM 4.1. Assume that L(vo) is compact and that f is continuously differ-

entiable on L(vo). Then some subsequence of {Vok} converges to a point x, e X,.
Thus, {v0k } converges to C, C(x,) in the sense that

lim [inf IlVok-xll]koo [x6C,
0.

The assumption that f is continuously differentiable on L(vo) can be reduced
to the assumption that f is continuous on L(v); however, the set X, must then
be expanded to include all points where the function f is nondifferentiable on L(v)
and where the gradient of f exists but is not continuous. The proof for both results
is given in [22]. Before we go on to extend the multidirectional search algorithm to

DIRECT SEARCH METHODS ON PARALLEL MACHINES 455

generate a family of parallel algorithms, let us discuss the proof in a form that extends
to the algorithms of the next section.

First, we see why the algorithm cannot stall at a v0 with a nonzero gradient. Note
that the edges of S adjacent to v0 form a basis for IR’ and so at least one edge is not
orthogonal to Vf(v0). Thus, either that edge or its reflection is a descent direction
from v0. Let us call this a descent edge. Now, the only way the algorithm can stay
at v0 is to take an infinite sequence of successive contraction steps. However, at the
next iteration, the contraction simplex flips to the opposite orientation to form the
reflection simplex and so, along any descent edge from v0, we are generating a pair of
sequences of points, one from each orientation, halving the distance from v0 at each
term of the sequence, as seen in Fig. 2. Therefore, we will eventually get either a
successful reflection step or a contraction step that replaces v0.

Thus, the algorithm can be viewed as a backtracking line search method where at
least one of the n search directions is guaranteed to produce descent if Vf(v0) : 0.
Convergence would be clear if some principle of sufficient decrease on f were required.
However, we accept a new best vertex based only on simple decrease. The remainder
of the proof consists of an unusual argument by contradiction. We assume that the
sequence of best vertices stays uniformly bounded away from the set of stationary
points. Using this assumption, along with the compactness of the level sets, the
uniform linear independence of the search directions, and the continuity of Vf, we
can show that all but a finite number of vertices generated by the algorithm must be
contained in a compact set and lie on a lattice. Now, the first part of the proof showed
that if the best vertex is not a stationary point of the function, then the algorithm will
produce a strictly monotonically decreasing sequence of function values. The second
part of the proof demonstrates that under the hypothesis that the sequence of best
vertices stays uniformly bounded away from the the set of stationary points there is
only a finite number of function values. Therein lies the contradiction. Thus, our
hypothesis cannot hold and we have convergence to the set of stationary points.

We close by noting that as long as we preserve the backtracking line search fla-
vor of the algorithm, the proof for the basic algorithm will extend to the parallel
multidirectional search algorithms we propose.

5. The parallel multidirectional search algorithms. The strategy we will
employ to define a family of direct search algorithms is very simple. We will look
ahead to subsequent iterations of the algorithm until we generate a sufficient number
of vertices to keep all available processors busy.

We begin by removing all the branching from the basic algorithm to obtain a
core step. Thus, the core step consists of the union of the reflection, expansion, and
contraction steps from the basic algorithm. This core step will require 3n independent
function values at each iteration.2 Thus, in the two-dimensional example given in
Fig. 1, the core algorithm computes the function values at the six new vertices rl, r2,

el, e2, c1, and c2 simultaneously. We then choose as v0+ the vertex that produces the
best function value while S+ is taken to be the simplex that produced v0+. If f(v0)
is still the least function value, then S+ must be the contraction simplex.

There are two points to be made. First, with the stipulation that the contraction
simplex must be accepted when the core step does not produce a new best vertex, the
convergence theorem still holds. Second, without the branching present in the basic

2 We will assume for now that the number of processors, p, is greater than 3n. As we shall
demonstrate in 6.3, it is possible to remove this restriction on the minimum number of processors
required. In fact, as we shall see in 7, this approach may generate better sequential algorithms.

456 J.E. DENNIS, JR. AND V. TORCZON

algorithm, we may actually produce a different sequence of iterates. For example, our
choice of S+ might now be the expansion simplex even if it would never have been
constructed in the basic algorithm. This could happen if min(f(el),...,f(en)} <
f(v0) _< min(f(rl),...,](rn)}. Thus we have a different algorithm that may actually
produce a different sequence of iterates.

We have now used 3n processors to compute the 3n new vertices and their asso-
ciated function values. To take advantage of more processors, we simply continue the
look-ahead to subsequent iterations. For instance, we could assume that the reflec-
tion step is accepted at the current iteration, in which case one of the n new vertices
associated with the reflection simplex will become v0+. Thus, we can consider the new
reflection vertices that might be constructed at the next iteration if each of r1,..., r
were given the role of v0+. (See Fig. 3.) We can continue this look-ahead to construct
all the reflection simplices that could be considered at the next iteration if any of rl,

", rn, el, .’., en, cl, ", Cn, or v0 were to become v0+, as shown in Fig. 4. There
is also nothing to prevent us from including all possible expansion and contraction
vertices as well, as seen in Fig. 5.

V2

C2

Vl

el

FIG. 3. The core step with reflection steps from rl and r2.

If we were to construct all the new vertices shown in Fig. 5 and compute their
associated function values in parallel, then we would have effectively completed two
iterations of the basic multidirectional search algorithm. However, the numerical
results we will show in 7 suggest that, in fact, we typically do much better, for
reasons we will now explain.

If we return to the core step, we see that all the vertices we constructed lie along
n directions determined by the n edges adjacent to v0, as seen in Fig. 6. We can view
the core step as a rudimentary line search consisting of three steps along each of n
directions. When we proceed to the next iteration and consider all possible reflection
simplices, we introduce new line searches but we also further refine the search along the

DIRECT SEARCH METHODS ON PARALLEL MACHINES 457

e2

r2

Vl

Fro. 4. The core step with all the reflection steps for the next iteration.

original n directions, as can be seen in Fig. 7. When we complete the full look-ahead,
Fig. 8 shows that for the example we have constructed we have introduced five new
line searches, each consisting of three steps, while simultaneously adding additional
steps along the two original search directions to refine the line search. If we were
to continue this process into the next iteration we would find that we would again
introduce new line searches, we would begin to refine the search along the directions
introduced in the previous iteration, and we would further refine the searches along
the original n directions.

Figure 8 suggests that we have a true multidirectional line search method that
scales the algorithm by introducing new line searches in a systematic way. The original
n search directions are deemed most likely to produce descent since we search along
edges from vertices with higher function values towards a vertex with a lower function
value. In fact, the convergence theorem guarantees that if v0 is not a stationary point,
then one of these n edges will produce descent. However, we hedge our bets by also
adding new, less likely, search directions. Throughout this process we continue to
refine the line search along each of the directions we have introduced, with priority
going to the more likely directions.

458 J.E. DENNIS, JR. AND V. TORCZON

Y2

r2

e2

FIG. 5. The core step with one complete look-ahead.

DIRECT SEARCH METHODS ON PARALLEL MACHINES 459

We prefer to interpret our direct search methods as multidirectional line search
algorithms. The simplex interpretation is useful for generating and programming these
algorithms, as we shall see in the next section; however, the line search interpretation

V2

FIG. 6. The n original search directions.

allows us to pose these algorithms as gradient-related methods, which helps explain
both the convergence theory and the performance characteristics of these algorithms.

We also note that we have introduced a family of algorithms, not a single method.
We have specified a scheme for introducing search directions and refining line searches,
but there is tremendous flexibility within this scheme. In the example we have shown
in Fig. 8, we have introduced 33 new vertices. On a 32 processor machine we can
choose almost any subset consisting of 32 of these 33 vertices to define a multi-
directional search algorithm. While each of these subsets was generated using the
same look-ahead scheme, each subset produces a distinct algorithm that may generate
a different sequence of iterates when applied to identical problems. This observation
suggests the need for defining strategies to specify the order in which to introduce
search directions and refine line searches. The only limitation we impose arises from
the convergence theorem: we must ensure that the backtracking line search, which
constructs steps along both orientations of the search edge, is preserved.

Defining a strategy is not difficult. We used the following principles to design our
current implementation of the parallel multidirectional search algorithms:

We construct a list of vertices until we have enough vertices to assign to all
the processors.
We start this list with v0 as the seed. We consider each vertex in the order in
which it was added to the list and generate the complete core step associated
with that vertex. The 3n vertices associated with a complete core step are
then added to the bottom of the list of vertices.
We give precedence to the reflection step, then the contraction step, and then
finally the expansion step when adding vertices to the list.
We include the current best vertex, with reduced edge lengths, only as part
of the contraction step, since in the basic algorithm there would be a new

460 J.E. DENNIS, JR. AND V. TOI:tCZON

FIG. 7. The n original searches with new steps and additional search directions.

best vertex if we accepted either the reflection or expansion steps.
The actual algorithm we use to implement this strategy is discussed in more detail in
the next section.

There are certainly other, possibly better, strategies for generating parallel multi-
directional search algorithms. For instance, we could first construct all the reflection
vertices associated with a single iteration as in Fig. 4 and then all the contraction
vertices, etc. We could also have mixed strategies that allow for different choices de-
pending on the type of step that produced decrease in the previous iteration. These
ideas are the subject of future research and will be discussed further in 8.

Another important point to note is that once we have specified a strategy for
generating both the search directions and the steps, every vertex can be represented
as a fixed linear combination of Vo and the edges adjacent to Vo. There is no need
to regenerate the necessary coefficients at every iteration. To see this, consider our
example in Fig. 7. Since (vl -v0) and (v2- vo) span]R2, each of the new vertices can
be defined as the sum of vo and a linear combination of (vl- v0) and (v2- vo). If we
fix these coefficients, and then vary S, computing the new vertices at each iteration
of the search reduces to computing a linear combination of the edges adjacent to the
new best vertex. Thus we have a template for the search that is defined by our choice

DIRECT SEARCH METHODS ON PARALLEL MACHINES 461

V2

Vl

FIG. 8. A different interpretation o] the core step with one complete look-ahead.

462 J.E. DENNIS, JR. AND V. TORCZON

of strategies before the actual search procedure begins. Again, we will defer further
discussion of this point to the next section.

Another advantage of the static initialization scheme is that it allows us to elim-
inate duplicate vertices in the template. The reader has probably already noticed
that once we begin to look ahead to subsequent iterations, some vertices may be
multiply-defined. For example, in Fig. 3, el and e2 are redefined by the new reflec-
tion simplices. However, the coefficients necessary to construct these vertices from
(vl v0) and (v2 v0) are identical, so such duplication is easy to detect and elim-
inate during the initialization. The only other issue to be decided is which simplex
will be associated with a multiply-defined vertex, information that is needed to avoid
ambiguity when defining S+ in the event that this vertex becomes v0+. We resolve
this issue by breaking ties in favor of the first simplex to define the vertex.

Having anticipated some of the major points to be addressed in any implementa-
tion of the parallel multidirectional search algorithms, we are now ready to turn to a
more detailed discussion of our current implementation.

6. A distributed memory implementation. We begin with a statement of
the basic algorithm, shown in Table 1. Each of the p processors3 constructs one vertex
v and its function value fv. The scalars a,..., z required to construct the vertex
are local to the processor. We assume that the bulk of the computation occurs in
the evaluation of f(v). Note that we have a single program running on each of the
processors. The data, in the form of the scalars required to compute the vertex v,
varies on each processor. Thus we have a single program, multiple data (SPMD)
model. With the appropriate restrictions on the function evaluation routine, which
we choose to treat as a "black box," these methods could also be extended to SIMD
machines.

TABLE 1
The parallel multidirectional search algorithm.

Given an initial simplex So with vertices (v0, v,..., vn/,
initialize template
while (stopping criterion is not satisfied) do

for 1,...,p do
vi -- Vo - ai(vl vo) -}-"" + zi(vn vo)

end
fv..- min (fv} /* communication */
update simplex

end

When each of the processors has completed its function evaluation, there is a single
global exchange to determine the least function value. On the iPSC/860 we can exploit
the hypercube connectivity by using a global handshake algorithm in which each
processor exchanges the least function value it has seen with its nearest neighbor. If
we assume a hypercube of dimension d, once each processor has exchanged information

3 We assume, for now, enough processors to compute the 3n vertices associated with a core
step. As we shall see in 6.3, satisfying this requirement--even when we are working on a single
processor--is straightforward.

DIRECT SEARCH METHODS ON PARALLEL MACHINES 463

with its d nearest neighbors, every processor has fv,. Note that this eliminates the
need for a single controlling process since each processor can also test for convergence.
To adapt this algorithm to a different parallel computing environment, one need only
make the appropriate modifications at this single point of synchronization to introduce
the appropriate form of remote memory access.

6.1. Update. During the course of the global exchange, we pass three additional
pieces of information: the vertex v, that produced fv,, the pointer source that corre-
sponds to the vertex in S that produced v,, and a scalar , that, in conjunction with
v, and source, allows us to construct the simplex S, associated with v,. (The pointer
source and the scalar i associated with the vertex vi are local to each processor and
are assigned during the initialization of the template.) With this additional infor-
mation, updating S to produce S+ is straightforward, as seen in Table 2. Note that
before we update S, we check to see if fv, produced the strict decrease we require. If
not, then v0 is still the best vertex; to ensure convergence, we reduce the lengths of
the edges in the simplex S by the contraction factor E (0, 1).

TABLE 2
Updating the simplex.

if (fv, < fvo) then

VO+ +-- V,
OZ_t. +-- C,

else

VO+ (-- V0

cz+ <--(9

source +-- 0
endif
for j 0,...,n do

.-- Vo+ +
end
swap(O,source)

6.2. Initialization. The real effort in defining a parallel multidirectional search
algorithm lies in the initialization. The key point to emphasize is that this initializa-
tion is static. A strategy is defined before the search actually begins. The strategy can
be specified as a template that is fixed; it is the simplex, and not the template, that
varies from iteration to iteration. The template is possible because each vertex in the
search scheme can be represented as a sum of v0 and a unique linear combination of
the edges adjacent to v0, as demonstrated in Fig. 9. Furthermore, once we have v0+,
it is possible to construct S+ from S with just two additional pieces of information,
c+ and source, as shown in Fig. 10.

To generate the coefficients ai,..., zi we need to construct the vertex vi, and the
associated ci and source needed to construct the simplex S+ should vi produce the
least function value, we use the simple algorithm shown in Table 3. To see why this
algorithm works, we begin by noting that each of the core reflection, contraction, and
expansion vertices are defined as follows:

vo + vo),

464 J.E. DENNIS, JR. AND V. TORCZON

FIG. 9. Defining the template.

2

Yo

v+ + 1(v.) --,

FIG. 10. Constructing S+]rom V+o and S with + 1 and source 1.

,,o + (1/2)(,, vo),
ej Vo + (-2)(vj-v0),

and

for j 1,..., n. Note that these definitions vary only in the choice of the scalars -1,
! and -2 associated with each step. We also know that we can construct S+ from2

DIRECT SEARCH METHODS ON PARALLEL MACHINES 465

TABLE 3
Initializing the template.

Given the reflection factor A -1, the contraction factor ,
and the expansion factor # -2,
/* initialize the root of the tree by adding the current simplex */
root -- 0
sourceroo -- 0
roo 1

coeflficientSroo - 0
i-i
repeat
/* generate all possible new best vertices given the current simplex */

/* first consider all the new reflection vertices */
for j 0,..., n, j sourceroot

sourcei j
Oli +’- * Olroot
coefificients -- coefficientSroo
oin ou - coint ou +
o1in ouroo - ofie oroo
ii+l

end
/* next consider all the new contraction vertices */
for j 0,...,n

sourcei - j
O +-- $ Olroot

coeJficientsi -- coeflficieutSroo
o1int ou - oin our +
coe]ficients sourceroo - coefficientsi sourceroo i
i-i+l

end
/* finally consider all the new expansion vertices */
for j 0,..., n, j sourceoo

sourcei - j
Oli -- # $ Oroot
coefficientsi - coefficientSroo
oin our - ofcint ou +
oins sooo - ofin oooi-i/l

end
root -- root -t- 1

until enough points have been generated

466 J.E. DENNIS, JR. AND V. TORCZON

S, v0+, a+, and source as

v o+ + + (Vo).

for j 0,...,n. Thus, given v0+, c+, and source we can construct the core step
associated with Vo+. For instance, the reflection vertices would be

r v0+ + (-)(v7 v0+)
v0+ + (-) ((v0+ + + (v Voo)) v0+)
0+ + (-)(.+)(v ,o.)
0+ + (-1)(.+)((v v0) (o. vo))

for j O,...,n, j source--which is exactly the representation we are using to
construct the template.

We also note that there is additional work to be done once the list of coefficients
has been generated, since there are duplicate coefficient vectors. We simply sort the
list and then eliminate duplicates. (We also include the n + 1 vertices in the original
simplex when we check for duplicates so that they are not redefined.) Preference, in
terms of the a and source associated with each coefficient vector, goes to the first
definition. Note also that if we use 0 1/2 and # -2 (standard choices for algorithms
of this sort), then we can scale the entire procedure by an appropriately large multiple
of 2 and generate the template using integer arithmetic, which is faster, halves the
required storage, and eliminates round-off error.

6.3. Stacking computation. The last claim we must substantiate is that it is
easy to balance the cost of the computation versus the cost of the communication,
or some other form of remote memory access. When we first began testing the basic
multidirectional search algorithm on a shared memory multiprocessor, memory access
completely swamped any gains to be seen from computing function values--at least
those from the standard test set--in parallel. One way to overcome this imbalance
would be to assume that the function evaluations are expensive enough to justify
the use of a parallel machine. However, this imbalance is even more acute on the
iPSC/860. If we had to assume that the function evaluations are expensive in order
to justify using a parallel machine, then as processors become ever faster, the class of
problems we would be able to consider solving on a parallel machine would become
ever smaller.

The advantage of the modification we now introduce to the parallel direct search
schemes is that while it introduces more computation on the individual processors,
this additional computation need not have an appreciable effect on the execution
time of the algorithm. We are simply trying to balance the cost incurred due to
the global communication calls. Our modification is simple. Rather than assuming
that the function evaluations are expensive, we simply construct more vertices on
each processor and compute their associated function values before we synchronize
the search. This simple modification is given in Table 4. As we shall see in the next
section, this "extra" work is not wasted; in fact, it may actually lead to a significant
decrease in the total execution time of the algorithm since the more ambitious search
strategy that results may lead to significantly fewer iterations.

We now have all the ingredients we need to claim that, given the number of
processors, the dimension of the problem, and some ratio of the cost of communication
to the cost of computing the function value, we can tailor a parallel multidirectional

DIRECT SEARCH METHODS ON PARALLEL MACHINES 467

TABLE 4
The stacked parallel multidirectional search algorithm.

Given an initial simplex So with vertices (vo, v,...,
initialize template
while (stopping criterion is not satisfied) do

for 1,...,p do
for j 1,...,k do

vj - vo + aj(v vo) +"" + zj(vn vo)
s ,i S(vi)

end

end
fv, ,-- mini {fvi } /* communication */
update simplex

end

search scheme to solve the particular problem in the given computing environment.
Thus we effectively remove two issues that have plagued the parallelization of other
optimization algorithms: the dimension of the problem, n, and the relative expense
of function evaluations.

The remaining question is then: How well do these algorithms perform? We turn
to the next section for some preliminary numerical results.

7. Numerical results. We wish to demonstrate two important features of the
parallel direct search methods. First, these algorithms scale almost perfectly in the
sense in which "scale" is usually applied to parallel computation: if we double the
number of processors we use, we essentially halve the execution time of the algorithm.
In other words, we have almost perfect linear speed-up in the performance of the
algorithm.

However, our parallel direct search algorithms also scale in a way that is not so
usual: not only can we increase the number of processors, we can also increase the
number of points we compute on each processor before we synchronize the search
by making a global communication call. This is the stacked parallel multidirectional
search algorithm given in Table 4. When we fix the number of processors and increase
the number of points we compute on each processor we are defining a new search
strategy; we have a search pattern where the number of points in the search pattern
is equal to the number of processors times the number of points computed on each
processor before each global communication call. When we double the number of
points in the search strategy, the decrease in execution time can be dramatic. This
effect on the execution time, as we shall see, is highly nonlinear; with the right choice
of strategies one may even have a better sequential algorithm since the total number
of function evaluations required to converge to a solution will be less, even if one were
computing more function evaluations at each iteration.

To demonstrate these two points, we will "borrow" the level curves of a classic
test problem, Rosenbrock’s function [17]:

f(xl,x2) 100(x2-x)2+(1-xl)2.

We have borrowed the level curves because Rosenbrock’s function is a function that

468 J.E. DENNIS, JR. AND V. TORCZON

causes most optimization problems some difficulty when the search begins at the
standard starting point (-1.2, 1) in the sense that fifty iterations is fairly typical of
better methods.

To make the computation more realistic, particularly given the speed of the pro-
cessors on the iPSC/860, we have added 10,000 extra floating point operations to
each function evaluation. This is why we say we have "borrowed" the level sets of
Rosenbrock’s function. It is worth noting that when we added 100,000 extra floating
point operations to each function evaluation the execution times did increase but the
observations we now report were qualitatively the same. We chose the lesser num-
ber of extra floating point operations to demonstrate that the relative expense of the
function evaluation does have an effect on the efficiency of a parallel implementation.

We tested our parallel direct search method using most of the minimization prob-
lems found in Mor, Garbow, and Hillstrom [12]. We have singled out Rosenbrock’s
function because it gives fairly typical results; we observed similar behavior when we
experimented with other problems in the Mor, Garbow, and Hillstrom test set. Later
we will discuss our experience with some "real" problems.

We started each search at the classic starting point (-1.2, 1). Since we require
a simplex to start the search, we used a straightforward procedure found in [11] to
generate a regular simplex with edges of length one. We stopped the search when the
absolute value of the function (at the best vertex v0) fell below 10-7, a decrease of
eight orders of magnitude. There is nothing special about this choice; the algorithm
ran equally well for choices between 10-1 and 10-l. (Note that the stopping test we
usually employ is a little more sophisticated [21]; we resorted to this naive choice for
simplicity in discussing the efficiency of the algorithm in achieving some meaningful,
well-defined goal.)

We then solved the problem varying two parameters" the number of processors
and the number of points in the search pattern. The results can be seen in Figs. 11
and 12.

In Fig. 11, the linear speed-up in the execution time is apparent. There are plots
for six different search strategies involving search patterns of 32, 64, 128, 256, 512,
and 1024 points. We have plotted the log2 of the execution time in milliseconds as a
function of the number of processors we have used. If we have linear speed-up, then as
we double the number of processors, the execution time should be halved. The solid
lines that bracket our plots in Fig. 11 demonstrate the slope we should see for perfect
linear speed-up. And, in fact, we see essentially linear speed-up for all but two of the
plots. The plots for the 32 point search pattern and the 64 point search pattern do
show some degradation in the speed-up when we use all 32 processors, but this is easily
explained. Even with over 10,000 floating point operations per function evaluation,
we are not doing enough floating point operations to offset the overhead incurred
due to the communication if we are only doing one or two function evaluations per
processor before each global communication call.

In Fig. 12, the nonlinear behavior associated with the algorithmic changes is
apparent. Here there are plots for six different choices in the number of nodes used to
solve the problem. We have plotted the log2 of the execution time in milliseconds as
a function of the number of points in the search pattern. For this particular example
the best choice is 256 points. Note, however, that a 64 point search strategy is better
than a 128 point search strategy and a 512 point search strategy is better than a 1024
point search strategy. But any of the more ambitious strategies takes less time to
execute than the conservative 32 point strategy--even on a single processor.

DIRECT SEARCH METHODS ON PARALLEL MACHINES 469

log of execution time

(milliseconds)
16

15

14

13

12-

11

--.-

1 2 4 8 16 32

Number of processors

Legend:

(R)

linear speed-up reference slope
32 point search pattern
64 point search pattern

128 point search pattern
256 point search pattern
512 point search pattern
1024 point search pattern

FIG. 11. Linear speed-up obtained by doubling the number of processors.

470 J.E. DENNIS, JR. AND V. TOI:tCZON

log2 of execution time

(milliseconds)
16-

7
32

Number of points in search pattern

Legend:

r 1 processor

x 2 processors

{9 4 processors

8 processors

(R) 16 processors

32 processors

FIG. 12. Nonlinear speed-up obtained by doubling the number of points in the search pattern.

DIRECT SEARCH METHODS ON PAPALLEL MACHINES 471

The "best" choice of search strategies will vary depending on the test problem,
the starting point, the size and orientation of the initial simplex, etc. It is clear that
there is a certain art involved in choosing the "optimal" number of points to be used
in the search pattern. However, it is also true that in general the more points used
in the search strategy, the better the information obtained at each iteration and thus
the better the choice of new best vertices is likely to be. Again we stress that this
improvement was seen across all the problems we tested.

Furthermore, even if we do not know a priori which search strategy is "best,"
we can still decrease the total execution time simply by adding more processors.
Returning to Fig. 12, we see that a 256 point search strategy is optimal, regardless of
the number of processors we use. However, any of the search strategies, if implemented
on at least eight processors, will execute at least as quickly as the 256 point search
strategy on a single processor. Thus, even if we do not know the "optimal" search
strategy, we can still expect to see a decrease in the execution time simply by increasing
the number of processors we use. If we wish to solve a problem repeatedly, it may be
worthwhile to spend some time identifying an "optimal" search strategy. Otherwise,
we might simply use as many processors as we can find (or afford).

Given the speed of the processors on the iPSC/860, we do not even require very
many processors to undertake a more ambitious strategy. We solved a parameter
identification problem in three unknowns that models catalytic cracking of gasoil to
gasoline [8] in just over two seconds using a 32 point search strategy on eight proces-
sors. Each function evaluation required the numerical solution of a system of ordinary
differential equations. Using four processors with the same 32 point search strat-
egy took over four seconds; two processors required between eight and nine seconds.
Again, we observed the linear behavior with respect to the number of processors.

Our tests of the parallel direct search methods lead us to two conclusions. First,
these algorithms do scale almost perfectly in the usual sense: as long as we require
a reasonable amount of computation on each processor, the communication require-
ments are so minimal that we see almost perfect linear speed-up in the performance
of the algorithm, regardless of the problem we sol.ve. If we double the number of
processors we halve the execution time of the algorithm.

Another result is, at present, less well understood and less predictable. If we
increase the number of points in the search strategy, which often involves a significant
increase in the number of function values we compute (stack) on each node before we
attempt to synchronize, we may actually see a marked decrease in the total execution
time of the algorithm. These improvements have been dramatic for the more difficult
problems.

It is important to understand that our parallel direct search methods do not
place an upper bound on the number of processors that can be used. Given ever more
processors we expect to be able to solve ever larger problems. We also note that much
of the algorithmic improvement depends on the proper choice of a search pattern and
there are many different ways to generate search patterns, even for a fixed number
of points. As we gain more experience with these methods, it is possible that if we
can define better search strategies, then we can further increase the range of problems
that can be solved efficiently.

Finally, we note that the simplicity of the parallel direct search schemes suggests
that they are very useful as experimental tools. All that is needed is a function eval-
uation subroutine. While one is calculating the derivatives, coding a subroutine, and
then debugging the code to use a more sophisticated optimization method on a "real"

472 J.E. DENNIS, JR. AND V. TOI:tCZON

problem where the solution is not known, it is possible to be running experiments
using the parallel direct search methods to determine reasonable starting points for
the more sophisticated optimization method, as well as getting a feel for the general
behavior of the function.4

The simplicity of the parallel direct search methods also means that they are
less likely to fall prey to the pathologies, such as noise or the lack of continuity, that
can plague more sophisticated optimization methods. As further evidence of this, we
point to the success reported by Higham [9] using a sequential implementation, in
Matlab, of the basic multidirectional search algorithm to investigate the stability and
accuracy of algorithms in matrix computations. Higham observes that many of the
questions of interest can be expressed in terms of some easily computable function
f. The catch is that the function f is usually not smooth and derivatives, when
they exist, are difficult to obtain. Thus, quasi-Newton or conjugate gradient methods
are not applicable. Direct search methods, on the other hand, prove to be useful
experimental tools.

We also have had experience experimenting with a data set provided by re-
searchers at the University of Texas at Houston, M. D. Anderson Cancer Center,
and the University of Texas Medical Branch at Galveston who are trying to derive
mathematical models for the predictive value of early CA125 serum levels in epithelial
ovarian carcinoma [1]. They have a model with five parameters that they originally
fitted using NL2SOL [5]. They were concerned that NL2SOL required almost 900
function evaluations to return a solution. Experimenting with our parallel direct
search methods, by successively restarting the optimization procedure, we were able
to uncover that one of the parameters, which is required to be strictly greater than
zero, was tending toward zero while another parameter, which is unbounded, was
marching steadily towards ---information that was not obvious from the solution
returned by NL2SOL. They are now interested in further experiments to try to learn
more about the behavior of their model.

The point here is not that the parallel multidirectional search algorithms produce
optimal schemes for all problems on today’s machines. Rather, when the problem to
be solved is small, but difficult, and only a few significant digits in the solution are
either required or expected, then the parallel direct search methods provide a simple
and surprisingly effective approach. Furthermore, these methods may prove to be
even more useful as experimental tools.

8. Future work. The next step is to try the parallel multidirectional search
schemes on an inverse problem in multidimensional wave propagation. This problem
can be formulated via coherency optimization as a low- (e.g., three-) dimensional min-
imization problem [19], [20]. Currently, an implementation of the objective function
on a Stardent Titan takes, on average, several hours to return a function value. There
is a tremendous amount of noise in the data so that the function values cannot be
trusted to more than two digits. This means that finite-difference approximations to
the gradient are really not feasible--and that an answer is expected to be accurate to
only one or two digits. Thus, a quasi-Newton method seems out of the question and
a direct search method seems to be in order.

4 We had an answer for the parameter identification problem less than fifteen minutes after
receiving the code for the objective function. We spent most of that time reading the accompanying
instructions, compiling the code, and then entering the appropriate data. It took the iPSC/860 just
over two seconds to return a solution on our first try. Writing a routine to evaluate the derivatives
using finite-differences took thirty minutes and required some finesse. The solutions were equivalent.

DIRECT SEAI:tCH METHODS ON PAlALLEL MACHINES 473

Tackling this problem, however, means that we will need to rethink the original
implementation of our parallel multidirectional search schemes. To begin with, our
current implementation is best suited for the case when all the function evaluations
require approximately the same time to complete. Thus, there is a natural synchro-
nization that allows us to implement the algorithm without either a controlling process
or any concerns for load balancing. This will not always be the case when dealing
with more difficult problems. Hence, we will need an asynchronous, task-queue-based
implementation with a single controlling process.

Another direction of research would be to extend the parallel multidirectional
search algorithm to problems with constraints. We believe it is possible to extend
the parallel algorithms, with only minor modifications, to problems with bounded
variables. We are also interested in handling linear constraints. If we can handle
bounded variables, it should be possible to transfer many of the ideas learned during
the development of interior point methods to our simplex-based method for handling
problems with linear constraints.

There are several other ideas we would also like to pursue. Although we have a
simple, fast algorithm to generate templates for the parallel multidirectional search
schemes, it is possible that there are other, perhaps better, initialization schemes we
could implement.

One of the few pieces of information that the basic multidirectional search algo-
rithm carries from iteration to iteration is the size of the step taken in the previous
iteration--which determines the size of the step taken in the current iteration. If an
expansion step was accepted, this would indicate that the simplex is still far from a
solution. If the contraction step was accepted, then either the simplex is near a solu-
tion or it is trapped in a difficult region. If we allowed mixed strategies, i.e., different
templates depending on the type of step accepted in the previous iteration, then it
seems possible that we could further accelerate the search. This is an idea we plan to
pursue further.

Currently we place no restrictions on the simplex used to start the procedure.
The default option generates a regular simplex (i.e., a simplex with edges of equal
length). Another standard option would be to start with a right-angle simplex: given
a starting vertex v0, the remaining n vertices in the simplex are generated using the
following simple formula:

vj +- v0+ajej,

for j l,...,n, where cj is a nonzero scalar and ej is the standard unit coordi-
nate vector. If we were to restrict our attention to right-angle simplices, then we
would only require two n vectors to store the entire simplex. Furthermore, produc-
ing the trial vertices for the search and updating the simplex would be reduced from
O(n2) operations to O(n). We plan to adopt this restriction when we implement the
asynchronous version of our algorithm.

There is also the possibility that if the function values are not very expensive to
calculate, and the processors are very fast, then the number of function evaluations
we would need to stack on each processor, k, could also become quite large. However,
as we noted during our discussion of the initialization, the template is generated
using integer arithmetic. The information is then rescaled before being sent out to
each processor. We could, instead, store the template in its integer form, which would
halve the storage requirements, and simply perform the scaling required each time the
information is used. A choice then has to be made as to which is the most efficient
option.

474 J.E. DENNIS, JR. AND V. TORCZON

Acknowledgments. We are grateful to the referees for their useful comments.
We thank Robert Michael Lewis for his valuable suggestions on how best to present
this material, particularly the results given in 7.

REFERENCES

[1] E. N. ATKINSON, M. G. DOHERTY, R. S. FREEMAN, AND H. A. FRITSCHE, Mathematical mod-
els for the predictive value of early CA125 serum levels in epithelial ovarian carcinoma,
working paper.

[2] G. E. P. Box, Evolutionary operation: A method for increasing industrial productivity, Appl.
Statist., VI (1957), pp. 81-101.

[3] R. H. BYRD, R. B. SCHNABEL, AND G. A. SHULTZ, Using parallel function evaluations to
improve Hessian approximations for unconstrained optimization, Tech. Report CS-CU-361-
87, Department of Computer Science, Campus Box 430, University of Colorado, Boulder,
CO, 1987.

[4] Parallel quasi-Newton methods for unconstrained optimization, Math. Programming,
42 (1988), pp. 273-306.

[5] J.]. DENNIS, JR., D. M. GAY, AND R. E. WELSCH, Algorithm 573 NL2SOL--an adaptive
nonlinear least-squares algorithm [E4], ACM Trans. Math. Software, 7 (1981), pp. 369-
383.

[6] L. C. W. DIXON, The place of parallel computation in numerical optimisation I, the local
problem, Tech. Report 118, Numerical Optimisation Centre, The Hatfield Polytechnic,
Hatfield, Hertfordshire, U.K., 1981.

[’7] R. FLETCHER AND M. J. D. POWELL, A rapidly convergent descent method .for minimization,
Comput. J., 6 (1963), pp. 163-168.

[8] G. F. FROMENT AND g. B. BISCHOFF, Chemical Reactor Analysis and Design, John Wiley z
Sons, New York, 1979.

[9] N. J. HIGHAM, Optimization by direct search in matrix computations, Tech. Report 197, De-
partment of Mathematics, University of Manchester, Manchester, U.K., 1991.

[10] R. HOOKE AND T. A. JEEVES, "Direct search" solution of numerical and statistical problems,
J. Assoc. Comput. Mach., 8 (1961), pp. 212-229.

[11] S. L. S. JACOBY, J. S. KOWALIK, AND J. T. PIZZO, Iterative Methods for Nonlinear Optimization
Problems, Prentice-Hall, Englewood Cliffs, NJ, 1972.

[12] J. J. MoR, B. S. GARBOW, AND g. E. HILLSTROM, Testing unconstrained optimization soft-
ware, ACM Trans. Math. Software, 7 (1981), pp. 17-41.

[13] S. G. NASH AND A. SOFER, Block truncated-Newton methods for parallel optimization, Math.
Programming, 45 (1989), pp. 529-546.

[14] , BTN: Software for parallel unconstrained optimization, Tech. Report 64, Center for
Computational Statistics, George Mason University, Fairfax, VA, 1990.

[15] , A general-purpose parallel algorithm .for unconstrained optimization, Tech. Report 63,
Center for Computational Statistics, George Mason University, Fairfax, VA, 1990; SIAM
J. Optimization, (1991), this issue, pp. 530-547.

[16] J. A. NELDER AND R. MEAD, A simplex method for function minimization, Comput. J., 7
(1965), pp. 308-313.

[17] H. H. ROSENBROCK, An automatic method for finding the greatest or least value o/a/unction,
Comput. J., 3 (1960), pp. 175-184.

[18] SCI, Science Citation Index Annual 1989, Institute for Scientific Information, Inc., Philadel-
phia, PA.

[19] W. W. SYMES, Velocity inversion: A case study in infinite-dimensional optimization, Math.
Programming, 48 (1990), pp. 71-102.

[20] W. W. SYMES AND J. J. CARAZZONE, Velocity inversion by coherency optimization, Tech.
Report 89-8, Department of Mathematical Sciences, Rice University, Houston, TX, 1989;
To appear in Proceedings of the Workshop on Geophysics Inversion, J. B. Bednar, ed.,
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1991.

[21] V. TORCZON, Multi-Directional Search: A Direct Search Algorithm for Parallel Machines,
Ph.D. thesis, Rice University, Houston, TX, 1989; Available as Tech. Report 90-7, Depart-
ment of Mathematical Sciences, Rice University, Houston, TX.

[22] , On the convergence of the multidirectional search algorithm, SIAM J. Optimization, 1
(1991), pp. 123-145.

SIAM J. OPTIMIZATION
Vol. 1, No. 4, pp. 475-486, November 1991

1991 Society for Industrial and Applied Mathematics

003

ON THE IMPACT OF AUTOMATIC DIFFERENTIATION ON THE
RELATIVE PERFORMANCE OF PARALLEL TRUNCATED
NEWTON AND VARIABLE METRIC ALGORITHMS*

L. C. W. DIXONt

Abstract. The sparse doublet method for obtaining the gradient of a function or the Jacobian of a
vector will be described and contrasted with reverse automatic differentiation. Its extension, the sparse
triplet method for finding the Hessian of a function, will also be described and the effect of using these
within classic optimisation algorithms discussed.

Results obtained using a parallel implementation of sparse triplet automatic differentiation of a partially
separable function on the Sequent Balance will be presented.

In this paper it is shown that:
automatic differentiation can no longer be neglected as a method for calculating derivatives;
sparse triplets provide an effective method that can be implemented in parallel for calculating the
Hessian matrix;
this approach can be combined effectively with the truncated Newton method when solving large
unconstrained optimisation problems on parallel processors.

Key words, automatic differentiation, parallel computation, optimisation

AMS(MOS) subject classifications. 49, 65

1. Introduction. In this paper we will be mainly concerned with the design of
algorithms for solving the unconstrained optimisation problem

(1.1) Min f(x), x R

but the arguments used when discussing this problem apply equally well to many other
areas, including the solution of the nonlinearly constrained optimisation problem, sets
of nonlinear ordinary differential equations, and nonlinear partial differential
equations.

The main theme of this paper is that the advent of automatic differentiation and
parallel computation radically alters the relative efficiencies of traditional solution
methods.

To introduce this theme we will, in 2, recall the algorithmic position in optimisa-
tion in 1985 just before the impact of automatic differentiation. By that date there was,
of course, already some indication of the likely impact of parallel computation, but
this is easy to isolate and will not be mentioned in that section.

In this paper we have considered problems with large full Hessian matrices. The
effect of sparsity has not been considered.

Section 3 will be devoted to an introduction to the various approaches to automatic
differentiation that have been proposed and a discussion of how these by themselves
affect the relative efficiencies of algorithms.

Section 4 will recall some early results using parallel computation and discuss
some of the advantages and disadvantages they imply.

* Received by the editors August 17, 1990; accepted for publication (in revised form) March 29, 1991.
This paper was presented at the Symposium on Parallel Optimization 2, held at University of Wisconsin,
Madison, WI, July 1990. This research was partially supported by United States Army grant DAJA45-87-C-
0038.

t Numerical Optimisation Centre, Hatfield Polytechnic, Hatfield, Hertfordshire AL109AB, United
Kingdom.

475

476 L.C.W. DXON

2. The unconstrained optimisation problem. Most efficient sequential algorithms
for solving the unconstrained optimisation problem (1.1) can be posed as two-stage
iterative algorithms

(2.1) x(k+) x(’) + ap(k),

where x(g) is an iterative sequence of estimates of the solution x*, and where at each
iteration a search direction p() is first selected and then a stepsize is selected.

It is well known that we can guarantee that such two-stage iterative methods will
enter a region around a stationary point of f(x) that satisfies

(2.2) IlVf(x) II--< o
in a finite number of iterations provided we satisfy Wolfe’s conditions [19], [20] at a
regular subsequence of iterations. We will assume that these conditions are satisfied
in all the algorithms discussed.

In this paper we will contrast four methods of selecting p() to solve the general
problem (1.1) and also recall modifications that are available when (1.1) has the special
structure

J1

(2.3) f(x)= 2 s)(x),
j=l

where J1 is the number of terms in the definition of the function.
The four algorithms we will mention for the general problems are:
(1) the modified Newton method,
(2) the variable metric method,
(3) the conjugate gradient method, and
(4) the truncated Newton method.

In one sense all these algorithms have a common basis, namely, that at a local solution
x* to (1.1) the gradient 7f(x*) is zero and the Hessian V:f(x*) is positive semidefinite.

So in Newton’s method the direction p() would be obtained by solving

(2.4) V2f(x())p() --Vf(x()),

whilst in a modified algorithm a diagonal matrix D would be introduced to ensure
that p(satisfies Wolfe’s Condition I, as in (2.5)"

(2.5) (VZf(x) + D)p)= -Vf(x()).

Such a method therefore involves the calculation of Vf(x) and vZf(x) at each iteration,
followed by the solution of a set of n equations for p). These two tasks are the major
computations in such a method and other algorithms can be viewed as attempts to
reduce these tasks. But we will show that it is precisely these tasks that are affected
by automatic differentiation and parallel computation.

The assumption behind the variable metric algorithm is that the calculation of
V:f(x) is most expensive and that it is therefore advantageous to replace it by an
approximation B(k) where B(k) is a modification to B(k-l) designed to ensure that the
quasi-Newton condition is satisfied, i.e.,

B(k)(x(k)_ X(-)) Vf(x(g)) Vf(x(g-’)).

The set of equations

(2.6) B(k)p(k --Vf(x()

TRUNCATED NEWTON AND VARIABLE METRIC ALGORITHMS 477

is then solved or, alternatively, to avoid the cost of solving a set of equations, the
inverse approximation H(k) is used so that p(k) is given by

(2.7) p(-H(’Vf(x(’)).
If n is large, (2.7) has the advantage of not requiring the solution of a set of equations,
which will either require O(n3) (the theoretical results decreasing this power from n
to n2"9, etc., are acknowledged but will not be discussedthey do not effect the argument
of this paper) operations or the use of sparse matrix solvers, but has the disadvantage
that while B can be given, the sparsity pattern of V2f(x), H, will usually be full.

There are, of course, many additional and beneficial modifications to the variable
metric approach, of which the use of an LLT" decomposition of B is but one example.
Each would naturally modify the operational analysis presented but not the final
conclusions.

This comment does not apply, however, to those specialised versions ofthe variable
metric method, that use the variable metric principle to approximate small subsections
of B (Griewank and Toint [12]).

For large problems the need for a matrix store can be avoided by reverting to the
Fletcher-Reeves 10] conjugate gradient algorithm (or one of its many variants) where
p(3 is simply given by

(2.8) p<k)= _Vf(x<3) +/p(k-1)
and/3 is such that iff were a quadratic function and the stepsize were chosen so that

(2.9) V/(x(g) + ap(’) re(g)= 0,
then the method would terminate in a finite number of steps. The simplicity of this
method of calculating p() is balanced by a significant increase in the number of
iterations and the need for a more sophisticated line search. There are a number of
variations on the basic conjugate gradient method; each variation requires a small
number of vector operations. In the analysis in this paper, a figure of 7 is used as a
typical figure.

One of the major innovations of the early 1980s was the introduction of the
truncated Newton algorithm [3], [4], [18], in which it was noted that in the early
iterations it was unnecessary and computationally wasteful to solve (2.4) or (2.5)
accurately at each iteration, but that they could be treated as the necessary conditions
for the minimum of a quadratic function Q and that this minimised the conjugate
gradient process using the analytic value of a that then satisfied (2.9). This inner
conjugate gradient iterative process is then terminated when

(1) Q is sufficiently reduced,
(2) [[V Q[[2 is sufficiently reduced,
(3) IIx-x)ll=_-> d where d is the diameter of the current trust region, or
(4) when a negative curvature direction is identified, and then a downhill step to

the boundary of the trust region is taken [8].
The inner iteration has the property that Q is reduced at each iteration and

IIx-x increased. Two versions of the algorithm are in use, one stores ,2Q= V2f(x)
and uses it to calculate 72Qp-1) and thus update 7Q in (2.8); the other avoids storing
or calculating V20 by setting

(2.10) VOp(’-l)={Vf(x+hp(’-l))-Vf(x)}/h
for an appropriate small value of h.

Many computational studies, for instance, Dixon and Price [8], have indicated
that this algorithm is more efficient than either the conjugate gradient or variable metric
algorithms for most values of n.

478 L.C.W. DIXON

The performance of this method can be greatly improved when storing V2Q if a
preconditioning matrix is introduced while solving the system (2.4) or (2.5) by conjugate
gradients. Our experience is that it is much harder to construct a suitable preconditioner
if (2.10) is used.

It is our experience (see Dixon and Maany [6]) that when so preconditioned, the
number of inner iterations (IIT) is rarely much greater than five even when n 3,000,
though there will be problems for which this is very optimistic.

It is obvious that all these methods depend upon the availability of Vf(x) and
that some also need TEf(x).

Before the introduction of automatic differentiation, optimisers had to either obtain
a formula for Vf(x) and V2f(x) or to use numerical approximation techniques. Let us
suppose our objective functionf(x) can be calculated at xk using M simple arithmetic
operations (/, -, *, /, A, exp, log, sin, cos, etc.); and that there are n independent
variables. Then as M and n increase, the task of obtaining the analytic formula for
Vf(x) becomes increasingly harder and indeed soon outstrips the patience of most
humans and the capability of most symbolic differentiation codes (Griewank [11]).

Simple divided difference schemes that estimate

(2.11) Vf(x)={f(x+hi)-f(x)}/h where (i)k-- Cik
or

(2.12) Vfj(x) {f(x + hi + hj) f(x + hi) f(x + hj) +f(x)}/ h2

are both dependent on using an appropriate value of h and are expensive.
Given f(x), then Vf(x) requires nM operations and vZf(x) requires a further

1/2(n)(n + 1)m operations.
For codes using this approach to obtain Vf(x) and Vf(x), one set of relative

efficiencies can readily be calculated.
The following calculations indicate the dominant operations at each iteration for

problems with full Hessian matrices.

(1) Newton’s method.

Form VZf(x), Vf(x), f(x);
(2.13)

Solve (2.4);

(2) Variable metric method

(2.1) Form Vf(x);
Update B;

(2.14) and solve (2.6);

(2.2) Form Vf(x);
Update H;

(2.15) and multiply (2.7);

(3) Conjugate gradient algorithm

Form Vf(x);
Calculate p;(2.16) and fairly accurate
line search (Dixon [5]);

(4) Truncated Newton algorithm

(4.1) Using V2Q;

1/2(n + 1)(n + 2) M operations

-r operations

(n / 1) M operations
/12
-n operations

(n + 1) M operations
cn 2 operations
rt
2 operations

(n / 1) M operations
7n operations

12M operations.

TRUNCATED NEWTON AND VARIABLE METRIC ALGORITHMS 479

form V2f(x), Vf(x); 1/2(n+ 1)(n+2) M operations
together with the calculation of an appropriate
preconditioner
do IIT inner iterations; IIT (n2 + 7 n + NPR)(2.17)
operations
where NPR is the number of nonzeros in the
preconditioner.
(Note typically IIT= 5, though there will be problems
for which this is very optimistic.)

(4.2) Using (2.10)
Form V(x)f; (n + 1) M operations(2.18) do IIT inner iterations; IIT (nM+7n) operations
(Note typically IIT> 5.)

In examining and using such calculations we must remember that the number of
iterations required by each method on a particular function often differs greatly, but
that on most problems the variable metric method requires more iterations than the
Newton method (Dixon [5]), the conjugate gradient requires even more, whilst the
truncated Newton method usually requires less inner iterations in total than the number
of iterations used by the conjugate gradient method. When M is large compared to n
the computational cost at an iteration of each method is dominated by the cost of
calculating Vf(x) and Vf(x). This has led to the concept of an effective number of
function evaluations (EFEs), i.e., the number of iterations multiplied by the number
of M operations needed to solve a problem, being used to compare the relative
performance of algorithms.

3. Automatic ditferentiation. One of the earliest descriptions of automatic
differentiation is that by Rall [17]. Essentially automatic differentiation introduces a
new algebra. There are two versions, known as forward and reverse automatic differenti-
ation. The simpler forward approach can be easily implemented in Ada.

We introduce a new data type, which we term a doublet U, that consists of the
n + 1 values of

Ou
u, , i= 1," ", n;

Oxi
then if, during the calculation off(x), we add two variables w u + v, then in evaluating
f(x) and Vf(x), we add two doublets W U+ V where

au av
W= U+ V= u+v;+ i=l,. .,n

OXi OXi
As a doublet is a set of n + 1 numbers, then using the facilities of new data types and
the overriding of operations, each such operation can be easily performed.

W=U-V= u-v,-, i=l,...,n
Oxi

W=U* V= u.v, u+v, i=l,...,n
OX OX

W= 1/g=(1/u,--1/U2--’OxiOU i= 1., n),
W=logU= logu, 1/u i=l,...,n

480 L.C.W. DIXON

This can readily be extended to triplets where

T= u,,, i>=j
OX OX OXj

In practice, using these "full" doublets and triplets requires more operations than the
divided difference formula in (2.11), (2.12), and we can therefore always expect simple
forward automatic differentiation schemes to take more time than the divided differen-
ces approach. Experience shows, however, that these doublets and triplets are usually
sparse even for functions with full Hessian matrices and that the infill in doublet W
is the union of the infill of doublets U with V in addition, subtraction, and multiplica-
tion, and is identical to U in the simple functions.

We therefore implement sparse doublets and triplets, (Dixon, Maany, and
Mohseninia [7]). These are particularly effective on partially separable functions
(Griewank and Toint [12]), for instance, given a function of form (2.3) where each
sj(x), say, involved M/J1 operations and NEL variables. Then the number of
operations to calculate Vf(x) would be less than

J1

(NEL) M/J1 NEL M,
j=l

and for vZf(x), would be less than 1/2(NEL)(NEL+ 1). M.
To indicate how effective this can be even on a function that is not partially

separable, we note the table of ratios for the Helmholtz energy function (introduced
by Griewank 11 as a test function for automatic differentiation) and quoted by Dixon,
Maany, and Mohseninia [7], in which the ratios of (the times for calculating the
gradient and Hessian)/ (time of calculating the function value) are given in Table 1.

TABLE
The performance ofsparseforward automatic differentiation on the

Helmholtz energy function.

Dimension

Vfby Vfby V2fby
divided sparse sparse

difference doublet triplet

5 6 1.68 33
10 11 3.20 49
20 21 5.27 46
30 31 5.55 41
40 41 5.69 46
50 51 5.95 48
60 61 6.23 48

200 201 7.23
500 501 8.15

On the well-known predator/prey ordinary differential equation (O.D.E.) test
function, Parkhurst 16] gives the results quoted in Table 2 for calculating the Jacobian
J(x) for dimensions up to n 5,000 using the sparse doublet package.

EXAMPLE. Lotka-Volterra Predator/Prey Model (Byrne and Hindmarsh [1]).
Evaluation of (f(x), J(x)) using sparse doublets

rl Evaluation of (f(x)) using ordinary arithmetic

Evaluation of (f(x)) using sparse doublets
r2 Evaluation of (f(x)) using ordinary arithmetic"

TRUNCATED NEWTON AND VARIABLE METRIC ALGORITHMS 481

TABLE 2

Performance of sparse doublet automatic differentiation on the predator/prey problem.

Dimension 50 200 800 1,800 3,200 5,000

r 52.39 54.10 51.14 50.42 49.67 50.19

r2 5.05 4.74 4.73 4.75 4.72 4.77

From these tables we can conclude that the (cost of evaluating Vf(x))/(cost of
evaluating f(x)) in the sparse doublet framework is about 10 (i.e., NEL- 10 for these
problems) and that there is a secondary cost, namely, that it costs more to evaluate
f(x) within the sparse doublet framework than outside and this ratio is itself about 5.
This factor of 5 implies that the overhead time of accessing link lists and using the
sparse data structure is much greater than the arithmetic time for calculating f(x).

It is, of course, true that a clever and patient user could write a gradient evaluation
code for his particular function that would do at least as well as the sparse doublet
implementation and yet not incur this overhead.

Griewank [7] demonstrates that it is possible using a reverse sweep through the
function graph to evaluate Vf(x) in less than 5M arithmetic operations.

It should be emphasised that this gain in the number of operations is balanced
by a much greater storage requirement since in the reverse method all M operations
have to be retained for the derivative calculations, while in the forward mode each
operation is only accessed once.

Ada implementations of this algorithm and of the equivalent reverse Hessian
evaluation have been written by Christianson [2] using the computational graph. The
theoretical bound for the Hessian is 25nM, but each value of V2f(x).p can be obtained
in 5M operations. Christianson’s results [2], shown in Table 3, are significantly better
than this. Again, we should emphasise that the overheads associated with the use of
the data structure required by this method greatly exceed the cost of an ordinary
function evaluation.

The contrasting values for sparse forward and backward calculation are:

Reverse Sparse Forward

Vf(x)/f(x) 5 NEL

Vf(x)/f(x) 25n 1/2NEL(NEL+ 1)
J(x)/f(x) 5n NEL-<max number of nonzeros

in a row of J(x)
V:f(x)p/f(x) 10 (see [2]) 2.NEL

and it is therefore very easy for the forward calculation to be cheaper for partially
separable sparse Hessian and Jacobian calculations.

TABLE 3

Performance of reverse automatic differentiation on the Helmholtz Energy Problem. (Time
in seconds.)

Helmholtz Energy f(x) f(x) Vf(x) V2f(x)p
Function ordinary by graph by graph by graph

20 7 8 16
50 11 53 52 120
100 40 320 300 660

482 L.C.W. DIXON

If we now substitute these values in our operations count for the algorithms, we
obtain:

(1) Newton’s algorithm

Form V2f(x), Vf(x); 25rim or 1/2(NEL) (NEL+ 1)M
Solve (2.4); n

(2) Variable metric

(2.1) Form Vf(x); 5M
Update B; cn2

Solve (2.6); n
(2.2) Form Vf(x); 5M

Update H; cn:z

Multiply (2.7); n2

(3) Conjugate gradient

Form Vf(x); 5M
Calculate p; 7n
Line search; 12M

(4) Truncated Newton

(4.1) Form V2f(x), Vf(x); 25nM or 1/2(NEE) (NEE+ 1)M
plus calculation of preconditioner

do IIT inner
iterations; IIT(n2 + 7n + NPR)

(4.2) Form Vf(x); 5M
do IIT inner
iterations; liT(5M+ 7n)

(5) Truncated Gauss Newton for (2.3)

(5.1) Form J(x); NEL* M
plus the cost of calculating a preconditioner
do IIT inner
iterations; IIT(NNZ+ cn + NPR)

(5.2) Form f(x); 5 * M
do IIT inner
iterations; IIT(5M + cn)

The change in the dominant part of the operations count is quite remarkable.
In a family of functions where M is a linear function of n the following changes

occur:
(1) For Newton’s method, the solution of the set of equations now dominates the

calculation of the Hessian.
(2) For the variable metric method for full approximate matrices this will still be

true for both types of variable metric methods once n > 25. Indeed the handling of
the full matrices makes it unattractive to use these methods, n > 50, and experience
(see Dixon and Price [8]) shows that it is more expensive than truncated Newton for
even small values of n.

TRUNCATED NEWTON AND VARIABLE METRIC ALGORITHMS 483

(3) For the conjugate gradient method the cost of the function evaluations needed
in the more accurate line searches now completely dominates the calculation of the
gradient. It is indeed probable that as the calculation of VfTp is now relatively cheap
it would be better to use a safeguarded cubic line search rather than the parabolic
method on which the estimate of 12M was based.

(4) For the truncated Newton method the reduction in the cost of evaluating V2f
typically makes the use of a preconditioner for solving the inner iterations even more
desirable, especially when NEL is small. The calculation of V2f is then preferable to
the repeated calculation of V2fp. As a small value of NEL also implies that the Hessian
matrix is sparse, the n2 term in the inner iteration also reduces to NNZ, the number
of nonzeros in the Hessian.

In practice, for large values of n our extensive computational experience shows
that automatic differentiation increases the superiority of the truncated Newton
approach.

If M is large compared to n 2, then the variable metric approach is probably still
competitive for small values of n, but the additional iterations normally required for
higher values of n make it more costly than the truncated Newton method as n increases.

In the least squares setting the calculation of J by sparse doublets is now so cheap,
and the reduction in liT by using a preconditioner so significant that the use of 5.1 is
definitely preferable (Parkhurst [16]).

4. Parallel computation. At the NOC, parallel versions of unconstrained optimisa-
tion codes have been tested on DAP [9], Sequent [14], and transputer networks [13].
Our experience has been that with partially separable functions, especially if J1 is a
multiple of P (the number of processors) and each subfunction contains M/J1
operations, then if M is large enough, we can obtain almost perfect speedup in the
function and gradient calculations. In this operation a particular processor is given
the values of the NEL variables needed to calculate sj(x) and returns the value of
sj(x) and its derivatives. The data communication is therefore small compared with
the calculation.

Typical times for the sparse triplet evaluation off(x), Vf(x), Vf(x) on the Sequent
[14] are shown in Table 4 for the Olsen square cavity problem [15].

TABLE 4

Performance ofparallel automatic differentiation on the Sequent Balance.

Number of processors used

Elements 2 3 4 5 6 7 8 9 10

8 37 20 12 10 11 12 13 8
32 156 85 62 44 38 35 26 22 24 26
128 670 352 227 175 146 124 107 92 87 81

When using the DAP, there is of course the restriction that it is an SIMD machine
and therefore each subfunction must involve an identical computation. Such a problem
was obtained by transforming a partial differential equation into an optimisation
problem and solving it by conjugate gradient and truncation Newton codes. As these
results were obtained before we began to use automatic differentiation, analytic for-
mulae for VSk(X) and V2Sk(X) were provided on the appropriate processors.

484 L.C.w. DXXON

Both conjugate gradient and truncated Newton codes were successfully imple-
mented and the truncated Newton methods were usually more efficient when sufficient
store was available (Dixon and Ducksbury [9]). Typical results are shown in Table 5.

Here it must be noted that the direct mapping between the finite elements used
to express the problem and the processor architecture enabled the algorithms to proceed
without significant data transfer even in the calculation of p and that once more the
speedup due to the use of a parallel processor is very impressive.

Regrettably, we have been unable to obtain such good results for the linear algebra
within the truncated Newton method on those problems where this operation is
essentially a sparse matrix/vector multiplication, or on either the Sequent or the
transputer network and on these, the communication costs have implied that there was
little point in calculating p in parallel. Indeed the results for sparse matrix vector
multiplication of dimensions 512 and 1107 within the cavity-driven flow problem on
the Sequent are shown in Table 6. Almost perfect speedup is, however, obtained on
the transputer network when the Hessian matrix is full.

5. Conclusions. In this paper we have attempted to demonstrate that the advent
of automatic differentiation should radically alter our concept of the relative efficiency
of variable metric to truncated Newton and conjugate gradient codes.

Effectively, there seems little place for the simple variable metric approach in
unconstrained optimisation, except for relatively small values of n now that the
calculation of the Hessian of a partially separable function can be calculated so
accurately and cheaply.

TABLE 5

Performance ofparallel conjugate gradient algorithm on the DAP.

Parallel (DAP) Sequential (Dec 1091)

CPU time CPU time
P N N Iterations seconds Iterations seconds

121 11 46 1.06
441 21 85 1.61
961 31 125 2.18

1,681 41 205 3.32
4,096 64 339 5.17
4,096 65 513 30.14
4,096 70 1,013 58.01
4,096 80 1,345 76.64
4,096 100 1,875 106.40
4,096 127 2,417 136.76

46 11.7
83 18.8
125 58.1
167 137.1

TABLE 6

Performance of sparse matrix/vector products on the Sequent Balance.

Number of processors

Time 2 3 4 5 6 7 8 9 10

n 512 3.80 2.40 2.20 2.10 2.08 2.10 2.11 2.12 2.2 2.4

1,107 9.50 6.00 5.00 4.5 4.5 4.3 4.1 4.4 4.4 5.2

TRUNCATED NEWTON AND VARIABLE METRIC ALGORITHMS 485

Similarly, the conjugate gradient method suffers due to the need for a semiaccurate
line search which implies that it is usually not competitive with the truncated Newton
method when M is large.

Our analysis and experience indicate that for general functions the version of the
truncated Newton method that calculates V2f(x) at each inner iteration is preferable
to that using (2.10) due to the possibility of including a preconditioner that substantially
reduces the number of inner iterations.

We should acknowledge that one of the referees strongly disagrees with this
conclusion, stating that in his experience it is easy and efficient to precondition (2.10).
This has not been our experience.

These conclusions are even further reinforced on parallel computers where the
calculation of the partially separable function values and derivatives can be performed
with almost perfect speedup. Unfortunately, the speedup of the linear algebra that
might be expected by forming sparse matrix/vector products in parallel by rows is lost
due to communication costs on the two MIMD systems we have used, though almost
perfect speedup is obtained if the matrices are full.

REFERENCES

1] G. D. BYRNE AND A. C. HINDMARSH, Stiff O.D.E. solvers: A review ofcoming and current attractions,
J. Comput. Phys., 70 (1987), pp. 1-62.

[2] B. CHRISTIANSON, Automatic Hessians by reverse accumulation, Tech. Report No. 228, Numerical
Optimisation Centre, Hatfield Polytechnic, Hatfield, U.K., 1990; also through private communi-
cation.

[3] R. DEMBO AND Y. STEIHAUG, Truncated Newton methodfor large scale optimisation, Math. Program-
ming, 26 (1983), pp. 190-212.

[4] R. DEMBO, S. C. EISENSTAT, AND T. STEIHAUG, Inexact Newton method, SIAM J. Numer. Anal.,
19 (1982), pp. 400-408.

[5] L. C. W. DIXON, Nonlinear optimisation: A survey of the state of the art, in Software for Numerical
Mathematics, D. Evans, ed., Academic Press, New York, 1973.

[6] L. C. W. DIXON AND Z. A. MAANY, The performance of the truncated Newton conjugate gradient
algorithm in Fortran and Ada, Tech. Report, Numerical Optimisation Centre, Hatfield Polytechnic,
Hatfield, U.K., 1989.

[7] L. C. W. DIXON, Z. A. MAANY, AND M. MOHSENINIA, Automatic differentiation of large sparse
systems, in Proc. Internat. Federation on Automatic Control, Symposium on Dynamic Modelling
and Control of National Economies, Edinburgh, Scotland, 1989; J. Econom. Dynamics Control,
to appear.

[8] L. C. W. DIXON AND R. C. PRICE, Truncated Newton method for sparse unconstrained optimisation
using automatic differentiation, J. Optim. Theory Appl., 60 (1989), pp. 261-275.

[9] P. DUCKSBUR AND L. C. W. DIXON, Experience running optimisation algorithms on parallelprocessing
systems, presented as a plenary session at the lth Internat. Federation of Information Processing
Societies Conference on System Modelling and Optimisation, Copenhagen, Denmark, 1983.

10] R. FLeTCHeR AND C. M. REVS, Function minimisation by conjugate gradients, Computer J., 7 (1964),
pp. 149-154.

[11] A. GRIEWANK, On automatic differentiation, in Mathematical Programming 1988, Kluwer Academic
Publishers, Japan, 1988.

12] A. GRWANK AND P. TOINT, On the unconstrained optimisation of partially separable functions, in
Nonlinear Optimisation 1981, M. J. D. Powell, ed., Academic Press, New York, 1982.

[13] M. JI-IA, An implementation of a conjugate gradient algorithm on a transputer network, Tech. Report
No. 232, Numerical Optimisation Centre, Hatfield Polytechnic, Hatfield, U.K., 1990.

[14] M. MOHSENINIA, Concurrent optimisation on the Sequent Balance 8,000, Tech. Report No. 226,
Numerical Optimisation Centre, Hatfield Polytechnic, Hatfield, U.K., 1989.

[15] M. D. OLSEN AND S. TUANN, A study of viscous finite element solution methodsfor the Navier-Stokes
equations, Department of Civil Engineering Report 14, University of British Columbia, Vancouver,
Canada, 1976.

486 L.C.W. DIXON

16] S. C. PARKHURST, The use of automatic differentiation in the numerical approximation of stiff O.D.E.s,
presented at the lth Conference on Ordinary and Partial Differential Equations, Dundee
University, Dundee, Scotland, 1990.

[17] L. B. RALL, Automatic differentiation--Techniques and applications, Lecture Notes in Computer Science
120, Springer-Verlag, Berlin, New York, 1981.

18] PH. L. TOINT, Towards an efficient sparsity exploiting Newton methodfor minimization, in Sparse Matrices
and their Uses, I. S. Duff, ed., Academic Press, New York, 1981.

19] P. WOLFE, Convergence conditions for ascent methods, SIAM Rev., 11 (1969), pp. 226-235.
[20] ., Convergence conditions for ascent methods II, SIAM Rev., 13 (1971), pp. 185-188.

SIAM J. OPTIMIZATION
Vol. 1, No. 4, pp. 487-500, November 1991

() 1991 Society for Industrial and Applied Mathematics
OO4

PARALLEL CONSTRAINT DISTRIBUTION*
M. C. FERRISt AND O. L. MANGASARIANt

Abstract. Constraints of a mathematical program are distributed among parallel processors to-
gether with an appropriately constructed augmented Lagrangian for each processor, which contains
Lagrangian information on the constraints handled by the other processors. Lagrange multiplier
information is then exchanged between processors. Convergence is established under suitable condi-
tions for strongly convex quadratic programs and for general convex programs.

Key words, parallel optimization, augmented Lagrangians, quadratic programs, convex pro-
grams

AMS(MOS) subject classification. 90C25

1. Introduction. We are concerned with the problem

minimize f x
(1.1)

subject to gl(x) <_ O,...,gk(x) <_ 0

where f, gl,..., g are differentiable convex functions from the n-dimensional real
space]Rn to IR, Ipml, IPm respectively, with f being strongly convex on]Rn.
Our principal aim is to distribute the k constraint blocks among k parallel processors
together with an appropriately modified objective function. We then solve each of
these k subproblems independently, share Lagrange multiplier information among the
processors, and repeat. Other recently proposed decomposition methods and appli-
cations thereof can be found in [22], [8], [5], [21]. The key to our approach lies in
the precise form of the modified objective function to be optimized by each processor.
Considerable experimentation with various Lagrangian terms [3] has highlighted the
difference between theoretical convergence and computational efficiency. We believe
that we now have effective modified objectives for each processor that can best be de-
scribed as augmented Lagrangian functions [19], [20], [1]. The modified objectives are
made up of the original objective function plus augmented Lagrangian terms involving
the constraints handled by the other processors. Computational experience on the
Sequent Symmetry S-81 shared memory multiprocessor with constraint distribution
for quadratic programs derived from a least-norm solution of linear programs, has
been encouraging. This is described in 4 of the paper. Section 2 is devoted to the
quadratic programming case for which we obtain the strongest convergence results in
Theorem 2.1. Under the assumption of a strongly convex quadratic objective and lin-
ear independence of each of the distributed constraint blocks, the parallel constraint
distribution (PCD) algorithm converges from any starting point for a solvable prob-
lem. The key to the convergence proof is to show that in the dual space, the proposed
parallel constraint distribution algorithm is equivalent to a subsequentially convergent
iterative method with stepsize proposed in [11, Algorithm 2.1] for which full sequen-
tial convergence has just recently been established [9], [4], [17]. In 3 we establish
a.weaker convergence of the PCD algorithm (Theorem 3.2) for the general convex
program (1.1) with a strongly convex objective function. The method of proof in this

Received by the editors October 19, 1990; accepted for publication (in revised form) March 22,
1991. This material is based on research supported by Air Force Office of Scientific Research grant
AFOSR-89-0410 and National Science Foundation grants DCR-8521228 and CCR-8723091.

Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madison,
Wisconsin 53706.

487

488 M. C. FERRIS AND O. L. MANGASARIAN

section is entirely different from that of 2, and relies on the Lipschitz continuity of
the solution variables of each subproblem in the fixed Lagrangian multipliers obtained
from the other subproblems (Lemma 3.1). Unfortunately, to establish convergence,
we need to assume that the distance between successive values of the multipliers ap-
proaches zero. We believe this assumption may be considerably relaxed and probably
eliminated if one uses ideas of nonlinear Jacobi relaxation [18] for solving nonlinear
complementarity problems.

A word about our notation is appropriate now. For a vector x in the n-dimensional
real space IR’, x+ will denote the vector in IRa with components (x+):- max {x, 0},

1,..., n. The standard inner product of]R’ will be denoted either by (x, y) or
xTy. The Euclidean, or 2-norm, (xTx)1/2, will be denoted by I1"11. For an m n real
matrix A, signified by A IRren, AT will denote the transpose. The identity matrix
of any order will be given by I. The nonnegative orthant in IRn will be denoted by
IR. We will use the convention that s (s,..., sk), with each si representing either
a component of the vector s or a block of components of the vector s. The meaning
should be clear from the context.

2. Parallel constraint distribution for quadratic programs. For simplic-
ity, we consider a quadratic program with three blocks of inequality constraints. Rou-
tine extension to k blocks can be achieved by appropriate extension and permutation
of subscripts. Equality constraints can also be incorporated in a straightforward man-
ner. Consider, then, the problem

minimize CTX + 1/2 XTQx(2.1)
subject to Alx g al, 1, 2, 3,

where c E]Rn, Q IRnn, A IRmn, a]Rm, and Q is symmetric and positive
definite. Furthermore, let

A’= A2 and a:=

A3 Ialla2

a3

At iteration of the algorithm we distribute the constraints of this problem among
three parallel processors (1 1, 2, 3) as follows:

minimizex cTx + -xTQx + (’y(Ajxl aj) + p)+ + xTr
subject to Ax <_ a

where "y is a positive number and pl and r, j, l- 1, 2, 3 are defined below in (2.20)
and (2.21). We note that the pt play the roles of multipliers and in fact converge to the
optimal multipliers eventually, while r replaces estimates of the multipliers by their
most recent values obtained from each of the other subproblems (see (2.20)). Note that
the objectives of the subproblems (2.2) are quadratic augmented Lagrangians [19],
[20], [1] perturbed by the linear terms xr. The motivation of this reformulation is
that in each subproblem some constraints are treated explicitly as constraints while the
remaining ones are treated as augmented Lagrangian terms in the objective function.

PARALLEL CONSTRAINT DISTRIBUTION 489

The updating of the multipliers is done by solving the subproblems explicitly rather
than with the traditional, and often slow, gradient updating scheme in the dual space
of the augmented Lagrangian approach [1]. Hence our method does not use a gradient
or a proximal point multiplier updating scheme. The key to the convergence of our
algorithm, for the quadratic case, is the choice of the parameters p and r in such a
way that the PCD algorithm is equivalent to a convergent iterative matrix-splitting
method [11], [9], [14], [17] for a symmetric linear complementarity problem in the dual
variables of the problem. This choice is by no means unique and we have experimented
computationally with a number of choices for the p. and r, which we report on in 4.
We shall establish convergence of only one of our choices in this section of the paper,
which may not necessarily be the best computationally. Further experimentation is
needed to determine the best splitting. We now proceed to show how the parameters
p and r are chosen and to justify these choices from the point of view of convergent
matrix splitting. A simpler splitting approach for constraint distribution for quadratic
programs is given in [6].

First, note that it is easy to verify algebraically the following equivalence for any
two vectors b and d in IRm’:

(2.3) b d+ ==> b d >_ O, bT (b d) O, b >_ O.

Also, the linear complementarity problem (LCP) in the variable z

Mz + q >_ O, (z, Mz + q) O, z >_ 0

can be written as

z (z- Mz- q)+

by using (2.3).
Now, let (2+1,+1) e lRn+m’, l= 1,2,3, 1,... satisfy the Karush-Kuhn-

Tucker conditions [10] for subproblems (2.2). We shall signify this by

(2+1, +) e argKKT (2.2).

Using (2.3), we see that (2+,+)satisfy the following Karush-Kuhn-Tucker con-
ditions:

3

j=l

+ (+ + (A,2+ as))+

-i+l "--0+ r + As

for 1, 2, 3 or equivalently

1,2,3,

j 1, 2, 3,

490 M. C. FERRIS AND O. L. MANGASARIAN

Eliminating +1 by using the first equation of (2.5) leads to

+1 (+1 / (AIQ-I(AT+I + 3=IAT+Ikl + r + c) + al))
(2.6)

for 1, 2, a, j 1, 2, a, j 1. Note thag by (2.g), his is an LCP in he variable
i+ defined by

In order to express the above LCP succinctly, we ingroduce he following notation.
Define the permutagions

(1, , al, (, a, , (a, ,),

with (k) denoting the kth componen of , j,k 1,2, a. We use he following
conventions to group p., t}, and

and

riJ. Ti (k)

P’ Pk,a (k) k,a (k)

(For example, ri (r, r, r) and ti (t2, t23, t31).) Using this notation, (2.6)
corresponds to the following symmetric LCP in the variable

B2i+1 + h + q >_ O, <2i+1,B2i+1 + h + q} 0, 2i+ _> 0(.s)

where

(2.9)

with

(2.10)

and

(2.11)

B’= R2 I+R1 R
R3 R2 I + R

R1. ,),

AQ_AT
0

0

0

R2 / 0

A3Q-A

IR3" " A2Q- AT
0

o o 1AQ- AT 0
0 AaQ-IATa

AQ-AT2 0
0 AQ-ATa
0 0

O0 A Q- A IAsQ- AT 0

"AQ-ril

hi.= /AQ-iri. pi
9/AQ-ri

q: "
AQ-c+a 1AQ-c+a
AQ-c+a

PARALLEL CONSTRAINT DISTRIBUTION 491

(For the general case, the analog of these equations can be constructed easily by using
the appropriate permutations of 1,..., and noting that the nonzero entries of the
Ri correspond precisely to the ith permutation.) Note that this algorithm can be
implemented in parallel in the x space as outlined at the start of this section for any
choice of Pl and r. In the remainder of this section, we show how to choose pl and

r in order to guarantee the convergence of the algorithm. Our convergence analysis
will be based on results for matrix-splitting methods for complementarity problems,
and we give a very brief review of the pertinent results in the following paragraph.

A matrix-splitting method for solving the LCP

(2.12) Mz + q >_ O, (z, Mz + q) O, z >_ 0

uses a "regular splitting" M B + C, with M, B, and C satisfying certain properties
such as"

(2.13)
B / C symmetric,

(1 A/2)B -(A/2)C positive definite for some A e (0, 1]
or

(2.14)
B + C symmetric positive semidefinite,
(1 A/2)S- (A/2)C positive definite for some A 6 (0, 1].

Under (2.13), a solution of (2.12) is obtained [11] from each accumulation point of the
sequence {z } generated by iteratively solving the following LCP for 2i+1:

(2.15) B2i+ + Cz + q >_O, <2i+, B2i+ + Cz + q) 0, 2i+1 > 0

and then determining zi+1 by using a stepsize A, that is,

(2.16) zi+ (1 A)z / A2i+, A 6 (0, 1].

Under assumption (2.14) the whole sequence (zi} generated by (2.15) and (2.16)
converges to a solution of (2.12) provided the latter is solvable [9], [4], [17].

To apply these results to our algorithm, we have to choose p and r as particular
functions of

(2.17)

so that

(2.18) h Czi, for some matrix C

and

B + C constitutes a "regular splitting" of some symmetric M.

The matrix C is determined by the choice of p}t and r in (2.2) or equivalently in
(2.11), and this is precisely where the power (and at the same time the difficulty) of
the proposed method lies.

The simplest choice for pt and r that we propose for the nonlinear (not neces-
sarily quadratic) case of 3 and for which we establish convergence under somewhat
more stringent assumptions is the following:

(2.19) p sj, r O, 1-- 1,2,3, j- 1,2,3, j 1.

492 M. C. FERRIS AND O. L. MANGASAI:tIAN

Unfortunately, this simple choice in the quadratic case leads to a nonsymmetric C
and hence a nonsymmetric M in (2.12). The convergence conditions for splitting
nonsymmetric LCPs are quite stringent [2, Chap. 5] and not useful for our proposed
applications here.

We have therefore settled on choices for the parameters Pl and r, which are
different from those in (2.19), and which generate a symmetric positive semidefinite
M. By choosing A sufficiently small, it is easily seen that (2.14) is satisfied, because
by (2.9), the matrix B is positive definite if we assume that each At, 1, 2,3, has
linearly independent rows. This can be shown by substituting for R1, R2, and R3 from
(2.10) into the definition of B. There are a number of choices of the p}l and r that
generate a symmetric positive semidefinite M and hence a convergent scheme. Our
preliminary computational experience does not provide a clear-cut indication which is
the best choice for p and r among the convergent schemes. We believe this requires
further theoretical and computational study. However, for concreteness, we wish to
present at least one specific choice of C that results from the following choices of p.
and r"

A1 (s t2 + A3T(s t2),
+ A (4

pi2 ti2 + /AQ-AT(s ti),
pi3 ti3 + AQ-1AT(si ti).

We note that the r substitute the latest Lagrange multiplier value s obtained from
each subproblem solution for the t}t, both of which eventually converge to an optimal
Lagrange multiplier value. The p.t terms are essentially multiplier value estimates

given by t}t plus additional terms that converge to zero. The additional terms are
added in order to produce a symmetric C and hence a symmetric M. The above
choices of pt and r lead to the following matrix C, defined through the relations
(2.17), (2.18), and (2.11):

+
(2.22) C -R2 -I + R2 + R3 -R2T

-R3 -R2 -I + R2 + R3
with R2 and R3 defined in (2.10).
symmetric block-diagonal matrix

(2.23) M

where

(2.24)

Addition of the matrices B and C gives the

10 H 0
0 0 H

H: RI + R2 + R3 AQ-iAT.
Note that if our original quadratic program (2.1) is feasible, then it it solvable. Hence
its Wolfe dual is solvable, which is equivalent to the solvability of the LCP (2.12)
with M as defined in (2.23) and q as in (2.11). In fact, the LCP (2.12) constitutes a
replication of the Wolfe dual three times.

We are now ready to define the PCD algorithm for the quadratic program (2.1).

PARALLEL CONSTRAINT DISTRIBUTION 493

2.1. PCD algorithm for quadratic programming.
Initialization: Start with any s, t, 1, 2, 3, j 1, 2, 3, j 1.
Parallel iteration: In parallel, (1 1, 2, 3), perform the following steps.

Having s, t}, j 1, 2, 3, j 1 compute:
1. r, p, j 1, 2, 3, j l from (2.20) and (2.21)
2. (+1,+1)e arggKT(2.2)
3. +1= (/(Aj+- aj)+p)+, j= 1,2,3, j 1

oi+ /i+14. o ,j. (1)(s,t)+ (+,-), j 1,2,3, j with
A e (0, 1] satisfying (2.30) below.

2.2. Remark. We note that the subproblems (2.2) of the PCD algorithm 2.1
divide the constraints of the original quadratic program (2.1) between them in the
form of explicit constraints as well as augmented Lagrangian terms involving the
remaining constraints. The principal objective that has been achieved is that the
explicit constraints of each of the subproblems are a subset of the constraints of the
original problem.

2.3. Remark: Symmetric monotone LCP as dual of convex quadratic
program with nonsmooth KKT conditions. It is interesting to note that the
PCD algorithm is a matrix-splitting iterative method for a symmetric monotone LCP
that can be associated with a dual formulation of a convex program with nonsmooth
Karush-Kuhn-Tucker conditions. Thus consider such a program:

minimize
(2.25)

subject to

cTx + 1/2xTQx + 1/2 II(Hx h)+ll
Bx <_ b,

where Q is symmetric positive definite. The necessary and sufficient Karush-Kuhn-
Tucker conditions for this problem are

(2.26)
c + Qx -+- HT (Hx h)+ + BTs 0,
s (s + Bx b)+.

Defining a new variable t as

(2.27) t (Hx- h)+
and solving the first Karush-Kuhn-Tucker condition for x gives

x --Q-(HTt + Bs + c).

Substituting for x in the second equation of (2.26) and in (2.27) gives the following
symmetric monotone linear complementarity problem in the variables (s, t)

(2.29)
w HQ-IBT I+HQ-HT t

+ HQ-c+h

494 M. C. FERI:tIS AND O. L. MANGASARIAN

We then have the following duality relation between the convex program (2.25) and
the symmetric monotone LCP (2.29). For each solution (s, t) of (2.29), x defined by
(2.28) is the unique solution of (2.25). Conversely, for each Karush-Kuhn-Tucker
point (x,s) of (2.25), the point (s,t), with t defined by (2.27), solves (2.29). Note
that the symmetric LCP (2.29) is equivalent to the following quadratic program in
(,)"

minimizel, tT) [BQ-1BT BQ-1HT][s](s,t)>_0
(ST’ HQ-1BT I-t- HQ-1HT

+(sT’ tT) HQ-lc + h

We are now ready to establish convergence of the PCD algorithm 2.1.
THEOREM 2.1 (PCD Convergence for Quadratic Programs). Let (2.1) be feasible

and let Q be symmetric positive definite and let each of At, 1, 2, 3, have linearly
independent rows. Then the sequence (s,tt}, 1,2,3, j 1,2,3, j l,
0, 1,..., generated by the PCD algorithm converges to (t,jt), 1,2,3, j 1,2,3,
j 1 and each of the sequences (x }, l= 1, 2, 3, converges to the unique solution . of
(2.1). Furthermore, (.,), (2, 12, -23, 31), and (2, 13, -21, 32) are all garush-guhn-
Tucker points .for (2.1), and Pit- jt, l- 1,2,3, j 1,2,3, j I.

Proof. Let +1, 1,2,3, be the unique solution of the subproblems (2.2).
Hence +i and some E IRm’ satisfy the Ksh-Kuhn-Tucke conditions (.4),
o qiy, (+,+) d om ,+, = ,,3, ,,3, # if (.).
This in turn is equivalent to i+I, as defined by (2.7), satisfyin the LCP (2.15). By

hoi of , ., ,,3, ,,3, # of (.0) d (.), i foow
that the matrix M B + C, iven by (2.23) and (2.24), is symmetric and positive
semidefinite. Furthermore, B is positive definite by virtue of the linear independence
of At, 1, 2, 3. Thus if A is chosen sufficiently small, and specifically such that

(2.30) 0 < A _< 1 and A < 2(min eigenvalue(B) / max eigenvalue(M)),

it follows that (2.13) (which is condition (6) of [11]) and (2.14) (which is condition
(4.1) of [9]) are satisfied. Hence, since the LCP (2.12) is solvable, the sequence (z }
converges [9, Thm. 2 and Ex. 3] to a solution of the LCP (2.12), and by zi+1

(1- A)z + ,,i-+-l, 80 does the sequence {2i}. It follows by (2.4), (2.5), (2.20), and
(2.21) that in the limit we have

3. A’t + tc +Q + E.;

where

1=1,2,3, j=1,2,3, j#l,

1,2,3,

and hence that
3 Tc + Q2 + _,=1 Ai 0

t (t + "Y(At2t at))+
1,2,3.

PARALLEL CONSTRAINT DISTRIBUTION 495

It is now clear from the nonsingularity of Q that

Conditions (2.31) then become the necessary and sufficient conditions for to be the
unique solution of (2.1) with multipliers as indicated in the statement of the theo-
rem. Furthermore, since 2 (1, 2, 3, {12, {23, -31, {13, -21, {32) solves the 3-block LCP
(2.12) with identical M and q subblocks as defined by (2.23) and (2.11), respectively,
it follows that each of (1, 2, 3), (’12, ’23, ’31), and (’13, ’21, 32) solve any one of
the three subblocks of LCP (2.12) and hence [13, Cor. 2] their differences lie in the
nullspace of H. Thus

(2.32) H 2 23
3 -31

=0 and H 2 21
3 -32

Relations (2.32), and relations (2.21) in the limit, imply that j [j, 1,2,3,
j:l,2,3, jl. D

3. Parallel constraint distribution for convex programs. We extend our
ideas now to general convex programs with strongly convex objective functions. For
simplicity of notation we consider the 2-block problem

minimize
(3.1)

subject to gl(X)

_
0, g2(x) <_ O,

where f:IR’ JR, gl:]R’]Rml g2:]Rn --]am2 are differentiable convex functions
on n, with f strongly convex with modulus k, and g, g2 Lipschitz continuous with
constant K on n. We begin with the following straightforward Lipschitz continuity
result.

LEMMA 3.1. Let f, g, g2 be dierentiable convex functions onn with f strongly
convex with modulus k, and let g be Lipschitz continuous with constant K on
Let g2 satisfy a constraint qualification on the nonempty set {x] g2(x) 0 }. Then

x(u)’= argmin f(x) + {ll(gl(x) + Ul)+ll }lg2(x) 0

is Lipschitz continuous on with Lipschitz constant (g/2k)(1 + ffl + 4k/g2).
Proof. Let u, fi e and x: x(u) and : x(fi). By the Karush-Kuhn-

cker conditions, there exist v2, V2 m such that

V]() + (() +)V() +V() 0,
0, (v2, 0, v2 0

and

g2() 0, (2, g2()) --0, 2 0.

By the strong convexity of f we have that

496 M. C. FERRIS AND O. L. MANGASARIAN

This, together with the Karush-Kuhn-Tucker conditions, gives

)+- v()((() + v() +

((x) +)v(x) v()) ()

(((x) +)+ (() +)+,() g(x))
+ (,() (x)),

where the last inequality above follows from the following inequality:

(w , h(x) h(2)) < (wTVh(x) TVh(2))(x 2)

for a convex differentiable h: IRn IRk and w, t 6 IR_. The Karush-Kuhn-ucker
conditions allow us to drop the nonpositive term (v2 ., 9() 9(x)), thus giving
U8

I1 11 < ((a() + u)+ (() +)+, a() a()).
From the fundamental properties of the projection operator)+, we have for y, z 6

IRm, (y- z, (y)+ -(z)+} > 0, so that

1
I1 xll < (((x) + u)+ (() +)+,)

< ! ii((x) +)+ (() + 1+11 Ilu 1

1 2g IIx 11 Ilu gill + Ilu gll

Defining d:- II xll and e:- Ilu ll we obtain the quadratic inequality in d

kd2-Ked- 1_.e2 <0

and hence d must lie between the roots

Ke + v/K2e2 + 4ke2

2k

Thus d <_ (K/2k)[1 / V/1 / 4k/’K2]e, which gives the required Lipschitz con-
tinuity.

We are now able to state a parallel constraint distribution algorithm for the convex
program (3.1) and establish its convergence.

THEOREM 3.2 (PCD algorithm and convergence for convex programs). Let
f:]Rn -- lit, gl’]Rn IRml, g2:]Rn]Rm be continuously differentiable convex

functions on IRn with f strongly convex and gl, g2 Lipschitz continuous on IRn. Let

g(x)’=[g(x)]g2(x)

PARALLEL CONSTRAINT DISTRIBUTION 497

and let gl and g2 satisfy some constraint qualification on the nonempty sets
{x gl(x) g 0 } and {x g2(x) g 0 }, respectively. Define

si" s lRm+m.

and start wih O, O. Given , deermine

(x+1, s+) e arg KKT min f(x)+ II (g2(x)+ s)]gl(x) 0

(3"2)(x+,s+) argKKT min f(x)+ 11(Tg(x +s)+l g2(x)N0

Assume that (s+- s} O; then for each accumulation point

(x } and (x } converge to arg min {f(x) g(x) 0 }.
Proo By Lemma 3.1, x+’= x(s’), x+’= x2(s. Hence {si+} , {x } , and (x } 2. Invoking the continuity of the

Karush-Kuhn-cker conditions, we have at these limits

vI() + (() +)va() +v() 0,
(a()+)+,

and

Hence

and

Thus

Vf(2) + (Ygl(:2) + 31)T Vgl(:2) + 32TVg2(2) 0,
((1 + 1+.

T T

Tvf(2) + (a(2) +)r+ va(2) + (a2(.) + 82)+ va2(2) 0.

1 2 argmin f(x)-t- - II(g(x) +

because the objective of the last minimization problem is strongly convex. Hence
(1, 3) and (2, 3) satisfy the Karush-Kuhn-Tucker conditions of min {f(x) g(x) g 0 }
and thus

Without going into much detail, we note that it is possible under suitable assump-
tions to solve for xl+1 in terms of (s+1, s2) and x2+1 in terms of (s, s2+1), in which
case the PCD algorithm (Theorem 3.2) can be rewritten as the following nonlinear
Jacobi iteration [18] for solving a nonlinear complementarity problem:

(3.3) +’

si2+1 (/g2(x2(si s+1)) -t- si2+1)
Improved convergence proofs (see, for example, [18]) may be possible, based on

this equivalent Jacobi iteration instead of (3.2).

498 M. C. FERI:tIS AND O. L. MANGASARIAN

4. Computational experience. We have tested out the algorithms of the pre-
vious sections on some linear programming problems. The standard form linear pro-
gram

has the dual problem

minimize cTx
subject to Ax b, x>0

(4.1)
maximize bTy
subject to ATy

_
c

and these problems are in precisely the form of our preceding discussion except that
the objective is not strongly convex. In order to strongly convexify the objective we
have used the least 2-norm formulation [15], [12], where for e e (0,] for some > 0,
the solution of

(4.2)
minimize _bTy + yTy
subject to ATy <_ c

is the least 2-norm solution of (4.1). For the purpose of our computation, a value of
e 10-6 was used.

We have split up the problems as follows: first, the user has specified the number
of processors available, and the problem has been split into that many blocks. If the
number of constraints in each block is not the same, we have added to each block
combinations of constraints from other blocks to make the number of constraints in
each block equal, with the aim of balancing the load between processors.

The PCD algorithm (Theorem 3.2) of 3 was implemented on the Sequent Sym-
metry S-81 shared memory multiprocessor. The subproblems were solved on each
processor using MINOS 5.3, a more recent version of [16]. The explicit constraints
in each subproblem remained fixed throughout the computation, but the blocks were
not chosen to satisfy the linear independence assumption.

We have used the following heuristic scheme to update the augmented Lagrangian
parameter . Initially it is set at 10 and is increased by a factor of 4 only when the
norm of the violation of the constraints increases.

The steplength A in the method (which is needed in the convergence proof) was
chosen by several techniques. One technique was to choose a fixed positive steplength
A < 1. With a steplength of 1 we found that the algorithm did fail to converge in
several instances, as the theory would suggest (see Table 4.2). We have also exper-
imented with a heuristic choice of the steplength A. We calculated a merit function
at certain values of A between 0.4 and 1.0 (depending on the nunber of processors
available) and took the step A from among these values, which minimized the merit
function. The particular form of merit function we employ is a weighted sum of two
quantities, the first being the norm of the gradient of the standard Lagrangian for
(4.2) and the second being the difference between the objective function values of (4.2)
and its dual. This has proven to be robust and results in a good saving in iterations
(see Table 4.3). Also, the evaluation of the merit function was extremely cheap to
perform (in parallel) and did not result in any degrading of the parallel performance.

The algorithm was terminated whenever the difference in the primal objective
value of (4.1) and its dual objective value normalized by their sum differed by less
than 10-5 The constraint violation was also required to be less than this tolerance.

PARALLEL CONSTRAINT DISTRIBUTION 499

TABLE 4.1
Numerical results with fixed 0.7.

Problem No. of

Variables

No. of

Constraints

Ex6

Ex9

Exl0

AFIRO

ADLittle

3

5

6

27

56

5

11

14

51

138

Iteration Count for

No. of Blocks

10 10"i101112

12 13

1141 191z
TABLE 4.2

Numerical results with fixed 1.0.

Problem No. of

Variables

No. of

Constraints

Iteration Count for

No. of Blocks

Ex6

Ex9

Exl0

AFIRO
ADLittle

3

5

6

27

56

5

11

14

51

138

2 2

4 *

4 4 4

20 14 * *

TABLE 4.3
Numerical results with variable

Problem No. of

Variables

No. of

Constraints

Ex6

Ex9

Exl0

AFIRO
ADLittle

3

5

6

27

56

Iteration Count for

5 2 2

11 4 5

14 4 4 4

51 13 15 15 14

138 121141141 51

Tables 4.1, 4.2, and 4.3 summarize preliminary numerical results for the PCD
algorithm (Theorem 3.2) on the Sequent Symmetry S-81 for five small linear programs
reformulated as in (4.2). The first three are homemade test problems, while the last
two, AFIRO and ADLittle, are from the NETLIB collection [7]. In the tables, an
empty column entry signifies that we did not perform the computation. The character
* signifies that the algorithm did not terminate. Note that the algorithm does fail
when a full step is taken (see Table 4.2), as may be expected from Theorem 2.1, where
the stepsize A must satisfy (2.30). The heuristic stepsize outlined above performs the
best (see Table 4.3).

500 M. C. FERRIS AND O. L. MANGASARIAN

The key observation to make is that the total number of iterations required for
accurate solutions (tolerance less than 10-5) can be achieved with a small number of
iterations (2-13 iterations for 3 blocks and 14-15 iterations for 18 blocks). The fact
that the number of iterations remains essentially constant for increasing number of
blocks is encouraging and leads us to believe that the PCD is worthy of additional
theoretical and computational study.

REFERENCES

[10]

[12]

[15]

[16]

[1] D. BERTSEKAS, Constrained Optimization and Lagrange Multiplier Methods, Academic Press,
New York, 1982.

[2] R. COTTLE, J.-S. PANG, AND R. STONE, The Linear Complementarity Problem, Academic
Press, New York, 1991.

[3] R. DE LEONE AND O. MANGASARIAN, Parallel proximal point decomposition of linear program-
ming constraints, SIAM National Meeting, Chicago, IL, July 16-20, 1990.

[4] A. DE PIERRO AND A. IUSEM, Convergence properties of iterative methods for symmetric pos-
itive semidefinite linear complementarity problems, Tech. Report, Instituto de Matemat-
ica, Elasticita e Ciencia da Computacao, Universidade Estadual de Campinas, Campinas,
Brazil, 1990.

[5] J. ECKSTEIN AND D. BERTSEKAS, On the Douglas-Rachford splitting method and the proximal
point algorithm for maximal monotone operators, Math. Programming, 1991, to appear.

[6] M. FERRIS, Parallel constraint distribution for convex quadratic programs, Tech. Report 1009,
Computer Sciences Department, University of Wisconsin, Madison, WI, 1991.

[7] D. GAY, Electronic mail distribution of linear programming test problems, COAL Newsletter,
13 (1985), pp. 10-12.

[8] S.-P. HAN, A decomposition method and its application to convex programming, Math. Oper.
Res., 14 (1989), pp. 237-248.

[9] Z.-Q. LUO AND P. TSENG, On the convergence of a matrix splitting algorithm for the symmetric
monotone linear complementarity problem, Tech. Report LIDS-P-1884, Laboratory for
Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA,
1989; SIAM J. Control Optim., 30 (1992), to appear.

O. MANGASARIAN, Nonlinear Programming, McGraw-Hill, New York, 1969.
., Solution of symmetric linear complementarity problems by iterative methods, J. Optim.

Theory and Appl., 22 (1977), pp. 465-485.
., Normal solutions of linear programs, Math. Programming Stud., 22 (1984), pp. 206-216.
., A simple characterization of solution sets of convex programs, Oper. Res. Lett., 7

(1988), pp. 21-26.
Convergence of iterates of an inexact matrix splitting algorithm for the symmetric

monotone linear complementarity problem, SIAM J. Optimization, 1 (1991), pp. 114-122.
O. MANGASARIAN AND R. MEYER, Nonlinear perturbation of linear programs, SIAM J. Control

Optim., 17 (1979), pp. 745-752.
B. MURTAGH AND M. SAUNDERS, MINOS 5.0 user’s guide, Tech. Report SOL 83.20, Systems

Optimization Laboratory, Stanford University, December 1983.
[17] J.-S. PANG, Convergence of splitting and Newton methods for complementarity problems: An

application of some sensitivity results, Department of Mathematical Sciences, The Johns
Hopkins University, Baltimore, MD, September, 1990.

[18] J.-S. PANG AND D. CHAN, Iterative methods for variational and complementarity problems,
Math. Programming, 24 (1982), pp. 284-313.

[19] R. ROCKAFELLAR, Augmented Lagrange multiplier functions and duality in nonconvex pro-
gramming, SIAM J. Control, 12 (1974), pp. 268-285.

[20] , Augmented Lagrangians and applications of the proximal point algorithm in convex
programming, Math. Oper. Res., 1 (1976), pp. 97-116.

[21] R. ROCKAFELLAR AND R.-B. WETS, Scenarios and policy aggregation in optimization under
uncertainty, Math. Oper. Res., 10 (1991), pp. 119-147.

[22] J. SPINGARN, Applications of the method of partial inverses to convex programming, Math.
Programming, 32 (1985), pp. 199-223.

SIAM J. OPTIMIZATION
Vol. 1, No. 4, pp. 501-514, November 1991

1991 Society for Industrial and Applied Mathematics
0O5

PARALLEL SOLUTION OF LARGE-SCALE, BLOCK-DIAGONAL
CONCAVE MAXIMIZATION PROBLEMS*

J. H. GLICKt, R. S. MAIEI:tt$, AND J. B. I:tOSEN

Abstract. A feasible-point algorithm for structured, large-scale, constrained optimization prob-
lems which may have many nonlinear constraints is described. The constraint structure is charac-
terized by a block-diagonal coefficient matrix corresponding to linear variables, coupled by nonlinear
variables. Problems of this structure arise in many applications, including structural design opti-
mization and certain multiperiod or multiplant applications. Maximization problems with a concave
objective and concave inequality constraints which define a convex region are considered. For such
problems a KKT point is a global maximum. A basic version of the algorithm is presented and jus-
tified by showing that it will find an optimal solution in a finite number of iterations. The algorithm
has been implemented on a CRAY-2 and a 64-processor NCUBE hypercube. It has been tested on
a series of randomly generated test problems, and its performance has been compared with that of
MINOS 5.3.

Key words, nonlinear programming, large-scale problems, constrained optimization

AMS(MOS) subject classifications. 90C30, 90C06

1. Introduction. Many large-scale, constrained, nonlinear programming prob-
lems have certain common features; the constraint matrix is structured and sparse,
and many of the variables are linear. Problems of this general type occur in many
important large-scale optimization applications, including combined manufacturing
and distribution models [2] and structural design optimization [3]. Such problems
may also have many nonlinear constraints.

In this paper we limit consideration to the case where the feasible set is convex and
the objective function is concave for a maximization (or convex for a minimization)
problem. That is, we consider problems where the first-order optimality conditions
(KKT conditions) are sufficient for a global optimum. An efficient method for the
solution of this type of problem is presented here, including computational tests with
sequential and parallel implementations.

The block-diagonal concave problem considered is given by:

(1) max{f(y) + bTw ATw <_ c(y)},

where y E R’, w, b Rm, A Rmn is block-diagonal with k blocks, f" R8 --. R,
c" R ---, Rn, and f, ci, 1,..., n are concave, twice differentiable functions. It
is assumed that rank(A) m. The number s of linking variables (the vector y) is
typically much smaller than the number m of linear variables. The total number n of
inequality constraints is assumed greater than m (these may include simple bounds
and linear inequalities). It should be noted that the feasible set defined by ATw

_
c(y)

is convex. To simplify the presentation it is assumed that a KKT point (y*, w*) exists
(i.e., the problem has an optimal solution), and that (y*, w*) is nondegenerate, in that
at most rn + s of the n inequalities are satisfied as equalities. With the block-diagonal

Peceived by the editors October 3, 1990; accepted for publication (in revised form) April 3,
1991. This work was supported in part by Air Force Office of Scientific Research grant AFOSR-87-
0127, the Minnesota Supercomputer Institute, and the Army High Performance Computing Research
Center.

Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455.
Army High Performance Computing Research Center, University of Minnesota, Minneapolis,

Minnesota 55415.

501

502 J.H. GLICK, R. $. MAIEI:t, AND J. B. ROSEN

structure assumed for A, the problem constraints can be written:

Here, vectors and matrices associated with individual blocks are denoted by super-
scripts.

A property of this class of structured problems is that the constraints decouple into
separate blocks for any fixed value of the nonlinear variables. The method presented
takes full advantage of this property. For a survey of this class of problems, see [3].

For the special case where both f(y) and c(y) are affine functions, that is, f(y)
bToy and c(y) c- DTy, where D E R8Xn, the problem is a sparse linear program
with a dual block-angular structure containing s coupling columns. Considering this
as the dual problem, the equivalent primal is

nn(cTx Dx bo, Ax b, x >_ 0}.

An efficient parallel method for solving this large-scale structured linear program has
previously been described, implemented, and computationally tested in [9] and [5].

The original problem (1) can be represented in the reduced space of the linking
variables y E R8, by defining the function

(4) (y) f(y) + max {bTw]ATw <_ c(y)}.
w

Let Y C R be the set of y such that there exists a w Rm for which the inequalities
ATw <_ c(y) are satisfied. The set Y is not empty since y* Y and it is straightforward
to show that it is convex. Furthermore, (y) is a concave, piecewise differentiable
function of y defined over the set Y. Its value for any fixed y Y is easily computed
by solving k independent, and relatively small, linear programs

(5) max {(bi)Twi (Ai)Twi <_ ci(y)}, i= 1,... ,k,
W

which can all be done in parallel (with k processors). The problem (1) can then be
stated as a constrained maximization in y-space:

(6)
yY

If we consider the linear program in (4) as a dual problem, the equivalent primal
problem (for any fixed y) is given by

(7) min {c(y)Tu Au b, u >_ 0}.

This problem is referred to as the LP subproblem in the remainder of the paper.
In terms of the block-diagonal structure this gives the k independent primal linear
programs

(8) mi.n {ci(y)Tui Aiui b, u >_ 0}, 1,..., k.

The formulation (6) shows that the large-scale original problem (1) can be reduced
to a much smaller problem in Rs. However, the formulation (6) has two serious

PARALLEL SOLUTION OF LARGE-SCALE CONCAVE PROBLEMS 503

difficulties: @(y) is only piecewise differentiable and the feasible set Y is not defined
explicitly. To avoid these difficulties, the formulation is replaced by a sequence of
reduced problems, each of which corresponds to a fixed basis B selected from the
columns of A. The reduced problem is given by

(9) max {(y) r(y) >_ 0, nonbasic},
y

where (y) and r(y) can be explicitly computed using B-1, and are differentiable
functions for all y E R8. The reduced problem is based on ideas presented in [8], and
is described in detail in the next section.

Starting with any Y0 E Y, a sequence of reduced problems is solved, giving a
sequence of strictly increasing function values. The first-order (KKT) optimality
conditions for the reduced problem are closely related to the KKT conditions for
(1). In fact, satisfaction of the reduced problem KKT conditions, together with an
additional nonnegativity requirement on the basic multipliers, implies that the KKT
conditions for (1) are satisfied, and therefore an optimum solution to (1) has been
obtained. If the additional nonnegativity requirement is not satisfied, a different basis
is chosen and a new reduced problem formed and solved. This iteration is continued
until the optimal solution is obtained in a finite number of steps. Details of this RMG
(Rosen-Maier-Glick) algorithm are given in 3 and 4.

In 2 the KKT conditions for (1) are given. It is then shown that, corresponding
to any feasible basis B, a reduced problem can be generated. The KKT conditions
for the reduced problem are given and their relation to the KKT conditions for (1)
shown. An exchange of columns is needed in the RMG algorithm. It is shown that
this can be done whenever it is required.

In 3 a basic version of the RMG algorithm is presented and justified. It is
shown that the optimum is obtained in a finite number of iterations. An heuristic
modification is described in 4, which has proved very efficient in practice.

In 5 the generation of problems for the computational testing and comparison
of the RMG algorithm is described. To determine the time dependence on problem
size, problems with from 1 to 64 blocks were solved, with block size held fixed, and
m constraints active at the optimum. The RMG implementation was tested on both
a Cray-2 and a first-generation, 64-processor NCUBE. The largest problem solved,
with 3200 variables and 6400 quadratic constraints, required 91 seconds on the Cray-
2. A comparison was also made with MINOS 5.3 using the same test problems. For
a discussion of MINOS, see [6] and [7].

2. Optimality conditions and the reduced problem. The first-order (KKT)
optimality conditions for the problem (1) are given by:

c(y) ATw >_ O,
Vf(y) / D(y)x O,

(10) Ax b,
x_>0,

xT(c(y) ATw) O,

where D(y) e R’ has columns Vc(y), 1,..., n, and x R’ are the Lagrange
multipliers. Since f(y) and the components of c(y) are concave functions, the con-
ditions (10) are sufficient for a global optimum to (1). We also assume appropriate

504 J.H. GLICK, It. S. MAIER, AND J. B. ROSEN

constraint qualifications, so that these conditions are necessary. By our earlier as-
sumption that an optimum solution (y*, w*) exists, there exists x* >_ 0, such that
(y*, w*, x*) satisfy (10).

The reduced problem is obtained by using an m m nonsingular basis B, chosen
from the columns of A, so that A is partitioned:

A= [B N].

Corresponding to this partition, let Is {ilai is a column of B} and IN {ilai
is a column of N}. When convenient, subscripting with B or N on vectors refers to
components corresponding to Is and IN, respectively.

The choice of B must be such that for some (y, w) we have BTw cB(y) and
NTw

_
CN(y).

Usually this is accomplished by solving the linear program (7) with a specific
y y, to give B, N, and UB B-lb >_ O. This can be the initial value or the value
from a previous algorithm iterate. The vector c()- ATw

_
0 is then the optimal

reduced cost vector for (7), where w B-TcB(I). For any such basis B, we eliminate
w by the relation

w B-TcB(y)

and use this in (1) to get

(u)](u) +
 ri(y) ci(y) c (y)B-lai, ieIg.

Note that for fixed B, both (I) and ri are differentiable for all y E R8. The reduced
problem corresponding to B is

(11) max{O(y) ri(y) _> O, IN}.
y

The vector is feasible for (11), because the ri() represent the nonbasic reduced costs
corresponding to the optimal basis B, and therefore ri() >_ O, IN. Furthermore,
any y R8 which is feasible for (11) is also feasible for (1), and the function value O(y)
is equal to the function value of (1) corresponding to the basis B. Clearly, the problem
(11) has fewer variables and constraints than (1), since (11) has only s variables and
n- m constraints. Typically, s will be much smaller than m. Furthermore, by the
nondegeneracy assumption, the number of active constraints in the reduced problem
at optimality will be q <_ s. For later use we also define the reduced gradient

g(y) VO(y) Vf(y)+ DB(y)B-b.

Corresponding to any feasible y, we define a subset Is C IN, of active constraints,
such that

(12) Is {i 0, e

For all other constraints we have ri(y) > 0, for IN \ Is. Multipliers xi, for Is,
are called superbasic. As with B and N, subscripting with S on a vector refers to
components corresponding to Is.

PARALLEL SOLUTION OF LARGE-SCALE CONCAVE PROBLEMS 505

The KKT conditions for (11) at y* with multipliers X;v can then be given as
follows:

+

r(y*) >_ O, E IN,
o, Is,

*) 0,
iEIs

*>0 iEIs,Xi
x*=0, ely \Is.

The reduced problem (11) and the original problem (1) are obviously closely related.
We now show that with one additional condition, the satisfaction of (13) is sufficient
for y* and w* B-TcB (y*) to be the optimal solution to (1).

* > O, IN satisfy (13). Also let US B-lb andTHEOREM 2.1. Let y* and x
{.__ \

xiai >_ O.
]

Then (y*, w*) is an optimal solution to (1).
Proof. From (13), (14), and the definitions of I,(y) and r(y), we have

V * D(y*)x* 0 of satisfied. The feasibility re-Thus, the condition f(y)+ (10) is
quirement c(y*)- ATw* >_ 0 is satisfied since cs(y*)- BTw* 0, and r(y*)
c(y*) aw* >_ O, 6 IN. Also,

(15) Ax* Bx* + xa b, x* >_ 0
iCr.IN

is satisfied by (14) and the requirement that x[>_ 0, 6 IN. Finally, the comple-
mentarity condition x*r (c(y*) ATw*) 0 is satisfied since c(y*) aw* 0 for
6 Is tJ Is, and x 0 for 6 IN \ IS. All the KKT conditions (10) are satisfied,

and since they are sufficient conditions, (y*, w*) is optimal for (1).
The following lemma is needed in the next section.
LEMMA 2.2 (COLUMN EXCHANGE). If UB >_ 0 and the optimal solution to the

reduced problem causes at least one of the basic multipliers to be negative, an exchange
of a nonbasic column, corresponding to a positive superbasic multiplier, with a basic
column, can always be made.

506 J.H. GLICK, R. S. MAIER, AND J. B. ROSEN

Proof. We have

(16) x-uB-xB-a and x>_0 foriI.
iIs

Suppose x < 0. Since us >_ O, it must be true that for at least one superbasic
column (say, ap), both xp > 0 and the jth element of B-ap is positive:

lp
2p

(17) B- ap 5p and 5jp > 0.

amp

Now consider the exchange of columns in the basis. Replace aj in the basis with the
superbasic column ap. Represent ap in terms of basis columns:

ap ipai

where 5p is given by (17). To get a new basis we solve this for aj in terms of ap and
a, e Is, C j"

1
(18) aj 5jap- aiai.

Since the pivot element is 5jp > 0, this can always be done. A new basis B has been
obtained with columns ap, ai, i

3. The Basic RMG Algorithm and convergence prooL The Basic RMG
Algorithm and the proof of its finite convergence are now presented. To simplify the
notation, let the function value of the reduced problem with basis Bk, be given by
k(Y) f(Y)+ c(y)Sb. Also, let Yk C Y be the feasible set for the reduced
problem with basis Bk. It is assumed that an initial feasible y0 Y is known.

BASIC RMG ALGORITHM.
1. Set the initial value of y to Y0 Y. Solve (7) to get an initial basis B0.

Initialize the iteration count, k 0.
2. Given a basis Bk, such that Bb O, and Yk Yk, form the reduced

problem (11) with basis Bk. Compute the optimal solution to the reduced
problem, starting with yk. The optimal solution gives y Y, the superbasic

k 0, and the optimal function value k(Y) of the reducedmultipliers x
problem.

3. Compute xs as given by (16). If xs k 0, then a solution has been found. In
this case, set y* Yl, w* BTc,(y), * k(Yl), and stop.

4. Solve (7) and use (4) to get
k(Yl), then it must be that B
y,kk+l, and go to step 2.

5. It must be that (Yl) k(Yl) and at least one basic multiplier is negative.
Make a basis exchange as given in the exchange lemma (Lemma 2.2) to get
a new basis Bk+. Form the reduced problem (11) with the basis Bk+,
and k+(Y) k(Y). Find any approximate solution Yk+ Yk+, such
that ck+(yk+) > ck(y). Solve (7) to get (yk+) k +(y+), and the
corresponding basis B Bk. Set Bk+ B, k k + 1, and go to step 2.

PARALLEL SOLUTION OF LARGE-SCALE CONCAVE PROBLEMS 507

THEOREM 3.1. Starting with any feasible Yo, the RMG algorithm will find the
optimal solution (y*, w*) to (1) in a finite number of iterations.

Proof. The algorithm generates a sequence of reduced problems, each correspond-
ing to a different basis Bk, and computes the optimal solution to each. This gives a
sequence of feasible points Yk E Yk C Y, with increasing objective function values.
Since a return to a previous basis would require a decrease in function value, no basis
can be repeated. A bound on the number of different bases is n), so this is a boundm
on the number of possible iterations. A detailed proof is based on the following points:

1. The optimality test (in step 3) follows directly from Theorem 2.1 and the fact
satisfy the KKT conditions for the reduced problem.that y, x8

2. In step 4, the strict increase (y) > Ok(Yk) shows that a new basis has been
obtained, since Ok(y) is the maximum value possible with the basis Bk.

3. The solution of the LP subproblem (7) for any Yk Y, gives a basis Bk,
such that Blb >_ O, and corresponding function value (Yk) Ok(Yk).
Furthermore, Yk Yk, since 7rN(Yk) is the optimal reduced cost vector for (7)
and therefore 7rg(yk)

_
O. In general, it should be noted that (y) >_ Ok(y)

for any basis Bk, and y Y, since (7) chooses the optimal basis corresponding
to y.

4. In step 5, the exchange can always be carried out as shown in the exchange
lemma (Lemma 2.2). Since the exchange involves two active constraints in
(1) at y and the corresponding w, the value of w is unchanged with the new
basis Bk+l, so that Ok+(yk) Ok(yk). Furthermore, y e Yk+, that is, y
is feasible for the new reduced problem corresponding to Bk+l.
Because of the exchange, exactly one superbasic multiplier will be negative
in the new reduced problem. Therefore, by the nondegeneracy assumption,
a finite step (away from the active constraint with negative multiplier) can
be taken to a new feasible point Yk+l with increased function value (see,
for example, [4, 11.4]). The LP subproblem (7) for Yk+ will give B’, and
(Yk+l)

_
Ok+(Yk+) > Ok+l(Y) Ok(Yk), SO that B’ Bk. D

4. Computational RMG algorithm. The RMG algorithm presented above
is not computationally efficient because it requires that an optimal solution to the
reduced problem (11) be obtained at each iteration. To avoid this, the computational
version of the algorithm requires only that if the KKT conditions are not satisfied
at Yk, then a new feasible Yk+ is found with (Yk+) > (Yk). This is done by
determining a feasible ascent direction d, and then computing Yk+l Yk + od, where
the scalar a > 0 is determined by a suitable line search.

The simplest choice for d is the reduced gradient g(Yk) VO(yk). This choice is
best initially when yk is not close to y*. As Yk converges to y*, d g(yk) will tend
to give a small (or possibly no) improvement in (y), and therefore is not a good
choice. In this case the direction d is determined by an approximate solution to the
KKT conditions (13), where the set of active constraints Is is specified. A single step
of Newton’s method is taken, where ri(y) 0, Is, and g(y) + ’iels xiVri(y) 0
are linearized about y Yk. This gives a new value y y, with d Yk --Yk. The
permitted change in y (that is, Ildll), may also be limited by a trust region.

Once d has been chosen, the step length a is selected so as to approximately solve
the line search problem:

(9) maxO(c), where () f(Yk

Note that for each c, the LP subproblem (7) is solved to evaluate O(c). Details about

508 J.H. GLICK, It. $. MAIER, AND J. B. ROSEN

the termination tolerance used are given in 6.

5. Test problems. A class of model problems was devised to aid preliminary
testing of the algorithm. These test problems are given by (1) with f(y) b’y, and
each c(y) a concave, quadratic function. The procedure for generating test problems
begins by specifying the solution and multiplier vectors. The appropriate choice of
the multipliers determines the number of superbasic variables at the solution.

PROBLEM GENEI:tATOR.
1. Choose y E R (e.g., we used y
2. Choose w Rn (e.g., we used w {1,-1}).
3. Choose A R’n’ (e.g., we used integers in {-9,... ,9}). Identify a set of

basic columns (e.g., we used the first m columns, with a check for singularity).
4. Choose x R’ so that x > 0 for the m / q basic and superbasic columns of
A (0 <_ q _< s), and x 0 for the remaining nonbasic columns. For example,
we used x 1, 1,...,m / q.

5. Compute b- Ax.
6. Compute c- ATw.
7. Set c c / a (e.g., we used a 1) for corresponding to the nonbasic

columns of A (the optimal prices will be c).
8. Choose a nonnegative D E R8n (e.g., we used integers in {0,..., 9}).

DTy2e9. Define the vector function c(y) do- where Y diag(y) and
e 6 R8 is the vector of all ones. Compute do c + 1/2DTy2e.

10. Compute bo YDx.
11. Compute the optimal function value by / bTw.
The suggested parameter choices in the problem generator satisfy necessary con-

ditions for a maximum, and are sufficient for a global maximum since each c(y) will
be concave. In general, the parameters permit control over a number of problem
characteristics, including the conditioning of the constraint functions, the structure
of A, the magnitude of Lagrange multipliers, and the number of active constraints at
the solution.

For the problems presented in this paper, we have deliberately chosen character-
istics which make the problem relatively "easy" for the RMG algorithm (and possibly
for other algorithms). The choice of D and A suggested in the generator ensure that
the constraint functions are well conditioned. The point Y0 0 is a feasible starting
point. Finally we have actually presented only problems with m active constraints at
the solution; i.e., no superbasics at the optimal solution. This last choice is signifi-
cant since such problems tend to be easier for the active set strategy currently used
to solve (11). Although superbasics typically become active during the solution pro-
cess on these problems, they usually pose little combinatorial difficulty in constraint
identification near the optimal solution.

6. Computational results. In this section we present the results of a compu-
tational experiment comparing serial and parallel RMG codes with MINOS 5.3. Test
problem sets were developed to experimentally characterize the effect of increasing the
number of linear variables (the dimension of A), while the number of nonlinear vari-
ables is fixed. MINOS 5.3 is a well-known code for general purpose optimization. We
believe it to be the best available code when the number of nonlinear variables is small
compared to the number of linear variables and when the problems are characterized
by relatively mild nonlinearities.

PARALLEL SOLUTION OF LARGE-SCALE CONCAVE PROBLEMS 509

We emphasize our interest in structured constraints, i.e., block-diagonal A. This
is the primary motivation for the RMG algorithm, and in this sense, the comparison
with MINOS is simply a comparison of an algorithm which treats structure with an
algorithm that does not. The appropriate way to view the comparison is that we
will compare the best available general method for problems with a limited number
of nonlinear variables (MINOS) with a method which exploits special structure in
the linear part of the constraints (RMG). At the present time, computational testing
shows that MINOS is more efficient in the unstructured case.

6.1. The Serial code. A Fortran code for the RMG algorithm has been imple-
mented on the CRAY-2 at the Minnesota Supercomputer Center in single precision
arithmetic, using CRAY-optimized BLAS routines. Constraint function and gradient
evaluations are accomplished with calls to a FUNCON routine compatible with MI-
NOS 5.3. The KKT iteration is accomplished with a call to a nonoptimized version
of MINPACK’s HYBRJ routine for nonlinear systems of equations. The LP is solved
by a sparse routine adapted from MINOS 5.0. All RMG runs were made using one
processor of the CRAY-2. Time measurements for RMG reflect the time for solving
the problem and do not include setup time. The starting point for all problems was

Y0 0. The termination criteria for RMG include

where a I[x[[1/x/- and is the machine epsilon. The optimality tolerance employed
in (7) is equivalent to a feasibility tolerance for the original problem of:

(21) ci aTiw >_ --10-6, 1,...,n.

Computational results for RMG are given in Table 1. For all problems, the
number of nonlinear variables is s 10. For each problem listed in Table 1, we give:

1. Blocks: the number of diagonal blocks in the matrix A.
2. m, n: the number of linear variables and constraints.
3. Seconds: the cpu time for solving the optimization problem.
4. Major iterations: the number of Newton steps in the reduced KKT equations.
5. [[gl[: the reduced gradient norm on termination.
6. [lY- Y*[I: the error norm for the nonlinear variables.

Table 1 gives results for a series of problems in which the number of nonlinear variables
is fixed, and the number of linear variables and constraints is increased by a factor
of 2, by doubling the number of diagonal blocks in A. Hence, the A matrix becomes
increasingly large and sparse.

The reduced gradient and feasibility criteria were satisfied on all problems in Table
1 (most of the norms indicated in Table 1 are many orders of magnitude smaller than
the termination criteria). Inspection of Table 1 shows that execution time increases
with problem size. Some of the variance is also attributable to the line search process
(19), which must solve (7) to do a function evaluation. If the accepted step length ak
varies substantially in magnitude from one major iteration to the next, a significant
amount of time is used in function evaluation to locate the appropriate interval. To
further analyze the results in Table 1, we calculated the average time per iteration for
each problem. The average time per iteration (not shown) increases monotonically at
a sublinear rate with the problem size. In contrast, total time for solving the problem

510 J.H. GLICK, R. S. MAIER, AND J. B. ROSEN

TABLE 1
Serial RMG results on CRAY-2.

Blocks

Blocks

Block size 10 x 20, 100 percent dense
m n See Maj It .llg.II

1 10 20 0.09 8 0.8E-12
2 20 40 0.38 18 0.1E-11
4 40 80 0.68 23 0.2E-11
8 80 160 0.44 9 0.3E-11

16 160 320 1.15 18 0.6E-11
32 320 640 3.90 29 0.2E-10
64 640 1280 6.82 29 0.3E-10

Block size 50 x 100, 10 percent dense
m n Sea Maj It Ilgll
50’ 100 1.29 10 0.3E-11

2 100 200 5.22 14 0.4E-11
4 200 400 11.34 19 0.2E-10
8 400 800 12.61 12 0.2E-10

16 800 1600 26.81 20 0.3E-10
32 1600 3200 31.95 21 0.5E-07
64 3200 6400 91.35 37 0.8E-05

0.4E-13
0.4E-14
0.4E-13
0.5E-14
0.5E-13
0.1E-13
0.6E-13

0.6E-14
0.7E-13
0.2E-13
0.4E-13
0.1E-13
0.8E-05
0.5E-06

is approximately bounded by a linear function of the problem size; i.e. execution time
appears to approximately double as the problem size doubles.

6.2. Comparison with MINOS. For nonlinearly constrained problems, MI-
NOS employs a projected augmented Lagrangian algorithm. This algorithm uses the
reduced gradient method to solve a sequence of linearly constrained subproblems.

There are a number of important similarities and differences between MINOS and
the RMG algorithm. Both RMG and MINOS partition linear and nonlinear variables,
both compute and factorize a basis for the strictly linear part of the constraint co-
efficient matrix A, and both compute a form of the reduced Hessian matrix. RMG
uses exact second derivatives to compute a Newton iteration in the reduced first-order
(KKT) equations and uses the Newton step as a search direction for (19). MINOS
uses quasi-Newton updates of the reduced Hessian and computes a projected Newton
search direction for the reduced gradient subproblem. RMG requires that each iterate
remain feasible for the original problem. MINOS does not insist on feasibility until a
solution is found. Perhaps the most crucial difference is that given a structured set of
linear coefficients (e.g, block-diagonal A), RMG evaluates the objective function as a
separable LP, meaning that independent blocks of A are treated as independent LPs.
MINOS does not treat special structures in the linear constraint coefficients.

MINOS 5.3 was implemented on the Minnesota Supercomputer Center CRAY-
2 in single precision arithmetic, using CRAY-optimized BLAS and default MINOS
parameters. All MINOS runs were made using one processor of the CRAY-2. Time
measurements for MINOS reflect the time for subroutine M5SOLV. The termination
criteria for MINOS include

g/a <_ 10-6, 1,..., s,

_< i=

where a- [Ix[ll/vf’d. The feasibility tolerance is"

(23) ci aw >_ -10-6 1,...,n.

These criteria are comparable to those indicated above for RMG. The feasibility

PARALLEL SOLUTION OF LARGE-SCALE CONCAVE PROBLEMS 511

tolerances are identical, while the reduced gradient tolerances differ by less than an
order of magnitude from those employed with RMG.

Computational results for MINOS are given in Table 2, for the same set of prob-
lems as shown in Table 1. For all problems, the number of nonlinear variables is
s 10. For each problem listed in Table 2, we give:

1. Blocks: the number of diagonal blocks in the matrix A.
2. m, n: the number of linear variables and constraints.
3. Seconds: the execution time for subroutine M5SOLV.
4. Major iterations: the number of linearly constrained subproblems that were

solved.
5. Minor iterations: the number of steps taken by the reduced gradient algo-

rithm.
6. Ilrgll: the reduced gradient norm on termination.

TABLE 2
Serial MINOS results on CRAY-2.

Blocks
1
2
4
8

16
32
64

Blocks
1
2
4
8

16

Block size 10 x 20, 100 percent dense
m n Sec MajItn Min Itn
10 20 0.36 13 126
20 40 0.82 11 195
40 80 1.72 10 265
80 160 4.11 12 351

160 320 12.63 17 562
320 640 51.70 30 1080
640 1280 252.67 58 2204
Block size 50 x 100, 10 percent dense
m n Sec MajItn Min Itn
50 100 2.72 12 318
100 200 6.22 14 420
200 400 20.20 21 722
400 800 112.19 29 2068
800 1600 575.57 33 4684

le-7
le-8
2e-7
le-7
le-5
2e-6
9e-6

2e-6
4e-6
6e-7
6e-7
3e-6

The reduced gradient and feasibility criteria for MINOS were satisfied on all prob-
lems. For the larger problems, the minor iteration limit for each subproblem had to
be increased beyond the default to obtain convergence. Execution time for MINOS
increases approximately as a factor of 4 as the problem size doubles. The number of
major iterations is a slowly growing function of the problem size, while the number
of minor iterations is approximately linear in the problem size.

A comparison of MINOS and RMG shows that for the smallest problem (10 x 20)
MINOS required 0.36 seconds compared to 0.09 seconds for RMG, while for the largest
problem (800 x 1600) MINOS required 576 seconds compared to 27 seconds for RMG.
Based on additional runs where A is unstructured (not shown), we attribute the
performance differential primarily to the exploitation of structure by RMG; i.e., the
evaluation of (7) as a separable linear program.

6.3. The parallel code. A motivation for the RMG algorithm is that the inde-
pendent linear programs (7), corresponding to independent blocks of A, are suitable
for asynchronous computation on individual processors of an MIMD architecture.
With the supporting assumption that s << n, the work required to solve the LPs
will tend to dominate the cost of the algorithm, even with a large number of proces-
sors. To test these ideas, a parallel RMG algorithm has been developed for MIMD
architectures and implemented on a message-passing hypercube multiprocessor.

512 J.H. GLICK, It. S. MAIEIt, AND J. B. ROSEN

The MIMD algorithm assumes allocation of one or more blocks of constraints to
each processor, where a block of constraints is defined in terms of the block-diagonal
matrix A. Constraint and objective function evaluation (involving solution of (7))
are essentially parallel operations requiring a minimum of O(mn) total operations per
major iteration. The load-balancing characteristics of the algorithm depend on the
similarity of block dimensions. A fixed (small) number of global communications are
required for each major iteration. Each synchronization involves summing or compar-
ing a scalar or s-vector among all processors. Global communication is implemented
on a hypercube architecture with a spanning-tree algorithm (see, for example, [1]).
Thus, if p is the number of processors, the cost of a global send or receive is propor-
tional to log(p)T, where T is the sum of the latency time and transfer time for sending
or receiving an s-vector between nearest neighbors. The major serial computation
is the Newton trust-region iteration, which is currently a serial O(s3) computation
performed redundantly by all processors.

The parallel implementation was tested experimentally on a first generation
NCUBE hypercube maintained by the University of Minnesota High Performance
Computing Laboratory. The NCUBE has 64 32-bit processors organized in a message-
passing hypercube network, accessed through a SUN 3/60 front-end. The algorithm
was implemented in double precision arithmetic. The CRAY and NCUBE codes are
almost identical from a numerical point of view, except for minor differences in the
criteria for sufficient improvement in the line search. Time measurements for the
NCUBE are based on the cpu time for a timekeeper processor, which is the first to
begin and last to end computation. The termination criteria are identical to the serial
code.

Computational results for the MIMD RMG code are given in Table 3, for the
same set of problems as shown in Table 1. For all problems, the number of nonlinear
variables is s 10. For each problem listed in Table 3, we give:

1. Proc: the number of processors.
2. m, n: the total number of linear variables and constraints.
3. Sec: the cpu time for the timekeeper processor.
4. Ilgll: the reduced gradient norm on termination.
5. IlY- Y*II: the error norm for the nonlinear variables.

Table 3 illustrates an experiment similar to Tables 1 and 2, in which the number
of nonlinear variables is fixed, and the number of linear variables and constraints is
increased by a factor of 2, by doubling the number of diagonal blocks in A. For
the NCUBE implementation, we have assigned one block of A per processor, so the
number of processors doubles as the number of blocks.

All problems in Table 3 satisfied the reduced gradient and feasibility criteria on
termination. The number of major iterations is in most cases identical to the serial
CRAY results in Table 1. Differences in the number of iterations between Tables 1
and 3 arise due to minor differences in the line search implementations. The iteration
paths of the two implementations tend to diverge toward the end of the process, when
major iterations are relatively cheap and are of little significance in total time. The
variability in execution time with respect to problem size (the number of blocks) was
explained previously in connection with the CRAY results, and is more obvious in
Table 3 because of the increase in processors with problem size. Execution time in
Table 3 is a slowly growing (sublinear) function of problem size, a consequence of the
corresponding increase in number of processors.

Finally, we give a brief comparative analysis of the serial and parallel RMG im-

PARALLEL SOLUTION OF LARGE-SCALE CONCAVE PROBLEMS 513

TABLE 3
Parallel RMG results on NCUBE.

Block size 10 x 20, 100 percent dense
Proc m n Sec it Ilgll

1 10 20 7.09 8 2.2E-14
2 20 40 21.72 18 1.4E-14
4 40 80 22.84 20 4.9E-14
8 80 160 13.03 9 8.0E-14

16 160 320 19.12 18 2.7E-13
32 320 640 39.49 28 3.2E-13
64 640 1280 40.48 26 1.1E-12

Block size 50 x 100, 10 percent dense

2.9E-16
4.0E-15
2.3E-16
7.3E-16
1.7E-15
1.6E-15
1.8E-15

Proc m n Sec it]]gl]
1 50 100 156.49 10 1.3E-13
2 100 200 203.07 14 2.7E-13
4 200 400 269.17 19 5.0E-13
8 400 800 228.57 12 9.3E-13

16 800 1600 295.41 20 1.7E-12
32 1600 3200 332.60 21 5.2E-08
64 3200 6400 548.13 28 5.4E-12

2.0E-15
2.7E-15
2.4E-16
4.9E-16
3.1E-15
8.2E-06
3.2E-15

plementations. Comparing the one-block problems from Tables 1 and 3, we observe
that the CRAY-2 code is approximately 100 times faster than the parallel code on
a single NCUBE processor. For the largest problems in Tables 1 and 3, we observe
that the CRAY-2 code is between 5 and 10 times faster than the NCUBE using all
64 processors.

7. Conclusions. For a class of model problems with known solution character-
istics, it was found that RMG execution time was bounded by a linear function of
the problem size. In contrast, execution time for MINOS increased approximately as
a quadratic function of problem size. In both codes, the observed number of major
iterations appears to grow slowly as a function of the problem size. The performance
differential is attributed primarily to the exploitation of constraint structure by RMG.

RMG execution time for the same class of problems on a hypercube multipro-
cessor appears to be a slowly growing function of the problem size, attributable to a
corresponding increase in the number of processors. A comparative analysis of serial
and parallel execution times supports the conclusion that parallel efficiency is primar-
ily a function of the number of nonlinear variables, and is not strongly affected by the
number of linear variables.

REFERENCES

[1] S. L. JOHNSSON, Communication efficient basic linear algebra computations on hypercube ar-
chitectures, Pes. Report YALEU/DCS/l:tP-361, Computer Science Department, Yale Uni-
versity, New Haven, CT, 1985.

[2] L. S. LASDON, Optimization Theory for Large Systems, Macmillan, London, 1970.
[3] F. A. LOOTSMA AND K. M. RAGSDELL, State-of-the-art in parallel nonlinear optimization,

Parallel Comput., 6 (1988), pp. 133-155.
[4] D. G. LUENBERGER, Linear and nonlinear programming, Addison-Wesley, Reading, MA, 1984.
[5] R. S. MAIER, Parallel solution of large-scale optimization problems: A partition algorithm for

linear programming, Ph.D. thesis, Computer Science Department, University of Minnesota,
Minneapolis, MN, 1990.

[6] B. MURTAGH AND M. SAUNDEPS, Large-scale linearly constrained optimization, Math. Program-
ming, 14 (1978), pp. 41-72.

514 J.H. GLICK, R. S. MAIER, AND J. B. ROSEN

[7] , MINOS 5.0 user’s guide, Report SOL 83-20, Department of Operations Research, Stan-
ford University, Palo Alto, CA, 1983.

[8] J. B. ROSEN, Convex partition programming, in Recent Advances in Mathematical Program-
ming, R. L. Graves and P. Wolfe, eds., McGraw-Hill, New York, 1963, pp. 159-176.

[9] J. B. ROSEN AND R. S. MAIEI% Parallel solution o] large-scale block-angular linear programs,
Ann. Oper. Res., 22 (1990), pp. 23-41.

SIAM J. OPTIMIZATION
Vol. 1, No. 4, pp. 515-529, November 1991

() 1991 Society for Industrial and Applied Mathematics
OO6

PARALLEL GENETIC ALGORITHMS APPLIED TO THE
TRAVELING SALESMAN PROBLEM*

PRASANNA JOGt, JUNG Y. SUH$, AND DIRK VAN GUCHT$

Abstract. Genetic algorithms are adaptive search algorithms that have been shown to be
robust optimization algorithms for multimodal real-valued functions and a variety of combinatorial
optimization problems. In contrast to more standard search algorithms, genetic algorithms base their
progress on the performance of a population of candidate solutions, rather than on a single candidate
solution.

The authors will concentrate on the application of genetic algorithms to the traveling salesman
problem. For this problem, there exist several such algorithms, ranging from pure genetic algorithms
to genetic algorithms that incorporate heuristic information. These algorithms will be reviewed and
their performance contrasted.

A serious drawback of genetic algorithms is their inefficiency when implemented on a sequential
machine. However, due to their inherent parallel properties, they can be successfully implemented
on parallel machines, resulting in considerable speedup. Parallel genetic algorithms will be reviewed
and their uses in the traveling salesman problem will be indicated.

Key words, genetic algorithms, traveling salesman problem, parallel algorithms

AMS(MOS) subject classifications. 05AXX, 05A05, 68TXX, 68T05, 90BXX, 90B40

1. Introduction. Suppose we have an object space X and a function f X
R+ (R+ denotes the positive real numbers) and our task is to find a global optimum for
that function. Genetic algorithms are a class of adaptive search algorithms invented
by Holland [15] to solve (or approximately solve) such problems. Genetic algorithms
differ from more standard search algorithms (e.g., gradient descent, controlled random
search, hill-climbing, simulated annealing, etc.) in that the search is conducted using
the information of a population of structures of the object space X instead of that of a
single structure. The motivation for this approach is that by considering many struc-
tures as potential candidate solutions, the risk of getting trapped in a local optimum
is greatly reduced. In Fig. 1 we show the layout of a typical genetic algorithm (GA).
The initial population P(0) consists of structures of X, usually chosen at random.
Alternatively, P(0) may contain heuristically chosen structures. In either case, the
initial population should contain a wide variety of structures. Each structure x in
P (0) is then evaluated by applying to it the function f. The genetic algorithm then
enters a loop. Each iteration of that loop is called a generation. The new population
P(t+l) is constructed in two steps: (1) the selection step and (2) the recombination
step. In the selection step, a temporary population (say, P’(t + 1)) is constructed by
choosing structures in P (t) according to their relative performance. For example, if
we are maximizing f, the structures with greater than average performance will be
selected with higher probability than the structures with below average performance.
This resembles the survival of the fittest principle of natural evolution. After the
selection step, the temporary population P(t + 1) is recombined. (The resulting pop-
ulation is the new population P (t+l).) Typically, recombination is accomplished by
applying several recombination operators, such as crossover, mutation, inversion [8],
[15], or local improvement [38], to the structures in P’(t + 1). After the recombination

Received by the editors August 17, 1990; accepted for publication (in revised form) March 14,
1991.

Computer Science Department, De Paul University, Chicago, Illinois 60614.
Computer Science Department, Indiana University, Bloomington, Indiana 47405-4101.

515

516 P. JOG, J. Y. SUH, AND D. VAN GUCHT

P (t) denotes the population at time t.
t -- 0;
initialize P(t)
evaluate P (t)
hile (termination condition is not satisfied)
{

t *- t+l;
select P (t)
recombine P(t)
evaluate P (t)

}

FIG. 1. Layout of a standard genetic algorithm.

step is completed, the new population is reevaluated and a termination condition is
checked for validity.

The difference between genetic algorithms and earlier-introduced evolutionary
algorithms is the usage of crossover in the former. A crossover operation produces an
offspring from two structures. It is typically defined such that a sufficient amount of
information embedded in the parents appears in the offspring. Therefore, crossover
can be viewed as a history-preserving operation which at the same time introduces a
new structure to be tested in the competition. This is clearly different from a random
mutation, which was the central operator in evolutionary algorithms.

Genetic algorithms have been applied to global function optimization, combinato-
rial optimization, machine learning, etc. [9]. In this paper, we will concentrate on the
application of genetic algorithms to the traveling salesman problem. For this problem,
there exist several different genetic algorithms, ranging from pure genetic algorithms
to genetic algorithms which incorporate heuristic information. We will review these
algorithms and contrast their performance (2).

A serious drawback of genetic algorithms is their inefficiency when implemented
on a sequential machine. However, due to their inherent parallel properties, they can
be successfully implemented on parallel machines, resulting in considerable speedup.
We will review parallel genetic algorithms in general, and subsequently indicate how
they have been used in the traveling salesman problem (3). In 4 we will show some
additional results of applying parallel genetic algorithms to large TSPs (the largest
problem is a 1000-cities problem). This section also contains data that indicates the
relative importance of certain recombination operations.

2. Genetic algorithms for the traveling salesman problem. The traveling
salesman problem (TSP) is easily stated: Given a complete graph with N nodes,
find the shortest Hamiltonian tour through the graph (in this paper, we will assume
Euclidean distances between nodes). For an excellent discussion of the TSP, we refer
to [20].

For the TSP, the object space X consists of all Hamiltonian tours (tours, for
short) and f, the function to be optimized, returns the length of tours. In recent
years, a variety of GAs for the TSP have been proposed [3], [10], [9], [11], [14],
[13], [17], [21], [25], [26], [27], [38], [37], [35]. These algorithms can be separated
into two groups: (1) the pure genetic algorithms, i.e., algorithms that do not use
domain-specific information about the TSP [10], [9], [13], [27], and (2) heuristic genetic
algorithms (HGA), i.e., algorithms that do use domain-specific information about the
TSP [3], [11], [14], [13], [17], [21], [25], [26], [38], [37], [35].

PARALLEL GENETIC ALGORITHMS FOR THE TSP 517

B 8 711123 0[J9 5 4 6

Two aligned tours

A’= 9 8 4112 3 10111 6 5 7
B’= 8 10 1]15 6 7]]9 2 4 3

Result of the PMX crossover on the two above tours

FIG. 2. Illustration of a PMX crossover.

2.1. Pure genetic algorithms for the TSP. Pure genetic algorithms use re-
combination operators that apply to arbitrary permutations, hence they can be used
in any problem domain involving objects represented as permutations. (From now
on, we will use the term tour instead of permutation since we are only considering
the TSP.)

An example of a domain independent mutation operator is the inversion
operator [15], [13]. This operator, for a given tour, simply reverses a randomly
chosen subtour.
We now consider various pure crossover operators. All these crossover opera-
tors share the property of preserving, in the offspring, subtours of the parents.
The intuition is that in doing so, potentially good subtours from the parents
are combined to obtain a possible better tour as an offspring.

1. The partially matched crossover (PMX) [10], [9] starts by aligning two
tours, subsequently two crossing sites are picked uniformly at random
along the tours (see top part of Fig. 2). These two points define a match-
ing section that is used to effect a cross through position-by-position
exchange operations. Note that it might be necessary to change the
original tours outside the matching section to guarantee that the new
objects are again tours (the result of a PMX crossover is shown in the
bottom part of Fig. 2). The order crossover operator [7], [6], [9], [27],
[36] is a variant of the PMX crossover.

2. The cycle crossover (CX) operator [7], [6], [9], [27], [36] performs recom-
bination under the constraint that each city name come from one parent
or the other.

3. The Grefenstette crossover (Gref-X) [14], [13], [32] operator takes two
tours and constructs an offspring as follows. Randomly choose a city as
the current city for the offspring tour. Consider the four edges incident
to the current city in the parents. Randomly select one of these four
edges and include it in the offspring. (If none of the parental edges leads
to an unvisited city, create an edge to a randomly chosen unvisited city.)
Repeat this process until all cities have been visited. Consider the tours
at the top of Fig. 3. A possible offspring of these tours is shown at the
bottom of this figure.

4. The Mulhenbeim crossover [25] uses a donor and receiver tour. From
the donor a random substring is chosen. All nodes which are included
in the string are deleted from the receiver. Then the substring of the
donor is copied over and the remaining receiver nodes are inserted in the
order they appear.

518 P. JOG, J. Y. SUH, AND D. VAN GUCHT

A-98 2 1 745 1063
B=12345678910

Two tours before applying the Gref-X

B=982345671 10
A possible offspring after a Gref-X

FIG. 3. Illustration of a Gref-X crossover.

FIG. 4. Illustration o] a 2-opt operation.

2.2. Heuristic genetic algorithms for the TSP. Heuristic genetic algorithms
use recombination operators that incorporate heuristic information about the TSP.
The essential heuristic in all these operators is the observation that solutions to the
TSP contain short edges. Hence, when the opportunity arises to select between edges,
the operators choose the shorter ones.

Heuristic mutation is usually implemented in the form of so-called local im-
provement operators. Examples include the 2-opt and 3-opt operators of Lin
and Kernighan [22] and the Or-opt operator of [20], [28].

1. The 2-opt operator randomly selects two edges (a, b), (c, d) from a tour
(see Fig. 4) and checks if ED(a, b) + ED(c, d) > ED(a, d) + ED(c, b) (ED
stands for Euclidean distance). If this is the case, the tour is replaced
by removing the edges (a, b), (c, d) and replacing them with the edges
(a, d), (c, b). (The 3-opt operator is similar to the 2-opt operator, except
that it applies to three rather than two edges.)

2. The Or-opt was introduced by Or [20], [28] and is a variant of the 3-
opt operator. The advantage of the Or-opt operator is that it only
considers a small percentage of the exchanges that would be considered
by a regular 3-opt operator. To understand how the Or-opt procedure
works, we refer to Fig. 5. For each connected string of s cities in the

PARALLEL GENETIC ALGORITHMS FOR THE TSP 519

FIG. 5. Illustration of an Or-opt local improvement operation.

B-89 2751 3610

Two tours before applying the Brady crossover

C-89217453610
A possible offspring after a Brady crossover

FIG. 6. Illustration of a Brady crossover operation.

current tour (s can be 3, 2, or 1), we test to see if that string can be
relocated between two other cities at reduced cost. If it can, we make
the appropriate changes. For example, for s 3 (see Fig. 5), we test
to see if the string of the three adjacent cities m, n, p in the current
tour is considered for insertion between a pair of connected cities and
j outside of the string. The insertion is performed if the total cost of
the edges to be erased, (a, m}, (p, b}, and (i, j}, exceeds the cost of the
new edges to be added, (i, m}, (p, j}, and (a, b}.

Heuristic information has also been incorporated in various crossover opera-
tors for the TSP:

1. The Brady crossover [3], [2] takes two tours and searches for subroutes
where some common subset of cities are visited in a different order (see
Fig. 6). The shorter subroute is then copied over to replace the longer
one. In the figure, we assume that the sequence 21745 is shorter than
the sequence 2 7514.

2. The Heuristic crossover [14] operator constructs an offspring from two
parent tours as follows: Pick a random city as the starting point for

520 P. JOG, J. Y. SUH, AND D. VAN GUCHT

Parent A

\\
Parent B

Offspring

FIG. 7. The Grefenstette crossover operator.

the offspring’s tour. Compare the two edges leaving the starting city in
the parents and choose the shorter edge. Continue to extend the partial
tour by choosing the shorter of the two edges in the parents which extend
the tour. If the shorter parental edge would introduce a cycle into the
partial tour, check if the other parental edge introduces a cycle. In case
the second edge does not introduce a cycle, extend the tour with this
edge, otherwise extend the tour by a random edge. Continue until a
complete tour is generated (see Fig. 7). Variations of the Grefenstette
crossover, including more heuristic information, were introduced by [17],
[21], [38], and [35].

2.3. Performance results of genetic algorithms for the TSP. We now
describe the performance results of the pure and heuristic genetic algorithms. We
will indicate the size of the TSP problems attempted and the quality of the obtained
solutions. Since most papers do not report the time required to run the algorithms,
we can sometimes not report on this performance parameter. Instead, we will give
the population size and the number of generations for the GAs to converge.

PARALLEL GENETIC ALGORITHMS FOR THE TSP 521

Reference Algorithm Problem Population
[9] PMX 33-cities 2000
[9] Inversion 33-cities 2000
[13] Random 100-cities 100
[13] PMX 100-cities 100

Best
10.0
70.0

480.0
210.0

Average Time
NA 300
NA 300
NA 200
NA 200

FIG. 8. Results of pure genetic algorithms applied to the TSP.

We first consider the performance of pure genetic algorithms. These results were
obtained from [9], [13] and shown in Fig. 8. In this table, the column algorithm in-
dicates the chosen recombination operators, population denotes the population size,
best gives the percentage (above the known optimum for the TSP under considera-
tion) of the best solution found by the GA, average gives the percentage above the
optimum for a sample of solutions produced by the GA, time gives the number of gen-
erations. The 33-cities problem (100-cities problem) is a TSP with 33 (100) randomly
distributed cities in a square.

As can be seen from this table, pure genetic algorithms perform poorly, especially
when larger TSP problems are considered. We therefore do not consider such algo-
rithms in the rest of the paper. The argument for this poor performance can be found
in [13].

We next consider the performance of heuristic genetic algorithms. These results
were obtained from [3], [11], [14], [13], [17], [25], [26], [38], [37], [35] and are shown
in Fig. 9. We have organized the results chronologically since this reflects (1) how
the problem sizes of attempted TSP problems increased, and (2) how the fine tuning
of these algorithms led to better performance. The 50-cities (100-cities, 200-cities)
problem is a TSP of 50 (100, 200) randomly distributed cities in a square. The
optimum tour length for such problems can be estimated as described in [1]. The
Krolak problem is the often-cited 100-cities problem described in [19]. This problem
has been used in numerous studies as a benchmark ([20, Chap. 7]). The lattice problem
is a TSP of 100 cities arranged in a ten-by-ten grid. This problem has been used as a
benchmark in the performance of simulated annealing [4], [33]. The Grotschel problem
is a TSP with 442 cities nonuniformly distributed in a square [33]. The Padberg
problem is a TSP problem of 532 cities in the United States [29]. The comments
column contains additional information about the particular GA used: Avg indicates
from how many experiments the Average-column value is obtained. Low (moderate,
high) 2-opt (Or-opt) indicates that the relative rate between 2-opt (Or-opt) operations
trials and crossover operations is low (moderate, high). (For example, for a 100-cities
problem, a typical low rate is in the range [10-20], a moderate rate in the range [100-
200], and a high rate is in the 1000 and above range.) Parallel GA indicates that a
parallel GA was used. Dynamic-X indicates that the characteristics of the crossover
operator changed during the course of the algorithms.

As a general comment, it can be said that genetic algorithms are very good
heuristic algorithms for the TSP. In several cases, the best solution was the optimum
solution; in other cases, the performance was to within 1 percent of the optimum (this
is especially the case for GAs which use a moderate to high ratio of 2-opt operations
per crossover operator). Also notice how the robustness of the genetic algorithms
is reflected in their average performance relative to their best performance. To even
better appreciate the quality of these algorithms, we refer to Chapter 7 in [20], where a
survey is given of the performance of many other heuristics for the TSP. Compared to
this study, heuristic GAs compare well or outperform the best results obtained with

522 P. JOG, J. Y. SUH, AND D. VAN GUCHT

Ref.
[3]

[14]

[35]

[38]

[3]

[37]

[13]"

[26]

[26]

[17]

Algorithm Problem
2-opt 64-cities
Brady-X
Heur-X 100-cities
’Inversion’ 50-cities
Heur-X
In,ror llJ0-(ties
Heur-X
In,erion
Heur-X
’2-(t
Heur-X
2-opt
Heur-X
2-opt
Heur-X
2-opt
Heur-X

2-opt
Heur-X

2-opt
Heur-X

200-cities

Population Best Average
’24(max) NA 1.3

100 16.0 27.0
10 5.5 NA

’12 7.2 NA

15 3.4 NA

"k:)la] 1’00 1.8 3.7

lattice 100 0.0 0.4

200-cities i00 2.4 4.5

krolak

lattice

100 1.2 2.3

100 0.0 1.1

200-cities 100 1.9 3.6

Heur-X 100-cities
krolak2-opt

Muhl-CX

2-opt
Muhl-CX

2-opt
Muhl-CX
2-opt
0r-opt
Heur-X

[17] 2-opt
0r-opt
Heur-X

100
100(max)

NA
NA

Time
1.0s

IBM 3081D
4OO
1000

3700

5800

2-opt
Muhl-CX

[11]

2-opt
Muhl-CX

500

200

850

400

200

800

Comments
Avg 100

Dynamic-X

Dynamic-X

Dynamic-X

Low 2-opt
Avg 5
Low 2-opt
Avg 5
Low 2-opt
Avg 5
Parallel GA
Low 2-opt
Avg 10
Parallel GA
Low 2-opt
Avg 10
Parallel GA
Low 2-opt
Avg 10

< 7.4 200 Post 2-opt
1.9 NA

krolak 24 0.0 0.0

Grotschel 24’ 1.0 NA
442-cities
krolak 100 0.0 1.4

lattice 100 0.0 0.4

Grotschel 64 0.3 0.4
442-cities
Padberg 64 0.2 0.4
532-cities

6O

NA

590

420

Parallel GA
High 2-opt
Avg 5
Parallel GA
High 2-opt
Avg 25
Parallel
High 2-opt
Low 2-opt
Low Or-opt

Low 2-opt
Low Or-opt

NA

1200

Moderate 2-opt
Avg 10
Moderate 2-opt
Avg 10

FIG. 9. Results of heuristic genetic algorithms applied to the TSP.

the best heuristics reported there. When compared with simulated annealing, the
GAs also performed well. For example, in [4] a 100 lattice problem is optimized using
simulated annealing to a tour length about 3 percent above the desired optimum.
GAs routinely solve this problem to optimality.

The table in Fig. 9 does not indicate all the features that were considered in GAs
for the TSP. For example, some authors have studied the effects of the population
size [3], [17], [25], [26], the initial diversity in the population [13], the quality of
local improvement [17], the robustness of the GA (i.e., its ability to repeatedly find
similar results) [11], [17], [16], and the usage of dynamic recombination operators
[35],

PARALLEL GENETIC ALGORITHMS FOR THE TSP 523

3. Parallel genetic algorithms. Genetic algorithms, when implemented on a
sequential machine, are notoriously slow. Luckily, genetic algorithms lend themselves
naturally to speedup through parallelization. This fact led to the introduction of
parallel genetic algorithms (PGA)[5], [11], [12], [16], [23], [25], [26], [24], [30], [31],
[34], [3S], [39], [40].

In addition to seeking speedup, this research has also pointed out some weaknesses
in the design choices for genetic algorithms as originally proposed by Holland [15]:

In accordance with nature, it is more natural to view a population as consist-
ing of a set of independent structures, each with it own local behavior, i.e.,
each has the opportunity to initiate or undergo recombination operations,
without the control of a global agent.
Selection in standard GAs is a global process, i.e., selection of an individ-
ual depends on its performance relative to the average performance of the
entire population. This is quite unlike nature and inefficient to parallelize
[16]. Parallel GAs therefore introduce local selection without affecting the
performance of the algorithm.
PGAs are very reliable, especially when implemented in as distributed a fash-
ion as possible, i.e., the failure of a processor usually does not affect the rest
of the computation.
PGAs allow for asynchronous behavior. This is not possible in standard GAs.
This allows different structures to evolve at different speeds which may result
in the global speedup of the algorithm, as well as the maintenance of diversity,
a critical component for the success of a GA.

Parallel genetic algorithms can be categorized according to the level of distribut-
edness of the population (coarse-grained versus fine-grained), and the manner in which
the recombination and selection strategies are supported.

In a typical coarse-grained PGA, the population is divided into subpopulations.
Each processor of the parallel machine gets allocated a subpopulation and indepen-
dently runs a standard GA. In particular, the recombination and selection operations
are performed within a subpopulation. To support global competition between the
subpopulation, on an occasional basis, communication is established between the pro-
cessors to facilitate selection between the subpopulations. As a side-effect of this
global selection, individuals can migrate to other populations.

A typical fine-grained PGA is obtained by allocating a single individual to each
processor. Each processor is powerful enough to perform evaluations of individu-
als, and to perform recombination operations, such as mutation, local improvement,
and crossover. Occasionally, communication is established between the processors to
facilitate recombination and selection.

3.1. Coarse-grained parallel genetic algorithms. Pettey et al. [31] describe a
coarse-grained PGA (implemented on an Intel iPSC, with an n-cube interconnec-
tion network, up to 16 processors) applied to De Jong’s [8] test bed of five global
function optimization problems. To support global selection, once every generation
each processor sends its best individual to its neigboring processors and incorporates
the best individuals, sent to it by its neigbors, into its local population. Best re-
sults were obtained with the maximum of 16 processors, each with a subpopulation

Sometimes, instead of a single individual, a small number of individuals is allocated to each
processor.

524 P. JOG, J. Y. SUH, AND D. VAN GUCHT

of size 50, and were comparable with results obtained with standard GAs. In [30], a
theoretical analysis of this PGA is given.

Tanese [39] describes a coarse-grained PGA (implemented on a 64 NCVBE/six
hypercube made by NCUBE Corporation) applied to a GA-hard global function op-
timization problem (see [39] for a definition of GA-hardness). To support global
optimization, once every five generations, each processor sends a portion of its best
individual to one of its neighbors. A fixed population of 400 individuals was dis-
tributed over 1 through 32 processors. The quality of the solution obtained with the
PGA was similar to that of a standard GA. Furthermore, a nearly linear speedup
was recorded. ([40] is a continuation of this study). An interesting addition is the
introduction of a partitioned PGA, i.e., a PGA without migration. The author reports
that this PGA is a better optimizer than a standard GA on the same problems, how-
ever, significant variations exists in the average performance of the subpopulations.
To improve this, a reasonably small degree of migration was introduced both to yield
the quality of the partitioned PGA and to obtain a comparable performance average
amongst the subpopulation.

Cohoon et al. [5] describe a PGA which is a hybrid of the Pettey and Tanese
algorithms. After a fixed amount of generations, each processor sends a set of its
best individuals to all its neighbors. After receiving these individuals, each processor
selects a new population on the basis of the old population and these new individuals.
The chosen application problem is the quadratic assignment problem. In a simulation
of the parallel algorithm on a sequential machine, the authors report a better quality
of solutions for PGA than for a standard GA.

3.2. Fine-grained parallel genetic algorithms. Muhlenbein, Gorges-Schleu-
ter and Kramer [25], [26] describe a fine-grained PGA and apply it to the traveling
salesman problem. Their algorithm (see [25], [26]) is as follows:

1. Take a sequential heuristic algorithm for the TSP (such as 2-opt).
2. Give the problem to N processors with different starting configurations.
3. Each processor computes a local optimum according to the sequential heuris-

tic algorithm.
4. Each process performs a local selection by assigning ranking weights to in-

dividuals in neighboring processors (better individuals receive higher weights
and each processor has four neighbors). A mating partner is chosen proba-
bilistically according to this weight distribution.

5. Perform crossover and mutation (see 2).
6. Reduce the problem by collapsing common subtours, solve the reduced prob-

lem and expand these solutions.
7. If not converged, go back to step 3.

The fine-grained nature of this algorithm is transparent in (a) steps 2, 3, and 6 where
individual processors work independently towards a local minima, (b) step 4 where
local selection is performed instead of global selection, as done in standard GAs, and
(c) step 5 where crossover and mutation are done independently as local processes of
the processors. This algorithm, and a refined version reported in [11] was successfully
applied to various TSP problems (see Fig. 9). The work reported in [24] applies a
similar fine-grained PGA to the quadratic assignment problem.

Suh and Van Gucht [37] describe a fine-grained PGA and apply it to the trav-
eling salesman problem. Their approach considers a framework consisting of a pool
of processors which execute identical or nearly identical tasks in parallel. Each pro-
cessor has a local memory large enough to store a small number of structures, one

PARALLEL GENETIC ALGORITHMS FOR THE TSP 525

of which is called the local structure. The collection of all these local structures in
the processors constitutes the population of the genetic algorithm. Each processor
is capable of performing local tasks and communicating with the other processors.
The local tasks and communication serve to (1) perform evaluation of individuals, (2)
perform recombination operations, and (3) perform local selections (as described in
[37], there exists a variety of reasonable local selection strategies). Their algorithm
is very similar to the one of Muhlenbeim, Gorges-Scheutler, and Kramer, except that
(1) instead of letting processors completely converge to local optima (as in step 3
of the algorithm in [25]) only a certain amount of local improvements is performed
before processors can interact, and (2) communication can be established directly
between each pair of processors, regardless of their geometric relationship within the
connection network of the parallel machine. This algorithm was successfully applied
to various TSP problems (see Fig. 9) and yields the same results as standard GAs.
In 4 we will apply this algorithm to large TSP problems with different rates of local
improvement operations.

Manderick and Spiessens [23] describe a fine-grained PGA very similar to the
algorithms of [25], [26], [24], [11], and [37]. Each individual of the population is
allocated to a single processor. The processors are interconnected in a grid. Each
processor performs the evaluation of its individual. Mutation occurs locally within
the processors. Local selection is performed by each processor and is implemented
by the calculation of the fitness distribution in the neighborhood of that processor.
Each processor selects a new individual on the basis of this distribution. Crossover
is done between neighboring processors. A simulation of this algorithm was applied
to global function optimization problems [8], [39] and a comparison was made with
a standard GA. The quality of various performance measures showed only minor
differences between the PGA and the standard GA.

Sannier and Goodman [34] describe a fine-grained PGA allocating a single or
small number of individuals to each processor. The processors are interconnected in
a grid. Communication can be established between each pair of processors, but the
likehood of this depends inversely on the distance in the grid between the processors.
This communication is used to perform inter-processor selection and crossover. This
algorithm was applied to a survival game in which individuals compete for food.

4. Parallel algorithms applied to large TSPs. A closer look at Fig. 9 reveals
that an important calibration factor in determining the quality of solutions obtained
for various TSPs is the amount of local improvement operations performed on a tour
during each generation.

The intuition is as follows: if too little local improvement is performed, the se-
lection pressure of the GA will make it prematurely converge into a subquality local
optimum. If too much local improvement is performed, however, here will be few
chances for tours to crossover and selection will have few opportunities to weed out
poor tours. This will unnecessarily increase the convergence time.

It is therefore reasonable to state that a balance has to be stricken between the
desired quality of the solution and the time in which it is obtained. For example, the
work of [38], [37], [17] emphasizes speed, whereas the work of [25], [26] emphasizes
quality of solution. The best balance can be found in the work of [11], in which high
quality solutions are obtained in the presence of plentiful use of the recombination
operations and local selection.

The aatural question arises as to what degree one can decrease the amount of
local improvement operations per generation and still obtain high quality solutions.

526 P. JOG, J. Y. SUH, AND D. VAN GUCHT

In this section, we address this question by applying the parallel genetic algorithm of
[37] to a variety TSPs of growing size.2 Besides the krolak and padberg problems (see
2), we have considered:

The hamiltonian tour 318-cities problem of nonuniformly distributed cities of
[22]. The optimum solution for this problem is reported in [29].
The lattice-400 problem, consisting of 400 cities arranged in a 20-by-20 grid.
This problem has been studied in the context of simulated annealing [18].
The 1000-cities problem of 1000 randomly distributed cities in a square. Prob-
lems of this size have been studied in the context of simulated annealing. To
our knowledge, this is the largest problem yet attempted with a genetic algo-
rithm.

In the top part of Fig. 10, we show the results of experiments run with a parallel
version, in the style of [37], of the genetic algorithm with 2-opt and Or-opt of [17].
The low column contains the results of this algorithm with a low amount of local im-
provement operation per generation. The moderate column contains the results of this
algorithm with a moderate amount of local improvement operation per generation.
The x column indicates the amount of local improvements in the following sense. If
x 0.1 and we are working on a TSP of size s, then 0.1 s local improvement opera-
tions (both 2-opt and Or-opt) are performed on each tour per generation. Clearly, x is
a tuning parameter and was set in the range of [0.1,0.2] ([1.0,3.0]) for low (moderate)
amounts of local improvements. (These ranges were determined experimentally.) The
best (average) column contains the percentage away from the optimum of the best
(average) solution found by the PGA. The time columns give the time in seconds
of the PGA run with the maximum number of available processors (typically 70).3
This figure clearly indicates the thesis that more local improvement per generation
improves the quality of the solutions, but clearly at the expense of extra time. The
termination condition we used was running a specified number of generations. A typ-
ical 400- (1000-) cities problem was run for 1000 (2500) generations. However, in all
cases convergence occured earlier.

It could be asked what the limit behavior is of a PGA with an "unlimited" amount
of local improvements between generations. Such algorithms are PGAs without se-
lection and crossover. We call such algorithms independent strategies, because they
consist of running, in parallel, independent sequential local searches. In the bottom
part of Fig. 10, we show the results of the independent strategy on a selection of TSPs.
Whereas on the smaller TSPs (i.e., size 100), the results are not significantly different,
on the larger problems (above 500 cities), it is clear that crossover and selection do
play a critical role in the performance of GAs for the TSP. It is also interesting to
observe that on larger TSPs, PGAs with a low amount of local improvement yield
better solutions than the independent strategies and this with better efficiency.

Finally, a word about speedup. Our PGA is coded so that it can be simulated on a
varying number of processors. This allows us to measure the speedup of the algorithm
as a function of the number of processors. Clearly, the more available processors are,
the closer our implementation comes to a true fine-grained distributed algorithm. The
speedup curves for various TSPs are nearly linear up to 90 processors.

2 The algorithms were run on the BBN Butterfly at the Iowa State University. We were able to
use up to 90 processors.

3 In this respect, we would also like to point out that the majority of the time is spent in calculating
double float square roots since for the large TSPs we were not able to distribute the distance matrix
to each processor. If this could be done, all the algorithms would run a factor of 4 faster (this is a
conservative estimate).

PARALLEL GENETIC ALGORITHMS FOR THE TSP 527

Problem Low Moderate
x Best Avg Time(in sec) x Best Avg Time(in sec)

lattice(100) 0.1 0.8 2.3 17 1.0 0.8 1.2 42
krolak(100) 0.2 0.5 2.1 17 3.0 0.0 0.5 70
318-cities 0.2 2.9 4.6 275 1.6 2.0 2.9 730
400-lattice" 0.15 1.9 2.2 310 1.2 0.4 1.0 1060
padberg(532) 0.2 2.9 3.8 470 0.5 1.6 2.4 1070
1000-cities 0.2 2.9 3.1 2700 1.2 1.0 1.6 7000

Parallel genetic algorithms with low and moderate local improvement for various TSPs

Problem Best Avg Time
lattice(100) 1.7 1.9 33
krolak(100) 0.0 0.2 73
padberg(532) 7.4 8.1 490
1000-cities 4.0 4.2 5500

The independent strategy for various TSPs

FIG. 10. Per]ormance o] parallel genetic algorithms.

5. Conclusion. In this paper, we have given a review of parallel genetic algo-
rithms applied to the traveling salesman problem. Our main conclusion is that such
algorithms make excellent approximation algorithms for this problem even when com-
pared with the best sequential heuristic algorithms. This is especially the case on large
TSPs. Since the PGAs lend themselves naturally to parallelization, such algorithms
can also be efficiently run on parallel machines.

This paper, however, leaves open some research issues:
As indicated, the crossover plays a role in the quality of tours obtained with
PGAs. It would be interesting to more thoroughly study its effect. As
mentioned before, we expect the role of crossover to gain importance with
growing-size TSPs.
Even PGAs which use low amounts of local improvement can yield good
results. An interesting question would be to determine how small we can
make this amount (thereby improving the efficiency of the algorithm) and still
get reasonable tours. A related issue was suggested by one of referees, i.e.,
varying the amount of selection pressure might allow the runs with differing
amounts of local improvements to be completed in the same total computation
time, thus answering the question of which method is best given a particular
amount of time available.
Although we have purposely selected TSPs with different structural properties
(for example, compare the random cities problems and the lattice problems)
we did not thoroughly determine if these properties play a critical role in the
quality of the PGAs. We conjecture that indeed such structural properties
can be important in the outcome of the algorithms.

Acknowledgment. We thank the referees for their constructive comments on
an earlier version of this paper.

REFERENCES

[1] J. BEAIDWOOD, J. HALTON, AND J. HAMMEISLEY, The shortest path through many points,
Proc. Cambridge Philos. Soc., 55 (1959), pp. 299-327.

528 P. JOG, J. Y. SUH, AND D. VAN GUCHT

[2] D. BOUNDS, New optimization methods from physics and biology, Nature, 329 (1987), pp. 215-
219.

[3] R. BRADY, Optimization strategies gleaned from biological evolution, Nature, 317 (1985),
pp. 804-807.

[4] V. CERNY, Thermodynamical approach to the traveling salesman problem, J. Optim. Theory
Appl., 45 (1985), pp. 41-52.

[5] J. COHOON, S. HEDGE, W. MARTIN, AND D. RICHARDS, Punctuated equilibria: A parallel
genetic algorithm, in Proc. Second Internat. Conference on Genetic Algorithms and their
Applications, Cambridge, MA, J.J. Grefenstette, ed., July 1987, pp. 148-154.

[6] L. DAVIS, Applying adaptive algorithms to epistatic domains, in Proc. Ninth IJCAI, Aug. 1985,
pp. 162-164.

[7] , Job shop scheduling with genetic algorithms, in Proc. Internat. Conference on Genetic
Algorithms, 1985, pp. 136-140.

[8] K. DEJONG, Adaptive system design: A genetic approach, IEEE Trans. Systems Man Cybernet.,
10 (1980), pp. 556-574.

[9] D. GOLDBERG, Genetic Algorithms in Serahc, Optimization and Machine Learning, Addison-
Wesley, New York, 1988.

[10] D. E. GOLDBERG AND R. LINGLE, Alleles, loci, and the traveling salesman problem, in Proc.
Internat. Conference on Genetic Algorithms and Their Applications, J. J. Grefenstette,
ed., July 1985, pp. 154-159.

[11] M. GORGES-SCHLEUTER, Asparagos an asynchronous parallel genetic optimization strategy, in
Proc. Third Internat. Conference on Genetic Algorithms, J. Schaffer, ed., Morgan Kauf-
mann, Los Altos, CA, July 1989, pp. 422-427.

[12] J. J. GREFENSTETTE, Parallel adaptive algorithm .for .function optimization, Tech. Report CS-
81-9, Computer Science Department, Vanderbilt University, Nashville, TN, Nov. 1981.

[13] ., Incorporating problem specific knowledge into genetic algorithms, in Genetic Algorithms
and Simulated Annealing, L. Davis, ed., Morgan Kaufmann, Los Altos, California, 1987.

[14] J. J. GREFENSTETTE, a. GOPAL, B. J. ROSMAITA, AND D. VAN GUCHT, Genetic algorithms for
the traveling salesman problem, in Proc. Internat. Conference on Genetic Algorithms, J. J.
Grefenstette, ed., July 1985, pp. 160-168.

[15] J. H. HOLLAND, Adaption in Natural and Artificial Systems, University of Michigan Press, Ann
Arbor, MI, 1975.

[16] P. JoG, Parallelization of probabilistic sequential search algorithms, Ph.D. thesis, Computer
Science Department, Indiana University, Bloomington, IN, 1989.

[17] P. JOG, J. SUH, AND D. VAN GUCHT, The effect of local improvement, selection and crossover
on a genetic algorithm for the traveling salesman problem, in Proc. Internat. Conference
on Genetic Algorithms, J. J. Grefenstette, ed., Morgan Kauffman, Los Altos, CA, 1989.

[18] S. KIRKPATRICK, Optimization by simulated annealing: Quantitative studies, J. Statist. Phys.,
34 (1983), pp. 975-986.

[19] P. D. KROLAK, W. FELTS, AND G. MARBLE, A man-machine approach toward solving the
traveling salesman problem, Comm. ACM, 14 (1971), pp. 327-334.

[20] E. LAWLER, J. LENSTRA, A. RINNOOY KAN, AND D. SHMOYS, The Traveling Salesman Problem,
Wiley-Interscience, New York, 1985.

[21] G. LIEPINS AND HILLIARD, Greedy genetics, in Proc. Second International Conference on Genetic
Algorithms and Their Applications, J. Grefenstette, ed., July 1987, pp. 90-99.

[22] S. LIN AND B. KERNIGHAN, An eJficient heuristic algorithm for the traveling salesman problem,
Oper. Res., 21 (1973), pp. 498-516.

[23] B. MANDERICK AND P. SPIESSENS, Fine-grained parallel genetic algorithms, in Proc. Third
Internat. Conference on Genetic Algorithms, J. Schaffer, ed., Morgan Kaufmann, July
1989, Los Altos, CA, pp. 428-433.

[24] H. MUHLENBEIN, Parallel genetic algorithms, population genetics and combinatorial optimiza-
tion, in Proc. Third Internat. Conference on Genetic Algorithms, J. Schaffer, ed., Morgan
Kaufmann, July 1989, pp. 416-421.

[25] H. MUHLENBEIN, M. GORGES-SCHEULTER, AND 0. KRAMER, Evolution algorithms in combina-
torial optimization, Parallel Comput., 4 (1987), pp. 269-279.

[26] Evolution algorithms in combinatorial optimization, Parallel Comput., 7 (1988), pp. 70-
85.

[27] I. OLIVER, D. SMITH, AND J. HOLLAND A study of permutation crossover operators on the
traveling salesman problem, in Proc. Second Internat. Conference on Genetic Algorithms
and Their Applications, J.J. Grefenstette, ed., July 1987, pp. 224-230.

[28] I. OR, Traveling salesman-type combinatorial problems and their relation to the logistics of
regional blood banking, Ph.D. thesis, Northwestern University, Evanston, IL, 1976.

PARALLEL GENETIC ALGORITHMS FOR THE TSP 529

[29] W. PADBERG AND G. RINALDI, Optimization of a 532-city symmetric tsp, Oper. Res. Lett., 6
(1987), pp. 1-7.

[30] C. PETTEY AND M. LEUZE, A theoretical investigation of a parallel genetic algorithm, in Proc.
Third International Conference on Genetic Algorithms, J. Schaffer, ed., Morgan Kaufmann,
July 1989, Los Altos, CA, pp. 398-405.

[31] C. PETTEY, M. LEUZE, AND J. GREFENSTETTE, A parallel genetic algorithm, in Proc. Second
International Conference on Genetic Algorithms and their Applications, J.J. Grefenstette,
ed., July 1987, pp. 155-161.

[32] B. ROSMAITA, Exodus, an extension of the genetic algorithm to deal with permutations, Master’s
thesis, Computer Science Department, Vanderbilt University, Nashville, TN, 1985.

[33] Y. ROSSIER, M. TROYON, AND W. LIEBLING, Probabilistic exchange algorithms and the euclidean
traveling salesman problem, OR Spektrum, 8 (1986), pp. 151-164.

[34] A. SANNIER AND E. GOODMAN, Genetic learning procedures in distributed environments, in
Proc. Second Internat. Conference on Genetic Algorithms and Their Applications, J.J.
Grefenstette, ed., July 1987, pp. 162-169.

[35] D. SIRAG AND P. WEISSER, Toward a unified thermodynamic genetic operator, in Proc. Second
Internat. Conference on Genetic Algorithms and Their Applications, J.J. Grefenstette, ed.,
July 1987, pp. 116-122.

[36] D. SMITH, Bin packing with adaptive search, in Proc. Internat. Conference on Genetic Algo-
rithms and Their Applications, J.j. Grefenstette, ed., July 1985, pp. 202-206.

[37] J. SUH AND D. VAN GUCHT, Distributed genetic algorithms, Tech. Report 225, Computer Sci-
ence Department, Indiana University, Bloomington, IN, July 1987.

[38] , Incorporating heuristic information into genetic search, in Proc. Second Internat. Con-
ference on Genetic Algorithms and their Applications, J.J. Grefenstette, ed., July 1987,
pp. 100-107.

[39] R. TANESE, Parallel genetic algorithms for a hypercube, in Proc. Second Internat. Conference on
Genetic Algorithms and their Applications, J.J. Grefenstette, ed., July 1987, pp. 177-183.

[40] , Distributed genetic algorithms, in Proc. Third Internat. Conference on Genetic Algo-
rithms, J. Schaffer, ed., July 1989, Morgan Kaufmann, Los Altos, CA, pp. 434-440.

SIAM J. OPTIMIZATION
Vol. 1, No. 4, pp. 530-547, November 1991

(1991 Society for Industrial and Applied Mathematics
O07

A GENERAL-PURPOSE PARALLEL ALGORITHM FOR
UNCONSTRAINED OPTIMIZATION*

STEPHEN G. NASH AND AI:tIELA SOFER

Abstract. This paper describes a general-purpose algorithm for unconstrained optimization
that is suitable for a parallel computer. It is designed to be as easy to use as traditional algorithms
for this problem, requiring only that a (scalar) subroutine be provided to evaluate the objective
function and its gradient vector of first derivatives. The algorithm used is a block truncated-Newton
method. Truncated-Newton methods are a class of methods that compromise on Newton’s method
so that large problems can be solved. Enhancements to the basic method suitable for a parallel
computer are described. These include a revised data storage scheme, new preconditioning and
initialization strategies to accelerate the method, a parallel line search, revised stopping rules for the
inner algorithm, and a new "nonlinearity" test to determine the adequacy of the quadratic model.
Numerical results are presented to illustrate the performance of the method, and comparisons are
made with other scalar and parallel algorithms.

Key words, nonlinear optimization, truncated Newton method, parallel computing, conjugate-
gradient method

AMS(MOS) subject classifications. 90C06, 65Y05

1. Introduction. We discuss here the solution of the problem

(1.1) minimize f(x)

on a parallel computer. The function f(x) is a real-valued function of n variables x,
and we are mainly interested in the case where n is large. We assume that f(x) has
at least two continuous derivatives. In addition, we assume that each processor of
the parallel computer is capable of evaluating f(x) and its gradient of first derivatives
g(x) Vf(x). Our numerical results were obtained using a hypercube computer with
local memory, but the algorithm we describe has also been implemented on shared-
memory machines.

Our goal was to produce an effective general-purpose algorithm for a parallel
computer that is as easy to use as a traditional algorithm on a sequential computer
(as easy to use as, say, a quasi-Newton method). We require that a subroutine be
provided to evaluate f(x) and its gradient g(x) at an arbitrary point, but not any
other function information. In particular, it is not necessary for the user to indicate
how to decompose the function evaluation so that the work can be distributed over the
parallel computer. The algorithms we will present will work for an arbitrary number
of processors (even as low as 1), but are likely to be most effective when the number
of processors is relatively small, say, less than 100, and when the number of variables
is considerably greater than the number of processors.

For exceedingly difficult optimization problems, it may still be necessary to ana-
lyze the function-evaluation algorithm so that it too can exploit the parallel architec-
ture. However, in less desperate circumstances, particularly in exploratory work where

*Received by the editors August 3, 1990; accepted for publication (in revised form) March 5,
1991. This work was supported by Center for Innovative Technology grant INF-90-004.

fOperations Research and Applied Statistics Department, George Mason University, Fairfax,
Virginia 22030. The work of the second author was supported by National Science Foundation grant
ECS-8709795.

530

A PARALLEL ALGORITHM FOR UNCONSTRAINED OPTIMIZATION 531

various optimization models are being conjectured, the effort required to hand-code
the optimization model for the parallel computer will not be cost-effective, and use
of the parallel computer with its potentially greater power will be discouraged, espe-
cially if the user has not had prior experience with parallel computing. The hope is
that algorithms of the type described in this paper will allow routine use of a parallel
computer for optimization, even by "naive" users.

We would also hope that such an algorithm would be useful if the evaluation
of the objective function does not naturally decompose, or does not decompose into
subtasks of comparable size, so that there is not a natural mapping of the function
evaluation to the parallel computer.

To solve (1.1) we will use a block truncated-Newton method. Truncated-Newton
methods are a class of methods that compromise on Newton’s method so that large
problems can be solved. The compromises reduce the amount of storage needed (ma-
trix storage for Newton’s method versus vector storage here), function information
(second derivatives versus first derivatives), and work per iteration (O(n3) versus
O(n)-O(n2)). A more detailed description is given in the next section.

Other general-purpose approaches to parallel optimization can be based on finite
differencing in parallel [1] and on variants of quasi-Newton methods [2]. It might also
be possible to adapt techniques of automatic differentiation [10] to use on a parallel
computer. For a more comprehensive survey of parallel optimization, see the review
papers [27] and [29].

The software that evaluates the function f(x) and its gradient is almost always
prepared independently of the software to solve the optimization problem (1.1). For
difficult problems, the cost of the function evaluation can dominate the other costs
of solving the problem. Hence, on a parallel computer, it is not sufficient merely
to make parallel the internal steps of the optimization algorithm. To be effective on
general problems, the optimization algorithm must be able to make use of simultaneous
evaluations of the objective function. The block structure within our algorithm was
introduced to obtain this property.

The basic algorithm described in this paper, a block truncated-Newton method,
has been discussed in a previous paper [18], and was shown to be effective at exploiting
the resources of a parallel computer. The purpose here is to describe enhancements
to the algorithm that attempt to make it a competitive method for solving (1.1).
These enhancements include: (a) reorganizing the algorithm to reduce communication
costs, (b) designing automatic preconditioning and initialization schemes, (c) choosing
appropriate rules for assessing the quality of a search direction, (d) incorporating a
parallel line search, (e) a "nonlinearity" test to assess the accuracy of the Taylor-series
approximation to the objective function, and (f) automating rescaling strategies that
reset the preconditioner when it appears to be "out of date." With the exception of
(c) and (d), these enhancements are new to this paper.

The resulting algorithm was tested on about sixty test functions having from
100-1000 variables. It was able to solve all the test problems, in most cases with
significant reductions in solution times and numbers of gradient evaluations (measured
per processor) over other algorithms. The most dramatic speedups were obtained on
problems that were difficult for the scalar methods. However, improved performance
was not obtained on all problems.

Here is an outline of the paper: In 2, the basic algorithm is described. In 3,
the enhancements to the algorithm are discussed. In 4, we report numerical results.

A software package based on the results in this paper is described in [20]. It in-
cludes the software used here for a hypercube (distributed-memory) parallel computer,

532 STEPHEN G. NASH AND ARIELA SOFER

as well as a version for Sequent shared-memory parallel computers. This software is
available from the authors.

In this paper, we have assumed that only gradient values are available (not second-
derivative information), and that there is no special structure in the objective function.
These assumptions were made so that the algorithm would be general purpose, and
so that direct comparisons could be made with other algorithms for unconstrained
optimization. If further information about the objective function is available, then the
algorithm can be modified to take advantage of it. Such information might include:
(a) exact second-derivative information (so that explicit matrix-vector products could
be computed), especially if the Hessian were sparse or the function partially separable,
(b) a function evaluation that could be performed in parallel. The associated software
package [20] can take advantage of such information, although this option has not
been used here.

2. Block truncated-Newton methods. We describe here the basic method
that we will use to solve (1.1). Since this has been described in greater detail in [18],
only an outline of the method will be given.

The algorithm is a descent method based on a line search. Given an initial guess
x0, at the kth iteration a search direction p is computed that satisfies pTg(xk) (0;
i.e., p is a "descent" direction for .f(x). A new point xk+l is obtained via a line search,
xk+ xk + op, where c > 0 is chosen so that f(xk+) < f(xk). Mild conditions
on p and c guarantee convergence of the algorithm to a stationary point of f(x) [25].
Various line search algorithms are described in [7]. A specific line search algorithm
will be discussed in the next section.

It remains to describe the selection of the search direction p. In Newton’s method
p is computed as the solution to the system of linear equations

Vp

where g g(xk) and G =- V2f(xk) is the Hessian matrix of second derivatives at
xk. If G is not positive definite, a modified system of equations should be solved [8].
Newton’s method converges quickly (an asymptotic quadratic rate of convergence) but
is expensive (requiring second derivatives of f(x), matrix storage, and the solution of
a linear system at each major iteration, involving O(n3) arithmetic operations).

Truncated-Newton methods instead obtain an approximate Newton direction as
an approximate solution to this system of equations. Some iterative method is applied
to (2.1), but then is stopped ("truncated") before the exact solution has been obtained.
The resulting method is doubly iterative: an "outer" iteration corresponding to the
descent method above, and an "inner" iteration to compute the search direction.
Traditionally, the linear conjugate-gradient method is used for the inner iteration.

Why bother? The resulting method can have rapid convergence rates, even
quadratic, if desired [5]; the storage costs are low (just vector storage); only first
derivatives are needed [23]; the method can be a robust, effective, and competitive
general-purpose algorithm [15]; the search directions are well scaled, making the line
search easy [14]; automatic preconditioning strategies can be derived [14]; and the
algorithm vectorizes well [30]. Hence all the costs of Newton’s method are reduced,
and the resulting method is still good.

Truncated-Newton methods can be adapted to a parallel computer through an
appropriate choice of algorithm for the inner iteration. We have chosen to use the block
conjugate-gradient method, implemented in terms of the equivalent block-Lanczos
method [22]. The algorithm corresponds to minimizing Q(p) 1/2prGp / pTg as a

A PARALLEL ALGORITHM FOR UNCONSTRAINED OPTIMIZATION 533

function of p over a sequence of subspaces of increasing dimension (this is equivalent
to solving (2.1) if G is positive definite). The description of the algorithm is adapted
from [18].

Let G be an n x n symmetric matrix and let m be the block size. The block-
Lanczos method computes a sequence of n x m orthogonal matrices { V } via:

Pick V1 so that vITv =Im m and let V0 0, m, 0m m.

For 1,2,...
Compute ai ViTGVi, and let

1/4++ G1/4 1/4- 1/4_r,

choosing the m x m matrix/i+1 to make VIV+I Imxm.
Define V(i) [VIlV21... []. If we ignore rounding errors, then V(Ti) I, and

V(T)GV(i =_ T(i), where T(i) is a block tridiagonal matrix with blocks of size m x m.

The block-Lanczos method is equivalent to the block conjugate-gradient method
[22] for solving (2.1) if the first column of V is chosen as g []g][2, where g is the
right-hand side in (2.1). Now let y(i) be the solution of

T(i)y(i) -V(ig -Ilgl12 e, el (1, 0,..., 0)T.

Then p(i), the ith approximation to the solution of (2.1), is given by p(i) V(i)y(i).
Also, p(i) minimizes the quadratic model Q(p) over the subspace spanned by the
columns of V(i). With the addition of a change of variables similar to that in [26], we
obtain a practical iterative algorithm [18].

The matrix+ may only have rank m < m. As a result,/i+ will be an rn
matrix, +1 will be an n m matrix, etc. Except for these adjustments in matrix
sizes, the algorithm is otherwise unchanged. A similar situation can occur at the final
iteration in cases when m does not divide n, if the algorithm converges early, or if
there is loss of orthogonality or linear independence due to rounding errors.

If the matrix G is not positive definite, the computation of the search direction
must be modified. (The solution of (2.1) might not be a descent direction, and nu-
merical instabilities can arise.) Special factorizations have been suggested [7], [13],
[24], [26], but a simpler approach is used here. Note that the exact solution of (2.1)
is not required, instead only a search direction is. In our software we terminate the
iteration if indefiniteness is detected. The search direction is obtained from the partial
factorization of T(i), up to but not including the row where indefiniteness is detected.

The implementation described here assumes that rn (the block size, the number of
processors) is small, and stores complete copies of the m m matrices a,/, etc., on each
processor. All computations involving these matrices are carried out simultaneously
on all processors to reduce communication costs.

Preconditioning strategies can be used to enhance the algorithm. If M
and if linear equations of the form My z are "easy" to solve, then M can be
used to accelerate the convergence of the (block) linear conjugate-gradient method
[3], [22]. (Choices of i are described in 3.2.) For the block-Lanczos algorithm, the
"preconditioned" iterative formula becomes

V+i+ GRi Vai V_T,

where R/= M-1, ai RGRi, and/i+ is chosen so that V/Ri+ I. No other
changes in the algorithm are required.

534 STEPHEN G. NASH AND AI:tIELA SOFER

In this block algorithm the major computation at each inner iteration is a set of
matrix-vector products involving the Hessian: Gvi, for 1,..., m, where m is the
block size. Each of these can be performed simultaneously, one per processor, and can
be computed via the finite-difference approximation

(2.2) Gv .. g(xk + hv) g(xk)
h

Note that g g(xk) is already available. Hence each matrix-vector product can be
approximated at the cost of one gradient evaluation. More importantly, the algorithm
is exploiting simultaneous gradient evaluations, one per processor. This observation is
the basis of the parallel algorithm.

The remaining operations of the inner algorithm also can exploit the resources of
the parallel computer [16]. The lower-level operations of the algorithm correspond to
standard vector operations (primarily basic linear algebra subroutines (BLAS)), and
hence the algorithm can exploit the resources of parallel computers having special-
purpose vector processors (such as vector hypercubes and Alliant computers).

This basic algorithm can be effective on a parallel computer. On some problems
in [18] speedups of s much as 50 were obtained, even though only 16 processors were
available. Note that the block algorithm is not a parallel version of the scalar method.
It computes different search directions, and hence should be considered a different
algorithm (so "speedup" does not compare two versions of the same algorithm, but
instead the relative performance of two algorithms). Dramatic speedups such as this
were not obtained on all problems. The goal of the work in this paper is to enhance
the basic algorithm so that effective performance can be obtained on a much wider
class of problems. The enhancements we have investigated are described in the next
section.

3. Enhancements to the basic algorithm. There are many ways to improve
the performance of the basic algorithm, both at the level of the specific (the actual
computer implementation) and the general (the choice of line search). These are
discussed below.

3.1. Organization of the algorithm. On a distributed-memory computer, it
is necessary to decide how the various matrices will be spread among the processors.
The two simplest organizations are described below, nd re referred to as the "col-
umn" and "row" versions of the algorithm. Let m be the block size (equal to the
number of processors). In storing matrices, we are referring to the larger n m matri-
ces; it will be assumed that identical copies of the smaller m m matrices are stored
on each processor so that there are no communication costs associated with using
them. (Note that there may be communication costs involved in forming them.) If m
is large, then it may be worthwhile to distribute the smaller matrices over the prallel
computer as well. The arithmetic costs are not affected by these choices.

If the matrix-vector product is computed via finite differencing (2.2), then to
compute the products Gv it is necessary that the vector v be stored on a single
processor (say, the ith). In addition, the result Gv will be obtained on the ith
processor. This suggests storing all n m matrices with one column per processor. This
approach simplifies the computation of the matrix-vector products, but it increases
the communication costs for the rest of the algorithm [16]. In addition, if the block
size decreases (say, due to loss of rank), some processors will become idle.

An alternative is to store the n rn matrices by rows, roughly n/m rows per
processor (if m does not exactly divide n, then some processors will have one more row

A PARALLEL ALGORITHM FOI:t UNCONSTRAINED OPTIMIZATION 535

than others). This increases the communication costs for the matrix-vector product
(collecting the vector v on processor i, and then spreading the result Gv), but the
communication costs for the rest of the algorithm are reduced. These two approaches
are tested in 4.

With the row organization, the algorithm has near perfect load balancing. Every
time a function evaluation is required, all processors will perform a function evaluation
simultaneously. Also, the linear algebra operations will be spread evenly over the
processors (although there will be slight differences if m does not exactly divide n).
The linear algebra work load will remain balanced even if there is a rank drop within
the inner algorithm.

Even so, under certain circumstances it may be sensible to choose the block size
less than the number of processors (see 1). Our software allows this option, but it
has not been used in the tests in this paper. Even with the reduced block size, the
linear algebra work load will remain balanced.

3.2. Preconditioning. A truncated-Newton algorithm without precondition-
ing is not a competitive algorithm. The goal of the preconditioner is to improve the
performance of the inner algorithm, reducing the number of inner iterations. In se-
lecting a preconditioner, it is useful to note the convergence properties of the inner
algorithm. The (scalar) linear conjugate-gradient method (in exact arithmetic) con-
verges in a finite number of iterations equal to the number of distinct eigenvalues of
the Hessian. In addition, before obtaining the exact solution, the algorithm displays a
linear rate of convergence with constant (v/-- 1)/(v / 1), where is the condition
number of G (in the 2-norm) [9]. Hence a preconditioner should try to reduce the
number of distinct eigenvalues of the Hessian, reduce the condition number of the
Hessian, or both.

An effective automatic preconditioner for the scalar method is described in [14];
it is a limited-memory quasi-Newton method. This formula in turn is scaled by a
diagonal approximation to the Hessian obtained by BFGS updating using the matrix-
vector products from the inner iteration. Because of the initialization scheme used
(see below), and because of the communication costs required to implement it, the
limited-memory quasi-Newton update has been dropped, and only a diagonal scaling
is used here.

We tested three related diagonal scalings. The first is the diagonal of the Hessian
computed via finite differencing. This will not normally be practical unless these
Hessian elements can be obtained at low cost, but it provides an "upper bound" on
the performance of more practical techniques. The other two scalings are obtained
from the formula

D+ D- (Dv)(Dv)T rrT
vTDv vTr

where D is the current diagonal scaling, D+ is the new scaling, and the vectors v and
r Gv are a matrix-vector product pair from the inner algorithm. This is the diagonal
part of a BFGS quasi-Newton update. The two scalings differ only in the computation
of the denominator term vTDv. One uses the formula as above, and so the updates
to the diagonal scaling must occur sequentially. The other computes vTDv using the
value of D at the beginning of the current set of updates, and so all the updates can
be performed in parallel. This second version also reduces the communication costs
for performing the updates. (Note that these diagonal scalings differ from that used

Although there are theoretical justifications for using the diagonal of the Hessian

536 STEPHEN G. NASH AND AI:tIELA SOFER

as a diagonal scaling [28], there is no guarantee that the exact diagonal of the Hessian
will even reduce the condition number, even if the Hessian is diagonally dominant
[21]. However, extensive numerical testing indicates that it is one of the best general-
purpose preconditioning strategies available.

An alternative preconditioning strategy based on the eigenvalues of the Hessian
matrix is examined in [21].

3.3. Initialization. In the scalar Lanczos method, one initial vector is required.
To make the algorithm equivalent to the conjugate-gradient method, the right-hand
side g is used. In the block case m initial vectors are needed, and one of them is
chosen as the right-hand side g. The others need only be chosen to form a linearly
independent set.

Various simple choices for these vectors are mentioned in [18]. A more theoret-
ically satisfying (and more effective) choice can be based on the idea of a limited-
memory quasi-Newton method. In such a method, the search direction is a linear
combination of old gradients and search directions gk, Pk-1, gk-1, "". The number
of terms used depends on the storage made available. The specific linear combination
used is defined by quasi-Newton update formulas, usually the BFGS formula.

In the block-Lanczos method, the search direction obtained at the end of the
first inner iteration is a linear combination of the set of initial vectors used, chosen
to minimize the value of the quadratic model. Our initialization scheme uses old
gradients and search directions as the initial vectors for the method

Then the first approximate search direction will be an "optimal" linear combination
of the same vectors used to obtain the limited-memory quasi-Newton direction. Since
the limited-memory direction can be of high quality [15], it is expected that this
initialization scheme would improve the performance of the overall truncated-Newton
algorithm. This scheme increases the storage requirements for the algorithm by one
n-vector per processor.

Some details need to be clarified. First, at the early outer iterations, there will
not be enough old gradients and search directions to provide a complete set of initial
vectors. In this case, random vectors are used for the unavailable vectors. Second,
the initial vectors may not form a linearly independent set; random vectors are used
as needed.

This technique overlaps with the preconditioning ideas discussed above. The old
search direction Pk-1 satisfies G(xk-)pk- --g(xk-), and so, as the solution to
the minimization problem is approached, we can expect that

Pk- -G(xc-)-g(xk-).. -G(xk)-g(xk-).

Thus, Pk-1 will approximate the outcome of one iteration of the inverse power method
for finding eigenvalues. This will bias Pk-1 in the directions of the eigenvectors cor-
responding to the small eigenvalues of G(xk). These eigenvectors will then be well
represented in the block Krylov subspace generated by the block-Lanczos method.
This property can accelerate the convergence of the inner algorithm.

3.4. Stopping the inner iteration. The initial convergence results for trun-
cated-Newton methods [5] assess the search direction in terms of the scaled norm of the
residual of (2.1), ri IIGPi + gl12 /Ilgl12, where is the index for the inner iteration. If

A PARALLEL ALGORITHM FOR UNCONSTRAINED OPTIMIZATION 537

the search direction is accepted when r is appropriately small, any desired asymptotic
rate of convergence between linear and quadratic can be achieved.

The residual, however, may be an arbitrarily poor predictor of the quality of a
search direction [19]. More reliable acceptance tests can be designed based on the
value of the quadratic function Q(p). The test we use terminates the inner iteration if

where e is a convergence tolerance (various values of e are tested in the next section).
Here, is the number of the inner iteration, and pi is the search direction obtained at
the ith inner iteration. Justification for this test can be found in [19].

The inner iteration is also terminated if indefiniteness in the Hessian is detected.
In addition, if the line search at the previous outer iteration took a step a 1, then
only one inner iteration is allowed. The (block) conjugate-gradient iteration used here
produces well-scaled search directions [14], and hence ensures that a step of a 1
should be acceptable if the quadratic approximation Q(p) to f(x) is accurate. Thus,
if a - 1 we conclude that the quadratic approximation is not accurate, and hence
that there is little practical or theoretical justification for finding an exact minimizer
of Q(p).

3.5. A parallel line search. The complete details of the line search are given
in [17]; we give a brief description here. At each iteration of the search, a set of trial
steplengths (ci }ira__ are chosen. (Choices for this set are examined below.) Each
processor is assigned a steplength, and evaluates f(x + aip) and g(x /aip). The
value of a that produces the minimal value of f is chosen as the steplength, among
those a that satisfy an Armijo-type acceptance test f(x / ap) <_ f(x) / ag(x), with

0.2. If no acceptable steplength is found, a new set of steplengths is constructed,
with smaller steplengths than the first. If the largest a is the best one, a new set of
steplengths is used, but with larger steplengths instead. A line search based on the
Wolfe conditions [12] could also be used.

The choice of the initial steplengths in the line search was varied. The default
option used above chose the largest steplength to be m, the number of processors. For
comparison, we ran variants with the largest steplength as 2m, and as 2m/2-1, with
m 16. The default option was slightly better than the others. We chose to use this
choice in the later tests, in part based on its performance here, but also to avoid the
risk of overflow on functions that increase rapidly near the initial guess x0.

Alternative line search algorithms, including a nonmonotone line search [11], are
discussed in [21].

3.6. Summary of algorithmic costs. We list here the costs of the block
truncated-Newton method, using an automatic preconditioner and the most elabo-
rate initialization scheme. All are computed "per processor." If rn is the number of
processors (equal to the block size), n is the number of variables, and r n/m, then
the storage required is

S 12n + 4m2 + 12m + 2(r + 1).

All but 3m of this is storage for real numbers; 3m integer storage locations are required.
Measuring the arithmetic and communication costs of the algorithm is compli-

cated by the fact that the algorithm has both an inner and outer iteration, and that

538 STEPHEN G. NASH AND AI:tIELA SOFEI:t

the line search can have variable costs. At each outer iteration, the fixed costs for
arithmetic are A1 2n / 8r / m2 / m (counting all arithmetic operations equally),
and C1 n / 3r + 2 numbers must be communicated (in five separate messages). At
the inner iteration the arithmetic costs are

A2 6ran + 22n + m3 + llm2 + 7m + 2r + [1 evaluation of f(x)].

The communication costs (in 2m / 2 messages) are C2 2n / 2m2 / m / 1. In the
line search, each iteration has arithmetic costs of A3 2n / [1 evaluation of f(x)] and
communication costs (in one message) of C3 3.

Typically, the line search will only require one iteration to find an acceptable
steplength. If we assume two inner iterations to compute a search direction, then a
"typical" outer iteration will have arithmetic costs of

A A1 + 2A2 + A3 48n + 12mn + 2m3 + 23m2 + 12r + 15m + [3 evaluations of f(x)]

and communication costs (in 4m -t- 10 messages) of

C C1 / 2C2 -t-C3 5n / 3r / 4m2 -I- 2m / 7.

Many of the low-level operations in this algorithm are standard vector operations
(inner products, sums of vectors, etc.). On the Intel hypercube that we are using
in our tests, these operations can be performed using built-in subroutines, and we
have done this wherever possible. In addition, our hypercube is equipped with vector
processors that will execute these operations at even greater speed, if the number of
variables is sufficiently large (there is some overhead associated with the use of the
vector processors). Hence the algorithm is not only suitable for a parallel computer,
but is also rich in lower-level vector operations, making it especially well suited for
the Intel vector hypercube, as well as for computers, such as the Alliant, which have
both parallel and vector capabilities.

4. Numerical results. The problems used in our tests are not new, to facilitate
comparison with other algorithms. In particular, we have retained the numbering of
the problems used in [15]. They are described in Table 1, listing their names and the
number of variables selected; problems 54 and 55 are from [4], and the rest are from

The results of the tests are given in Tables 2-6. There "it" is the outer iteration
count, "f/g" is the total number of function/gradient evaluations used per proces-
sor (this reflects both line search and inner iteration costs), and "Ti.me" is the time
required to solve the problem in seconds. The runs were made on an Intel iPSC/2
hypercube computer with 16 processors, each with a vector coprocessor. The vector
coprocessors were not used on all runs due to hardware breakdowns (this is indicated
in the table captions). The computer was programmed using Fortran in double preci-
sion (about 16 decimal digits). An upper bound of 500 outer iterations was imposed,
except for the results in Table 5, where 1000 outer iterations were allowed.

Initial tests were used to determine a "definitive" version of the block truncated-
Newton code, using a subset of the test problems. The later tests compare this fi-
nal version with other optimization software. In the initial tests, the algorithm was
stopped when

IIg(x)ll _< lO (1 /

A PARALLEL ALGORITHM FOR UNCONSTRAINED OPTIMIZATION 539

TABLE 1

List of test problems.

Problem

1 Calculus of variations 1

2 Calculus of variations 2

3 Calculus of variations 3
6 Generalized Posenbrock

8 Penalty 1

9 Penalty 2

10 Penalty 3

28 Extended Powell singular
29 Variably dimensioned

31 Brown almost linear

38 Tridiagonal 1

39 Linear minimal surface
40 Boundary-value problem
41 Broyden tridiagonal nonlinear

42 Extended ENGVL1
43 Ext. Freudenstein and Roth
45 Wrong extended Wood
461 Matrix square root (ns 1)
462 Matrix square root (as 2)
47 Sparse matrix square root
48 Extended Rosenbrock

49 Extended Powell

50 Tridiagonal 2

51 Trigonometric
52 Penalty 1 (2nd version)
53 INRIA ults0

54 Toint 61

55 Toint 62

Name n

100, 200, 1000

100, 200, 1000

100, 200, 1000

100, 500, 1000

100, 1000
100

100, 1000

100, 1000

100, 500

100, 200

100, 1000

121, 961

100, 1000

100, 1000

100, 1000

100, 200, 1000

100, 1000

100, 1000

100, 1000

100, 1000

100, 200, 1000

100, 200, 1000

100, 1000

100, 1000

100, 1000
403

200, 1000

200, 1000

where e 2.2 10-16 is the machine epsilon for the hypercube. Complete results for
these initial tests are given in [21]; only summary information is given here.

First, the row and column versions were compared (these differ only in implemen-
tation). To ensure that both versions performed the same arithmetic computations,
the algorithm was stopped after 10 outer iterations, and only 1 inner iteration was
allowed. On problem 1 with n 50, the row version was more than twice as fast,
confirming our earlier comments. The row version was used in all later tests. The
remaining preliminary tests were run on 14 problems (functions 1, 2, 3, 6, 8, 28, 31,
38, 41, 43, 45, 462, 47, and 51), all with n 100.

Four preconditioners were compared: PC0 (no preconditioning), PC1 (exact diag-
onal of Hessian), PC2 (BFGS diagonal scaling), and PC3 (approximate BFGS diagonal
scaling, with lower communication costs). PC1 is not practical, but was included to
indicate "ideal" performance for a diagonal preconditioner. (Computing the diagonal
entries of the Hessian requires almost as much computation as computing the full
Hessian.) On the 14 problems, PC0 took 1112 seconds, PC1 took 401, PC2 took 393,

540 STEPHEN G. NASH AND AI:tIELA SOFER

TABLE 2

Comparison with [15] (smaller problems). Failures were counted as 1000 iterations
and 2000 function evalutions.

F n BTN LBFGS

it /g it /g

1 100 9 52 F
2 100 7 39 1605 1669
3 100 8 50 3095 3216
6 100 90 223 257 291

8 100 11 30 30 36

9 100 6 15 21 23
10 100 14 50 82 90

28 100 27 104 57 67
29 100 7 18 36 37
31 100 5 18 24 27
38 100 11 43 120 128

39 121 20 72 66 70
40 100 11 63 2219 2296

41 100 16 45 28 31

42 1000 9 26 15 17
43 100 6 20 19 21

45 100 10 35 48 56

461 100 19 83 362 377
462 100 25 112 438 453

47 100 15 59 87 95
48 1000 39 144 38 49
49 100 26 102 57 67

50 100 14 53 129 133

51 100 25 64 53 60

52 1000 3 10 5 6

Totals 433 1530 9891 11315

TN

it f/g

28 466

27 242

45 325

78 683

4 26

8 48
20 107
14 70

9 42

14 101

18 77
18 187

55 2091

14 77
15 75
10 38

14 59

30 339

35 556

17 94

16 79
14 70

17 78

28 233

3 10

551 6173

and PC3 took 373. (However, PC2 required only 1289 function evaluations to PC3’s
1345.) Based on these tests, we felt that PC3 was the best preconditioner, and it has
been used in the subsequent tests. This decision was influenced by the relatively high
communication costs on the hypercube computer. If communication were faster (or
on a shared-memory machine), then PC2 would be chosen.

Next we compared the initialization schemes: INITV1 (random vectors), INITV2
(old search direction plus random vectors), and INITV3 (quasi-Newton initialization).
On the 14 problems, INITV1 took 373 seconds, INITV2 took 326, and INITV3 took
238 (the function-evaluation counts were proportional to the times). INITV3 was the
best strategy and it was used in subsequent tests. Note that this scheme requires no
extra computations, yet reduces the costs of the algorithm by one-third over random
initial vectors, and for problem 6, by a factor of more than three.

Other experiments did not identify major improvements in the algorithm; we
briefly summarize here the tests made in [21]. First, the inner iteration was scaled by

A PARALLEL ALGORITHM FOR UNCONSTRAINED OPTIMIZATION 541

TABLE 2A

Comparison with [15] (larger problems). Runs marked with * were made with con-

vergence tolerance 10-5 as in [15]. Failures were counted as 1000 iterations and 2000
function evalutions.

F n BTN LBFGS TN

it f/g it f/g it f/g

1 200 25 185 F 38 929
2 200 10 67 1734 1785 37 456
3 200 16 133 7248 7482 76 599
6 500 380 924 1054 1177 356 3446
8 1000 7 18 30 34 12 58

I0" i000 14 52 103 114 30 200

28 1000 41 204 54 61 15 75
29* 500 8 20 48 49 12 54

31 200 5 16 3 4 4 20
38 1000 18 73 405 423 33 208

39 961 41 196 165 172 27 387
43 1000 6 19 16 20 15 75
47 1000 26 161 145 157 22 160

49 1000 41 204 54 61 14 68

50 1000 24 111 457 476 30 210
51" 1000 24 62 46 57 35 370
53 403 13 61 57 63 14 100

Totals 699 2506 12619 14135 770 7415

applying the block algorithm to the linear system

- /11 11
and then multiplying the search direction by Ilgll before the line search. As the
solution is approached, g --+ 0, and this can lead to scaling problems. This scaling
slightly improved performance, and hence this change was retained.

Second, the algorithm was modified so that the inner iteration was terminated
if a loss of rank in the Lanczos vectors was detected. (A loss of rank leads to a loss
of efficiency in the inner iteration.) However, this idea was not effective and was
abandoned.

Third, the inner convergence tolerance was varied. This had little effect overall
(although it did influence individual problems). The later tests used the tolerance

"- 5
Fourth, we compared the resulting algorithm with a simplified method where

only one inner iteration is allowed. With 16 processors, as well as the preconditioning
and initialization schemes, we thought that such an algorithm (with its much-reduced
communication costs) might be effective. It was not. This suggests that even though
the better algorithm only uses about 2.5 inner iterations per outer iteration on average,
occasional use of more inner iterations is important for achieving good performance
in general.

Based on these tests, we settled on the following block truncated-Newton method:
row organization, preconditioned by an approximate BFGS diagonal scaling and ini-
tialized with a quasi-Newton-based scheme, with the inner iteration scaled by the

542 STEPHEN G. NASH AND ARIELA SOFER

TABLE 2B

Comparison with [15] (harder problems). Failures were counted as 1000 iterations
and 2000 function evalutions. The row marked ’BTN speedup" indicates the speedup of
BTN over the scalar routines, as measured by the number o.f]unction/gradient evaluations
required per processor.

BTN TN LBFGS

it 746 988 > 21241

f/g 2489 11740 > 24048
wins 14 0 3

failures 0 0 2

BTN speedup 4.7 9.7

TABLE 3

Comparison of BTN with parallel algorithms from [4]. Eight processors were used.
The convergence test is as in [4]; the runs in that paper were performed on a different
computer.

F n BTN PVMP

it f/g it f/g

a200 0
48 200 48 169 895 45646
49 200 28 137 15 391

54 200 10 29 9 235

55 200 18 97 13 339

FDCP/FDNCP
it f/g

5 131

598 7983

17 443
10 261

13 339

norm of the gradient, with the inner iteration terminated based on the value of the
quadratic model with tolerance 0.5, and with a parallel line search with maximum
initial step equal to m (the number of processors). This algorithm will be labelled
BTN in the tests below.

We then compared the algorithm with the (scalar) methods tested in [15]. These
are a limited-memory quasi-Newton method called LBFGS (written by Nocedal) and
a truncated-Newton method called TN (written by Nash). These were chosen because
they are considered to be good scalar methods, among the most effective general-
purpose codes for large-scale problems. The numbering of the problems in that paper
is the same as that used here, as is the convergence test:

where e 10-6 for all problems except numbers 10 (n 1000), 29 (n 500), and
51 (n 1000), where e 10-5. The results are presented in Tables 2 and 2A; the
division into "smaller" and "larger" problems matches that in [15]. Due to memory
limitations on our parallel computer, we were not able to run the problems with 10,000
variables.

Based on initial test runs with the expanded test set, two additional changes
were made to the block truncated-Newton method. First, it was observed that the
performance on a few of the problems (most notably problems 1 and 29) was sensitive
to the tolerance used in the rank test within the inner algorithm. It had been set

A PARALLEL ALGOI:tITHM FOI:t UNCONSTRAINED OPTIMIZATION 543

at 10-12 but was changed to 10-9 based on selective computational testing. As has
been noted in [6], it is not possible to set rank tolerances in such a way as to solve all
problems well.

Second, it was noticed that on some problems there were dramatic changes in
the value of the objective function between the initial and final points (most notably
problem 29). In such cases the automatic preconditioner may slow the algorithm if it
cannot change rapidly enough. To compensate for this problem, the diagonal scaling
matrix was reset to the identity matrix whenever If(x)l <_ 10-51/I, where f was
the value of the objective function the last time the scaling matrix was reset. Other
resetting schemes were also tried, using different tolerances in the condition above,
and based on the iteration count (allowing at most 10 iterations between resets, for
example), but these did not further improve the performance of the algorithm.

What can be concluded from Tables 2 and 2A? First, the parallel algorithm BTN
does not much improve on the iteration count of the scalar algorithm TN. This suggests
that both algorithms are getting a Newton-like direction. However, BTN reduces the
overall number of gradient evaluations by a factor of 3-4, indicating that it is obtaining
a comparable direction at lower cost (per processor). Based on the totals, BTN is a
considerable improvement over LBFGS, although it should be noted that the totals
are strongly influenced by problems 1, 2, 3, and 40. BTN appears to be robust. It
solves all the problems, and on 26 of the 42 runs uses fewer gradient evaluations (per
processor) than either of the other two algorithms.

The performance of BTN is especially good on problems 1, 2, 3, and 40. On these
problems it achieves speedups of from 5-33 over the better of the two scalar algorithms
(based on gradient evaluations per processor). This is gratifying since these problems
were among the most difficult for the scalar algorithms TN and LBFGS.

In general, BTN performs well on the harder test problems. In Table 2B we
extract results for the 17 test problems where either of the scalar algorithms required
more than 200 gradient evaluations. Over this subset of the problems, BTN achieves a
speedup of about 10 over LBFGS and about 5 over TN. Because these are considered
good scalar algorithms, and because this is a varied set of test problems, we think that
this is a strong indication of the effective performance of BTN on general problems.
(Note that TN is not just BTN with the block size set equal to 1. TN has a more
effective preconditioner and a more sophisticated line search than BTN.)

On some problems, however, BTN is not impressive. We have examined the worst
cases to try to understand why. Problems 28, 48, and 49 consist of identical copies of
small problems having 2-4 variables. As a result, the algorithm will behave much as it
would if it were solving the small 2-4 variable problem, and increasing the block size
will not offer advantages. In addition, even though the Hessian matrix will be block
diagonal with identical blocks, the automatic preconditioning strategies can destroy
this structure, hence making the problem harder to solve.

On problems 6 and 47, the Hessian at the initial point has negative eigenvalues
(for problem 47, half the eigenvalues are negative at the initial point). If the Hessian
has negative eigenvalues, the quadratic model of the nonlinear function does not have
a minimum, and hence expending considerable effort to approximate the Newton di-
rection, as in BTN, may be wasteful. This may explain BTN’s lackluster performance
on these two problems.

The parallel line search appears to be effective. Ideally, there will be one func-
tion evaluation in the line search per outer iteration. For these test problems, each
processor evaluates f(x) an average of 1.0532 times per outer iteration.

Finally, BTN almost always produces low iteration and line search counts (the

544 STEPHEN G. NASH AND AI:tIELA SOFEI:t

TABLE 4

Using BTN with varying numbers of processors p (with the block size equal to the
number of processors). Speedups are computed based on numbers of function/gradient
evaluations (".fig") as well as on time ("time") measured in seconds.

F n p it f/g Speedup time Speedup

1 100 1 32 732 105
2 27 418 1.8 64 1.6
4 24 254 2.9 45 2.3

8 20 156 4.7 36 2.9
16 9 52 14.1 20 5.3

40 100 1 221 9076 692
2 204 5098 1.8 441 1.6

4 134 1678 5.4 186 3.7
8 38 307 29.6 50 13.8

16 11 63 144.1 19 36.4

461 100 1 28 433 56

2 25 325 1.3 46 1.2

4 29 303 1.4 50 1.1

8 21 125 3.5 26 2.2

16 19 83 5.2 26 2.2

49 100 1 21 94 5

2 39 210 0.4 11 0.5
4 27 144 0.7 12 0.4
8 26 118 0.8 15 0.3

16 26 102 0.9 25 0.2

sole exception being problem 6 for n 500). In circumstances where the matrix-vector
product required by the inner algorithm could be produced easily, it would be a good
algorithm to use. This would happen for quadratic problems, problems with sparse
Hessians, and other special cases.

Although there has been considerable research on the topic of parallel optimiza-
tion, we are not aware of any other general-purpose software for solving large problems.
We do not consider it fair to compare with algorithms based on parallel finite differ-
encing for gradient values, since we assume that the exact gradient values can be
computed. The only comparison we have been able to make, and it is not perfect, is
with the results in [4]. The authors of that paper worked on an 8-processor shared-
memory computer, and were not immediately concerned with producing a competitive
general-purpose algorithm. The algorithms in that paper were a parallel quasi-Newton
method (Straeter’s algorithm), and a finite-difference Newton-type method similar to
the truncated-Newton algorithm used here.

To make the comparison, we have modified our outer convergence test to match
that in [4]. The test problems used are (our numbering/their numbering): 43/33,
48/10, 49/19, 54/61, 55/62, all with n 200. We record iteration counts ("it")
and gradient evaluations per processor ("f/g"). Our algorithm was run using an 8-
processor hypercube, and the results are recorded in Table 3. The algorithms PVMP
and FDCP/FDNCP are described in [4], and the results were taken from Tables 2 and
3 in that paper. As can be seen from the table, BTN is considerably more efficient

A PARALLEL ALGORITHM FOR UNCONSTRAINED OPTIMIZATION 545

TABLE 5

Some large problems not previously tested. Using algorithm BTN but allowing 50
inner iterations per outer iteration. The runs were made using the vector processors.

F n

1 1000
2 1000

3 1000

6 1000
40 1000
41 1000
45 1000

461 1000
462 1000

54 1000
55 1000

BTN

f/g time

138 2695 5371
26 486 948

105 2067 6306

717 1712 883
8 85 85

19 59 35
13 56 41

51 1278 4885
51 1196 4556

8 24 18
22 105 79

than the other two algorithms.
In Table 4 we illustrate the effect of varying block size on the performance of

BTN, using a subset of the test problems. The number of inner iterations allowed per
outer iteration was varied with the block size: 20 inner iterations for block size 16, 40
for block size 8, and 80 for block sizes 4, 2, and 1. The vector processors were not
used on these runs. (Further results can be found in [21].)

Note that as the block size changes, the algorithm also changes. Hence it is
possible to get speedups greater than 16 (problem 40) as well as deterioration in
performance (problem 49). On the problems that are most difficult using 1 processor
(1, 2, 3, 6, 40, and 461), increasing the block size led to a reduction in the number
of gradient evaluations per processor. Reducing the number of gradient evaluations
does not always reduce the overall time to solve the problem, since increasing the
block size also increases the amount of communication in the algorithm (see problems
6 and 51). On a shared-memory machine we would observe the same number of
gradient evaluations, but would expect lower times since there would not be associated
communication costs (although there might be memory bottlenecks).

As can be seen from Tables 2 and 2A, BTN with block size 16 can solve almost all
the test problems quickly. Since we expect that future research will improve on this
performance, it will be useful to have some harder problems available for comparative
testing. To this end we include in Table 5 the results of solving some additional
problems using BTN.

Finally, we compare BTN with a modified Newton method. To simulate Newton’s
method, we ran algorithm TN with the inner convergence test replaced by

IIGp + gll. < 10_s,
Ilall .

and with.an upper limit of 500 inner iterations imposed. In Table 6 we record the
results for the problems in Tables 2 and 2A, with the costs of the inner iteration
ignored. As can be seen, Newton’s method only reduces the iteration count slightly.
BTN has lower gradient costs (per processor) because of the parallel line search.

546 STEPHEN G. NASH AND AI:tIELA SOFEI:t

TABLE 6

Comparison with (simulated) Newton’s method. All inner iteration costs ignored.
Only algorithm BTN uses a parallel line search.

1321 2889

BTN
it f/g

1132 1240

Newton
i /

861 2861

More can be said about this. Suppose that we had an "ideal" parallel Newton
method, where the Hessian matrix could be computed and the Newton equations
solved for a search direction at a cost of one gradient evaluation per processor. Sup-
pose also that our parallel line search was used to compute the steplength. Hence, this
"ideal" Newton method would require about 2 gradient evaluations per major itera-
tion. Note that, on average, BTN only requires about 2.5 inner iterations (and hence
about 2.5 gradient evaluations) to determine a search direction. Thus BTN needs, on
average, 3.5 gradient evaluations per major iteration, and has only a slightly higher
iteration count. Hence BTN would only be about twice as expensive as this "ideal"
Newton method on this test set. Thus BTN, a general-purpose parallel optimiza-
tion algorithm suitable for large-scale optimization, can approach the performance of
Newton’s method, without the high costs associated with Newton’s method.

Acknowledgments. We would like to thank David Scott for his helpful com-
ments on using the hypercube computer. The computer we used, an Intel iPSC/2
hypercube computer, belongs to the Center for Computational Statistics at George
Mason University, and was obtained with the aid of U.S. Army Office of Research
contract DAAL03-87-K-0087.

REFERENCES

[1] R.H. BYRD, R.B. SCHNABEL, AND G.A. SHULTZ, Using parallel function evaluations to improve
Hessian approximations for unconstrained optimization, Tech. Report CU-CS-361-87, De-
partment of Computer Science, University of Colorado, Boulder, CO, 1987.

[2] Parallel quasi-Newton methods for unconstrained optimization, Tech. Report CU-CS-
396-88, Department of Computer Science, University of Colorado, Boulder, CO, 1988.

[3] P. CONCUS, G. H. GOLUB, AND D. P. O’LEARY, A generalized conjugate-gradient method.for
the numerical solution of elliptic partial differential equations, in Sparse Matrix Computa-
tions, J. Bunch and D. Rose, eds., Academic Press, New York, 1976, pp. 309-332.

[4] M. DAYDE, M. LESCRENIER, AND PH.L. TOINT, A comparison between Straeter’s parallel
variable metric algorithm and parallel discrete Newton’s methods, Report 89/16, Facults
Universitaires de Namur, Namur, Belgium, 1989.

[5] R.S. DEMBO AND T. STEIHAUG, Truncated-Newton algorithms for large-scale unconstrained
optimization, Math. Programming, 26 (1983), pp. 190-212.

[6] C. FRALEY, Computational behavior of Gauss-Newton methods, SIAM J. Sci. Statist. Comput.,
10 (1989), pp. 515-532.

[7] P.E. GILL AND W. MURRAY, Safeguarded steplength algorithms for optimization using descent
methods, Report NAC 37, National Physical Laboratory, Teddington, England, 1974.

[8], Newton-type methods for unconstrained and linearly constrained optimization, Math.
Programming, 28 (1974), pp. 311-350.

[9] G.H. GOLUB AND C.F. VAN LOAN, Matrix Computations, The Johns Hopkins University Press,
Baltimore, MD, 1989.

[10] A. GRIEWANK On automatic differentiation, Mathematical Programming, M. Iri and K. Tanabe,
eds., Kluwer Academic Publishers, Tokyo, 1989, pp. 83-107.

A PARALLEL ALGORITHM FOR UNCONSTRAINED OPTIMIZATION 547

[11] L. GRIPPO, F. LAMAPARIELLO, AND S. LUCIDI, A nonmonotone line search technique.for New-
ton’s method, SIAM J. Numer. Anal., 23 (1986), pp. 707-716.

[12] D.G. LUENBERGER, Introduction to Linear and Nonlinear Programming, Addison-Wesley Read-
ing, MA, 1973.

[13] S.G. NASH, Newton-like minimization via the Lanczos method, SIAM J. Numer. Anal., 21
(1984), pp. 770-788.

[14] Preconditioning of truncated-Newton methods, SIAM J. Sci. Statist. Comput., 6 (1985),
pp. 599-616.

[15] S.G. NASH AND J. NOCEDAL, A numerical study o/the limited memory BFGS method and
the truncated-Newton method/or large scale optimization, Report NAM 02, Department of
Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 1989.

[16] S.G. NASH AND A. SOFER, Parallel optimization via the block Lanczos method, in Computer
Science and Statistics: Proceedings of the 20th Symposium on the Interface, E. Wegman, D.
Gantz, and J. Miller, eds., American Statistical Association, Alexandria, VA, 1989, pp. 209-
213.

[17] , A parallel line search for Newton-type methods, in Computer Science and Statistics:
Proceedings of the 21st Symposium on the Interface, K. Perk and L. Malone, eds., American
Statistical Association, Alexandria, VA, 1989, pp. 134-137.

[18], Block truncated-Newton methods for parallel optimization, Math. Programming, 45
(1989), pp. 529-546.

[19] Assessing a search direction within a truncated-Newton method, Oper. Res. Lett., 9
(1990), pp. 219-221.

[20] ., BTN: Software for parallel unconstrained optimization, Report 64, Center for Compu-
tational Statistics and Probability, George Mason University, Fairfax, VA, 1990.

[21] A general-purpose parallel algorithm for unconstrained optimization, Report 63, Center
for Computational Statistics and Probability, George Mason University, Fairfax, VA, 1990.

[22] D.P. O’LEARY, The block conjugate-gradient algorithm and related methods, Linear Algebra
Appl., 29 (1980), pp. 293-322.

[23], A discrete Newton algorithm .for minimizing a function of many variables, Math. Pro-
gramming, 23 (1983), pp. 20-33.

[24], Parallel implementation of the block conjugate gradient algorithm, Parallel Comput., 5
(1987), pp. 127-139.

[25] J.M. ORTEGA AND W.C. RHEINBOLDT, Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, London, New York, 1970.

[26] C.C. PAIGE AND M.A. SAUNDERS, Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal., 12 (1975), pp. 617-629.

[27] P.M. PARDALOS, A.T. PHILLIPS, AND J.B. ROSEN, Topics in parallel computing in mathemat-
ical programming, Report CS-90-22, Department of Computer Science, The Pennsylvania
State University, University Park, PA, 1990.

[28] A. VAN DER SLUIS, Condition numbers and equilibration of matrices, Numer. Math., 14 (1979),
pp. 14-23.

[29] S.A. ZENIOS, Parallel numerical optimization: Current status and an annotated bibliography,
ORSA J. Comput., 1 (1989), pp. 20-43.

[30] S.A. ZENIOS AND J.M. MULVEY, Nonlinear network programming on vector supercomputers:
A study on the Cray X-MP, Oper. Res., 34 (1986), pp. 667-682.

SIAM J. OPTIMIZATION
Vol. 1, No. 4, pp. 548-564, November 1991

1991 Society for Industrial and Applied Mathematics
008

ACCELERATION AND PARALLELIZATION OF THE PATH-FOLLOWING
INTERIOR POINT METHOD FOR A LINEARLY CONSTRAINED

CONVEX QUADRATIC PROBLEM*

Y. NESTEROVt AND A. NEMIROVSKYt

Abstract. In this paper, the strategies for acceleration of the path-following polynomial time interior
point method for linear and linearly constrained quadratic programming problems are studied. These
strategies are based on (i) exploiting the results of computations done at the previous iterations (Karmarkar’s
acceleration scheme and a scheme based on the preconditioned conjugate gradient method); (ii) implementa-
tion of "fast" linear algebra routines; (iii) parallel computations.

Key words, interior point methods, polynomial time algorithms, parallel computations

AMS (MOS) subject classifications. 90C05, 90C20

(1)

1. Introduction. In this paper we consider the problem

[]t(X) 1/2xTOx a Tx -- min Ix R ",

ATx<-b,
where 19 is a symmetric positive semidefinite n x n matrix, A is an n x rn matrix, and
b m. In other words, we deal with a linearly constrained convex quadratic program-
ming problem. Note that the results which follow do not change if we replace such a
problem with a linear programming problem, i.e., if we set 19 0.

From now on, we set

(2) G={xR[ATx<-b}.
We assume that G is a bounded set with a nonempty interior (hence rn > n). Without
loss of generality, we suppose that A does not contain zero columns. Then

(3) G’-- int G= {x R" IAx < b}.

At least from the theoretical viewpoint, the best known methods for (1) are the
polynomial time interior point methods. These methods originate from the seminal
papers of Karmarkar [Ka 1984] and Renegar [Re 1988] devoted to LP problems;
important contributions to the area were made by many other researchers. In particular,
extensions of interior point methods for LP to the linearly constrained quadratic
problems were developed by Goldfarb and Lui [GL 1988]; Kojima, Mizuno, and
Yoshise [KMY 1988], [KMY 1989]; Monteiro and Adler [MA 1989a], [MA 1989b];
and Nesterov [Ne 1988a], [Ne 1988b].

The preliminary formulation of the question studied in this paper is how one can
reduce the time complexity of these methods with the aid of parallel computations.
The answer obviously does not depend on the concrete interior point method, and we,
for the sake of simplicity, restrict ourselves to the barrier path-following method [Go
1987], [Ne 1988a], [Ne 1988b]. This method is based on the logarithmic barrier

(4) F(x)=- Z In (b,-(Arx),) G’I.
i=1

* Received by the editors August 17, 1990; accepted for publication (in revised form) February 22, 1991.
? Central Economical & Mathematical Institute, USSR Academy of Sciences, 32 Krasikova Str., 117418

Moscow, USSR.

548

PATH-FOLLOWING METHOD 549

The main stage of the method is as follows. Consider the family of functions

Ft(x) tb(x) -t- F(x)" G’ ,
> 0, and the corresponding trajectory of minimizers

x*(t) argmin {Ft(x)lx G’},

which converges to the optimal solution of (1). In the barrier method we approximate
this trajectory along the sequence { ti t0Ki}, K 1 + 19(m-1/2), for values of the barrier
parameter t. The ith approximate solution, xi, is to be close to the point x*(ti), say,
in the sense that

Ft,(x i) Ft,(x*(ti)) <= t2.,

where z is an appropriate absolute constant. In the above-mentioned papers, it is
proved that, in order to maintain (5), it suffices to update x with the aid of a single
Newton step

2 F --1),(6) x

provided that (5) holds for i--0. The latter condition can be satisfied if x is close
enough to the minimizer, x(F), of the barrier over G’ and if to is small enough. To
approximate x(F), one can also use the path-following technique, but, in a sense, in
inverted time. Namely, assume that we are given an initial point, w G, that is a strictly
feasible solution to our problem. Consider the family

(7) (x) -txT"VF(w)+ F(x).

The corresponding trajectory of minimizers, x,(t) argmin {t(x) x G’} passes
through w when 1 and converges to x(F) as 0. We can approximate the points
x,(t) along the sequence {ti K -i} with the points xi defined as

(8) Xo w; x+ x xFti+l(Xi)]--lVxti+l(Xi),
which allows us to maintain the relation similar to (5). This preliminary stage is
terminated when t becomes small enough, the final xi being the desired approximation
to the minimizer of the barrier.

In the above-cited papers (see, e.g., [Ne 1988b]) it is proved that the outlined
two-stage method finds an e-solution to our problem, i.e., a feasible solution x such
that

(9) q(x) min q -< e { rnax q min q}
in no more than

(10) N(e) O(m 1/2) In (m(-18 -1)
iterations of the preliminary and the main stages. Herein 6 1- 7rF(W), 7rF being the
Minkowsky function of G with the pole at the minimizer x(F) of the barrier.

Note that the factor at the logarithmic term is precisely the amount of iterations
required to follow the trajectory of minimizers

(11) x4" t) argmin {F(x) tdp(x) + F(x) lx G’}

(b is a convex quadratic form) along the segment of the values of the barrier parameter
with the ratio of the endpoints, say, 2, i.e., along the segment [z, 2r], r > 0. If we

could follow this trajectory with certain time complexity M*, then the time complexity

550 Y. NESTEROV AND A. NEMIROVSKY

of finding an e-optimal solution to (1) would be

(12) M(e) O(M* In (mS-1e-1)).
Thus the time complexity of an implementation of the path-following method is

defined by the time complexity M*, at which one can solve the following problem.
BASIC PROBLEM. Given the segment [-, 2’], a convex quadratic form qb, and an

approximation xi to one of the endpoints of the corresponding curve x4"(t), r <-_ <-2r,
say, to the point x’(’), such that

(13) (Xin) --</Z,

find an approximation Xout to the other endpoint (i.e., to x6(2-)), such that

(14) 3(Xout) -<_/.

Herein/x is a positive absolute constant and

(15) 3(x) Ft(x)-Ft(x’(t)).
In accordance with (12), the p-processor time complexity p(l’I) of a procedure

H solving the Basic Problem can be thought of as the p-processor time complexity per
a precision digit of the approximate solution to (1) produced by the path-following method
based on H. Namely, the latter method finds an e-solution to (1) with the p-processor
time complexity not greater than

O(p(1-I)) In (mt-le-1).
The main result of the path-following method as applied to (1) (see the above-cited

papers) is that the Basic Problem can be solved by the following procedure.
BAsic. Let, for a positive m-dimensional vector d,

Q(d)=[M(d)]-1 M(d)=ch"+AOiag{d}A,
(16) d*(t, x)= t-l(b-Arx)-e.
From now on, for m-dimensional vectors u=(ul,’’ ",u,), v=(v,..., v,) , uv
denotes the componentwise product of u and v, that is, the vector (uv,...,
notations like u v, u(ce), etc., are also used in the componentwise meaning.

Note that
2 q ,(VxFr (x)= tM(d t, x)).

BASIC can be described as follows:

BEGIN
X := Xin
t:=r;
WHILE (t < 2r) DO
BEGIN
ITERATION:

UPDATING +:
/ := min {(1 + O(m-1/2))t, 2-};

PREPARATION TO UPDATING x - x+:
d+:=d*(t+,x);
g+ := VxF+(x);
Q+:=Q(d+);

UPDATING x - x+:
x+ := x-(t+)-’Q+g+;

PATH-FOLLOWING METHOD 551

RENEWAL:

END;

END.

t:= +"

X := X+"

Xou :-- X;

It is known (see, e.g., [NN 1989]) that the updating rules involved in BAsic

ensure the implication

(17) {6t(x)<-i}::#{g,+(x)<-_2tz} and {t+(X+) L}

for each small enough absolute constant/z, provided that the rate at which the values
of are varied is chosen in an appropriate way (namely, the quantity O(m-1/2) is
taken equal to O(1)p,1/2m -1/2, where O(1) is a once-and-for-ever-fixed absolute con-
stant). Thus, the above procedure does solve our Basic Problem.

A straightforward single-processor implementation of this procedure on the basis
of the standard linear algebra leads to

(18) I(BASIC) O(m3/2n2)<= 0(m35).

What are the possibilities of reducing this time complexity? There are at least three
of them, namely,

mimplementation of "fast" linear algebra algorithms instead of the standard
routines;

--recursive computation of the (approximate) inverse Hessians used to perform
Newton steps;

--parallelization of computations.

"Fast" linear algebra. It is well known that the product of a pair of r x r matrices
can be computed on a single-processor computer in time of order less than O(r3);
assume that it can be done with the time complexity O(r2+) for certain 3/< 1 (the
best known value of 3" satisfying this assumption is 0.376...). It is known that the
inversion of an r x r matrix admits the same complexity bound. Using the corresponding
"fast" linear algebra routines in BASIC, we obtain a new procedure BASIC(3’) (so
that BASIC BASIC(I)) such that

(19) I(BASIC(y)) O(m25+v)

(for the sake of simplicity in this preliminary complexity analysis, we set n- O(m),
so that the complexity can be expressed in terms of m only).

Recursive computation of (approximate) inverse Hessians. Acceleration based on
this possibility originates from Karmarkar [Ka 1984]. In the context of the path-
following methods and the standard linear algebra, it was developed in many papers
and allowed to reduce the single-processor time complexity of BAsic by a factor
O(ml/2). Karmarkar’s acceleration scheme as applied to BAsic leads to a new

procedure KARM with

(20) I(KARM) O(m3).

Implementation of "fast" linear algebra routines in the latter procedure (procedure
KARM(3’)) results in

(21) I(KARM(3’)) O(mS(’)), s(3") 2.5+0.53’.

552 . NESTEROV AND A. NEMIROVSKY

It turns out that in the case of y < 1 the latter bound (and, therefore, the Karmarkar
acceleration scheme) is not the best one. We managed to develop an essentially new
acceleration strategy based on the preconditioned conjugate-gradient method. For the
new strategy (procedure CG(y)), one has

(22) l(CG(y))=O(mr(’)), r(y)=Z.5+272/(2+3y-y2).
This strategy is better in order than Karmarkar’s for each 3’ less than 1, say,
r(0.376..-) =2.594..., s(0.376...)=2.688....

Parallelization. So far, we have discussed the single-processor computations. What
happens when we can use p processors? In this paper we try to answer this question
for the simplest SIMD model of computations. More exactly, we are interested in the
efficient parallelization only, that is, in the parallelization which allows us to reduce
the time complexity of the algorithm by a factor of order p. The question is: for which
values of p does the efficient parallelization exist? The best possible answer would be
the following: for all p less in order than the single-processor time complexity. It seems
to be impossible to obtain such a result for the path-following method, since the essence
of the method is a sequential O(rn 1/2)-step iterative process. Therefore, parallelization
of the method cannot make the time complexity less than O(ml/2). Another difficulty
is that all efficient (with respect to the single-processor implementation) versions of
the path-following method require inverting matrices, and the possibility of optimal
parallelization for the latter problem is an open question. Therefore, we are not able
to point out an efficient parallelization ofthe method with the time complexity O(rn 1/2).
Nevertheless, it turns out that the efficient parallelization does exist for relatively large
values of p. Roughly speaking, for both of the accelerations (Karmarkar’s strategy and
the strategy based on the conjugate-gradient method) the single-processor time com-
plexity can be divided by the number of parallel processors until the quotient remains
greater than m (namely, until it becomes O(m In m)). In other words, we demonstrate
that KARM (3’) and CG (3") can be implemented on p processors with the time
complexities, respectively,

p(KARM (3’))<= O(p-II(KARM (3’))+ m In m),

p(CG (3’))<= O(p-ll(CG (3’))+ m In m).

The critical value of p depends on 3’ and the acceleration scheme we are going to
parallelize, but this value is always greater in order than m. This result does not depend
on the type ("standard" or "fast") of the involved linear algebra routines. The aim of
this paper is to describe the Karmarkar and the conjugate-gradient-based acceleration
strategies with "fast" linear algebra routines and to prove the above-mentioned result
on the efficient parallelization of the corresponding algorithms.

The order of exposition is as follows. An outline of the ideas underlying acceler-
ation schemes for the barrier method as applied to problem (1) is the subject of 2.
Section 3 contains necessary preliminary statements, in particular, the Karmarkar
acceleration scheme. In 4, the preconditioned conjugate-gradient-based acceleration
originating from INN 1989] is described.

2. Single-processor acceleration: Overview. As far as the single-processor computa-
tions are concerned, the only possibility for acceleration of the above procedure is to
use, at a given iteration, the results of the auxiliary computations (like the inverse
Hessians used to perform Newton steps) made on previous iterations. This is possible,
since the matrices involved in the equations defining the Newton displacements at
different iterations are not independent, but are closely related to each other. Therefore,

PATH-FOLLOWING METHOD 553

it is possible to reduce the average time complexity of an iteration using the previous
inverse Hessians in order to compute the current one. This idea originates from
Karmarkar [Ka 1984] and is implemented as follows. All the Hessians involved in
Newton steps are of the form

(23) M(d) Z + A Diag {d}Ar,
where Z is a fixed positive semidefinite n x n matrix, A is a fixed n x rn matrix, and
d is an m-dimensional vector with positive elements depending on the iteration. In
order to update x in BAsic we substitute into (23)

d=d*(t+,x),

which leads to the precise Hessian of the function F,+(x) and then invert this Hessian
to obtain Q+. It turns out that we could use approximate inverse Hessian instead of
the precise one, provided that the approximation is compatible with the precise inverse
Hessian within a factor of order one. Namely, it can be shown that the choice

(24) d+:=d*(t+,x)

in BAsic can be replaced by any other choice of d+ satisfying the relation

(25) p-1 <= d+/d*(+, x) -<_ p

(where p is an appropriate absolute constant) without destroying any essential property
of the procedure.

The idea underlying the Karmarkar acceleration is: to choose d/ as the vector
satisfying (25) with the greatest possible number of entries coinciding with the corre-
sponding entries of the similar vector d, used at the previous iteration. Let k denote
the number of entries of d/ different from the corresponding entries of d (this number
will be called the rank of the iteration). Then the approximate Hessian M(d/), which
is to be inverted at the current iteration, is a k-rank correction of the similar matrix
M(d) inverted at the previous iteration; therefore, the matrix Q/= (M(d/))- can be
represented as a k-rank correction of the matrix Q computed at the previous iteration,
which allows us to find Q/, for the case of k much less than m, much faster than by
the direct inversion. To initialize this process, at the first iteration we, as in the procedure
BAsic, set d+ d*(r+, Xin) and compute M(d/) and Q+= (M(d+))- directly (in other
words, the rank of the initial iteration is, by definition, m).

The theoretical analysis of the time complexity of the above procedure is based
on the fact that the sum of ranks k(1), , k(N) of all the iterations in the procedure
satisfies the relation

N

(26) E k(s)= O(m)
s=l

while the number of iterations N O(ml/2). The latter relation immediately follows
from the updating rule for t, and (26) is a consequence of the inequality

(27) lid*(+, Xcr)/d*(t, xpr) ell2 <= o(1),
where xpr denotes the initial value of x at the previous iteration, x is the initial value
of x at the current iteration, t,

/ are the corresponding values of the barrier parameter,
and e is the m-dimensional vector of ones. Inequality (27), in turn, follows from (17).

It is not difficult to show that the single-processor time complexity of the sth
iteration in the above procedure (where the "fast" linear algebra is implemented) is
O(m2kV(s)) (this is the complexity of the updating Q -> Q+); all remaining operations

554 Y. NESTEROV AND A. NEMIROVSKY

can be performed at a lower cost, namely, O(m2). Therefore, the resulting procedure
KARM (y) satisfies the relation

(28)
(KARM (y))-<_ O(1) max ; m(k(s)+ 1) = k(s)= O(m)

O(1)(me+VN1- + meN)= O(m2-5+0-5)
(the latter equality holds since N--O(ml/2)).

How can one improve this result? Note that the computations performed at an
iteration of KARM (y) are, in a sense, unbalanced: at the sth iteration it requires
O(mZkV(s) units oftime to update the approximate inverse Hessian, that is, O(m2+5v)
units at average, and only O(rne) units to perform the remaining computations. In
view ofthis observation, it seems reasonable to relax the requirements on the compatibil-
ity ofthe approximate and the precise inverse Hessians and to use an iterative procedure
to compute approximate Newton direction. More precisely, assume that, when updating
x, we first compute a symmetric matrix Q+ such that

(29) p(m)-Q(d*(t+, x))<-_ Q+ <-_ p(m)Q(d*(t+, x))

for certain "large" p(m) instead of p(m)- O(1), as in the Karmarkar acceleration
scheme. To update x, we need to find the Newton direction, that is, to solve the linear
system

(30) M(d*(+, x))y VxF,+(x)
with the unknown y. This system can be solved with the aid of the preconditioned
conjugate-gradient method associated with the Euclidean structure on Nn defined by
the scalar product xr(Q+)-x. This is equivalent to the solution of a linear system
with an n x n symmetric positive definite matrix with the condition number Cond
GO(p2(m)) using the standard conjugate-gradient method. It is well known that the
rate of convergence of the latter method is

exp {-O(Cond-1/Z)k}=exp {-O(p-l(m))k},

k being the number of steps. It turns out that to maintain (17), we must ensure an
appropriate absolute constant accuracy in solving (30). Therefore, we can restrict
ourselves to O(p(m)) steps of the CG, which requires O(p(m)m2) units of time.

Now, the average time complexity of an iteration becomes

(31)
{average complexity of the updating Q Q+ which ensures (29)}

+{O(p(m)me)}.

One can hope that the first term in the latter sum is lesser the greater p(rn) is, since
increasing p(m) means that we relax the requirements concerning the "distance"
between the approximate and the precise inverse Hessians. At the same time, in the
case of p(rn)-O(1), this term is equal to the average complexity O(m2+5v) of an
iteration in KARM (2,). Thus, when increasing p(rn), one can reasonably decrease the
total complexity of the updating of the approximate inverse Hessians in the procedure.
Of course, we cannot take too large p(m), due to the second term in (31). Nevertheless
one can hope that the choice of p(rn) balancing the terms in (31) reduces in order the
complexity of the procedure. That is the main idea underlying procedure CG (2’).

3. Procedure KARM (/) and its parallelization.
3.1. Preliminary results on parallel "fast" linear algebra. Recall that we have fixed

(0, 1 such that for all k 5f the single-processor time complexity of multiplication

PATH-FOLLOWING METHOD 555

of a pair of k x k matrices does not exceed O(k2+V). It is then known (see [So 1988])
that

(32)

(33)

(34)

l(Inversion of a nonsingular k x k matrix)= O(k2+V);

p(Multiplication of a pair of k x k matrices)= O(k2+V/p+ln k);

p(Inversion of a nonsingular k x k matrix) O(k2/V/p+ k In k)

(as above, p(lI) denotes the p-complexity, that is, the p-processor time complexity
of procedure 1I).

The following lemmas are simple consequences of (32)-(34).
LEMMA 1. Let tr(l, k, r)= k r (min { l, k, r})7-1 for l, k, r . The product of an

x k matrix A and a k x rmatrix B can be computed with thep-complexity O(tr(l, k, r)/p+
In (max {l, k, r})).

Proof. Let s min {l, k, r}, m max {l, k, r}. Without loss of generality, we can
assume that s > 1 and that l, k, r are divisible by s. Let l’= l! s, k’= k/s, r’= r! s, so that

o-(l,k,r)=(l’k’r’)s2+.

It suffices to prove that if p PlP2, where

p2--]s-+V/ln m[, Pl--]l’k’r’/ln m[,

then the p-complexity of the computation of AB does not exceed In2 m.
After partitioning the matrices A and B into square s x s submatrices, we obtain

l’x k’ and k’ r’ matrices A’, B’ with elements from the ring 52 of real s x s matrices.
Let us regard our PlP processors as pl macroprocessors, each macroprocessor compris-
ing p processors. The sum and the product of a pair of elements of 52 can be computed
with the p2-complexity not exceeding -= O(ln m) (see (33)), or, in other words, can
be computed at the same time by using a single macroprocessor. Since the standard
multiplication of A’ and B’ with the aid of Pl macroprocessors admits the optimal
parallelization, the computation of A and B requires no more thanO(l’k’r’/pl + In m) x
r time units, so that the pp-complexity of our computation does not exceed
O(ln2 m). [3

From now on, {d R"[d > 0}.
The following lemma holds.
LEMMA 2. (i) Given x G’, t>0, and d , we can (a) compute VxFt(x) with

the p-complexity O(mn/p + In m); (b) compute d*(t, x) with the p-complexity O(mn/p +
In m); (c) compute the product ofM(d) and a given vector h R" with the p-complexity
0(mn/p + In m); (d) compute M(d) with the p-complexity 0(mn //p + in2 m); (e)
compute M(d)-1 with the p-complexity O(mnl+V/p+ n In n).

(ii) Assume that we have computed d, d’ and the matrix Q=[M(d)]-1, and
let k be the number ofpositions in which the entries of d and d’ do not coincide. Then
[M(d’)]- can be computed with thep-complexity O(m/p+ n max (n, k) minv (n, k)/p+
In2 m + k In k).

Proof (i) The first and the second statements are evident; the third follows from
the relation

M(d)h r"h + (A(Diag{d}(ATh))).
The fourth statement follows from Lemma 1, since the p-complexity of the computation
of the m x n matrix Diag {d}A is O(mn/p+ 1), the p-complexity of the multiplication
of A and this matrix is O(mn/V/p+ln m), and it takes O(n2/p+ 1) units of time to
add b" to the result with the aid of p processors.

556 Y. NESTEROV AND A. NEMIROVSKY

The fifth statement can be proved as follows. As we have seen, the p-complexity
of computing M(d) is O(mnl/V/p+ln9. m). In accordance with (34) the resulting n x n
matrix can be inverted with the p-complexity O(ng./r/p+ n In n).

(ii) Assume first that p > 1. If k =0, then the statement is evident. Let k be a
positive integer. It is clear that

M’, =- M d ’) M d + V,,S,, =- M.. + V,kSg,,

where Vnk and Sk can be computed with the p-complexity O(m/p+ nk/p+ln m).
Let k -< n. By the well-known formula, we have (Q,, M(d)-1, subscripts denote

the numbers of rows and columns)

[h4’..]-’ Q.. Q..V.g(Ig /

Ii being the xl identity matrix. By Lemma 1, the matrix (Ik+SknQnnVnk) can be
computed with the p-complexity O(ng.kV/p+ In- m)+ O(nkl+V/p+ lng. m); the result-
ing matrix can be inverted in O(k2+V/p+k ln k) units of time (see (34)). All the
remaining estimates are based on Lemma 1. After (Ik / Sg,Q,,V,g) -1 is computed, it
takes no more than O(ng.kV/p+ lng. n) units of time to compute the matrix QnnVnk(Ik /
SknQnnVnk) -1 and the same time to compute the matrix SknQnn. It takes no more than
O(nk+V/p + lng. n) units of time to compute the product of the latter two matrices and
no more than O(ng./p+ 1) units to add the result to b". Thus (ii) holds in the case of
k<__n.

Now let k > n. We have

(M’..)-’=(I.+Q..V.gSg.)-’Q...

The matrix I, + QnnVngSkn can be computed with the p-complexity O(knl+e/p/ In2 m)
(Lemma 1); the resulting matrix can be inverted with the p-complexity
n In n) (see (34)), and, as above, it takes no more than O(ng.+V/p+ln2 n)+O(nE/p)
units of time to perform the remaining computations with the aid ofp processors.

3.2. The main inequality. To proceed, we are to formulate an important analytical
property of the trajectory x+(). As far as we know, this property was first established
in [NN 1989, Lem. 5.3 and Cor. 5.1].

x" G’LEMMA 3. Let t’, t" [’, 2’]. Assume that x, are such that

and let

Then

(35)

6,(x), 6c(x’) -<_ 2/x -<_ 0.01,

d’=d*(t’,x’), d"=d*(t",x").

{t’t"}’/9.(X’-- X") T"(X’-- X") + II(dV-x/-d)/x/d,d,,ll
=/.o{m{V x/}2/+ I}

with an absolute constant tXo.
We also use the following statement (the proof can be found in many papers on

the Karmarkar acceleration of the path-following interior point methods).
LEMMA 4. For an appropriate choice ofpositive absolute constants tx <= 0.05, K > 0,

and p > 1, the following implication holds. Let > 0, x G’ satisfy the relation

,(x)<_-;

let + be such that

(1 + Ktx’/9.m-1/2)-1<- t+/ t<= (1 + rtzl/Zm-1/2),

PATH-FOLLOWING METHOD 557

and let d/ be a positive vector such that- d/ d*, + x) .
Then the point

x+_- x-(t+)-M(d+)-VxF+(x)
belongs to G’ and the following relations hold"

,+(x)_<- 2; ,+(x+)_-< .
3.3. Produr KARM (/). Now we can describe the p-processor implementation

of KARM (y).

INPUT: xi, G’ such that

(/z, K, p are defined in Lemma 4).
INITIALIZATION:

(1) Set

(2) Compute

-r (Xin) /3

X Xin

t:’,

d=d*(r,x);

M(d) 4)"+ A Diag {d}Ar;
Q=M(d)-’.

Note that, by virtue of Lemma 2,

(36) p(INITIALIZATION) O(mnl+/p+ n In n + In2 m).

ITERATION 4# s (input:
positive real t;
m-dimensional feasible x;
m-dimensional positive d;
n x n symmetric positive definite Q M(d)-l)

(1) Set

(2) Compute

and

+ min {(1 + Km-/z)t, 2r};

d* d (t+ x)

g+=VFt+(x);
(3) Compute d/"

d- d/*(t+, x),

(4) Using Q M(d)- 1, compute

-1 < di/ d* < P,

otherwise;

Q+=M(d+)-I;

558 Y. NESTEROV AND A. NEMIROVSKY

(5) Updatex"

x+=x-(t+)-’Q+g+;

(6) IF += 27" THEN set Xout x and terminate

ELSE set

X--X
+

t=t+

d =d+

and go to the next iteration.

Note that in view of Lemma 2, the p-complexity of the sth iteration (s 1, 2, ,
satisfies the estimate

p(ITERATION) O(mn/p+ n max (n, k(s)) min (n, k(s)), k(s))/p
(37)

+ k(s) In k(s) + In2 m,

where k(s) is the rank of the iteration, i.e.,

k(s)=l{ild,(s # d,(s- 1)1.
Herein d(s) denotes the value attained by the vector d after the sth iteration, and
d(0) d*(t, xi,). The main result on KARM (3") is as follows.

THEOREM 1. Procedure KARM (y) maintains implication (17) and solves our Basic
Problem. The p-complexity of the procedure satisfies the inequality

(38) p(KARM (y))= O(mnl+/p+ m3/2n/p+ n2m(+)/2/p+ m In m).

Thus, in the case of relatively small n, that is, when

n _-< m-Sv(39)

one has

(40) p(KARM (3’))= O(m3/n/p+ m In m),

and the parallelization is efficient (that is, the acceleration due to parallelization is
proportional to the number of processors) when the number of processors satisfies the
inequality

(41) p <--_ O(m/2n/ln m).

In the case of relatively large n, that is, when

(42) n > m1-0"5/,

one has

(43) p(KARM (3,)) O(m(+v/n/p m lnm),

and the parallelization is efficient when the number of processors satisfies the inequality

(44) p O(n2m(V-1)//ln m);

in particular, the parallelization is efficient when p-<_ 0(m(3-’)/2).

PATH-FOLLOWING METHOD 559

Proof. The validity of KARM (y) (the fact that the procedure maintains (17) and
therefore solves the Basic Problem) is a well-known fact (it is an immediate corollary
of Lemma 4).

Let us estimate the complexity ofthe procedure. The following statement holds.
LEMMA 5. Let t(0)= z and let t(1), , t(K) [z, 2r] be such that t(s)/t(s+ 1)_->

(l+m-1/2), l <=s<K. Also, let x(s), O<=s<-K, be such that

t(0)(X(0)) ; t(s+l)(X(S))2[.,
Let d(O)=d*(t(O),x(O)); let d(s+ 1) be defined as the vector with coordinates

d(s), O-’<=d,(s)/d*(t(s+ 1),x(s))<=p,
di(s+l)=

d*i (t(s+l),x(s)), otherwise;

and let

Then

k(s) I{ild,(s) di(s- 1)}[.

K

(45) E k(s) <= O(m).

Proof of the lemma. Let r(s) be the m-dimensional vector with the coordinates

Iln(d*(t(s),x(s-1))/d*(t(s-1),x(s-2)))l, s>-l,

where, by definition, x(-1)= x(0). The updating rule for d(s) clearly implies that

(46) , k(s)<- O , IIr(s)lll
s=l s=l

At the same time, (35), as applied to t’= t(s-1), x’=x(s-2), t"= t(s), x"=
x(s 1), implies

r()ll_-< Ofm(tl/2(s) tl/2f s 1))2(tf s)t($ 1))-1/2+ 1)

<--O(m(t(s)-t(s-1))2z-2+l), s>--l.

Thus,

(47) r(s)l[1 <= O(m(t(s)- t(s- 1))’r-1 + ml/2).
The required inequality (45) is an immediate corollary of (46), (47), and the assumption

t(s)/t(s 1) => 1 + O(m-1/2), 0<= s < K.

Note that, due to Lemma 4, the sequential values of and x produced at iterations
of KARM (y) satisfy the premise in Lemma 5, the corresponding K being equal to
N O(m 1/2) Thus the total rank k(s) of iterations ofKARM (y) does not exceeds=l

O(m)"
N

(48) E k(s) <= O(m).
s=l

From (36), (37), it follows that

p(KARM (y)) _-< p(INITIALIZATION) + O(m 1/2){mnIp + In2 m}
+ E n2kY(s)/P + E k(s)nl+r/P

{sl l<--_s<=N,k(s)<--n} {sl l<--_s<--_N,k(s)>n}

N

+ , k(s) In k(s).
s=l

In view of (48) and the relation N 0(ml/2), the latter inequality implies (38).

560 Y. NESTEROV AND A. NEMIROVSKY

4. Procedure CG(/) and its parallelization. The idea underlying the conjugate-
gradient-based acceleration was briefly explained in 2. Here we present the detailed
description of the procedure. It is reasonable to use this procedure in the case when
n is not too small, namely, when

(49) n > m1+-:)/1+)

otherwise, the procedure has no advantages in comparison to KARM (y). Thus, from
now on, we assume that (49) is satisfied.

In the description of CG (y) below, K and A denote appropriate positive absolute
constants; the choice of these constants is discussed in [NN 1989, 6].

Let

[] p-- lO{n(l+,) m-(1+3,-/2)}2/(2+33,-3,2),

(50) M=]{mr/Zn}r/2+3r-r2)[,
K]In-l(1 + Km-1/2)M-1[, L= KM.

Let us start with some definitions. Let h be an m-dimensional vector with positive
entries h, 1 =< m. For 1 m, let

F(h,l)={s>O]p-hs<p+h}, j.

The numbers hp will be called the centers of the zones F(h, l). For a positive vector
d R, the vector h(d) is defined as a vector from R with the /th component,
1 m, being the center of the zone of the family {Fj(h, l)[j Z} that contains the
number d.

The procedure CG (y) is as follows (the quantities in angle brackets that accom-
pany the rules are the p-complexities of the corresponding computations; these quan-
tities are estimated with the aid of Lemma 2).

INITIALIZATION:
(1) Set

X Xin;

(2) Compute

d d*(’, Xin);

(3) Set

h=d;

M=M(d);

Q=M(d)-1.

O(mn+V/p + n In n + In2 m))

In what follows, it is convenient to split the iterations into sequential groups with
M iterations in each group. It will be proved that the total amount of iterations in the
procedure does not exceed L, so that the total amount of groups is not greater than K.

ITERATION # s (input: positive real t; n-dimensionable feasible x; m-dimensional
positive d; m-dimensional positive h; n x n symmetric positive definite Q M d)-).

PATH-FOLLOWING METHOD 561

I. Updating (t, h, d, Q) (t+, h +, d +, Q+):
1.1. Set

t+ min ((1 + Km-1/2)t.2r};
1.2. Compute

d*(t+,x); (O(mn/p+ln m))

d’= 7rh(d*(t+, x)); (O(m/p+ 1))

1.3. Using Q, d, compute

Q,=M(d,)-
(O(m/p+ n max {q(s), n} minv {q(s), n}/p+ q(s) In q(s) +ln- m),

where

q(s) [{i[1 <= <- m, d’i
1.4. IF the iteration is not an initial iteration of a group

THEN
set

h+=h;

d+= d’;

Q+= Q’;

ELSE
set for i= 1,..., m:

di,

h- { d* t+, x),
hi,

Using Q’ to compute

Q/=g(d+)-1

(O(m/p+ n max {k(/), n} min {k(/), n}/p+ k(l) In q(/) +ln2 m),

if the iteration starts the Ith group, where

k(l) I{11 m, d7 d1;
otherwise the complexity is O(n/p + 1))

II. Updating x - x/:
II. 1. Perform

Steps of the process

N(p)=]pA[+l

Iln(d*i (t+,x)/h,)l> 1

otherwise;

[ln(d*(t+, x)/h,)l> 1

otherwise;

u u_ + %s,

(51)

,,o o; , ro (2/VFf*(x);
+ 2 4,

rj)-1 + ajQ V ,Ft/(x)s;

s/ r + #s

562 Y. NESTEROV AND A. NEMIROVSKY

where

[] u., r., s are vectors from R n;

11.2. Set

III. Renewal"
IF

X
+

X-- t/N(p)

THEN set Xout-- X
+ and terminate

ELSE
set

(O(n/p+l))

t=t+

d =d+

h=h+

and go to the next iteration.

Comment to II. Process (51) is the conjugate-gradient method (corresponding to
the metric induced by the matrix M/), as applied to the equation

V,F,+(x)y=V,F+(x).
Note that the computations are interrupted after N(O) steps.

TnEORE 2. The procedure CG (y) maintains (17) for an appropriately chosen
absolute constant I <-- 0.05 and solves the Basic Problem. Thep-complexity oftheprocedure
under assumption (49) satisfies the relation

(52)
p(CG (y))= O(mqVnr/p+ toni+V/p+ m In m)

<= O(m)/p+ m Inm),

where

[] r,(y) (2 + 5y+ 3/2)/(4 + 6y- 2y2),

r2(y) (4 + 5y 3/2)/(2 + 33/-

r(y) rl(y) + ra(y) 2.5+ 23/2/(2 + 3y-
In particular, in the case of n O(m), the parallelization of CG (3/) is efficient

when the number of processors satisfies the relation

p <= O(ml5+aya/(a+3y-Y2)/ln m).

PATH-FOLLOWING METHOD 563

Proof The validity of CG (y) is proved in [NN 1989, 6]; it is also shown that
under the assumption (49) the following statements hold:

(i) The total number of iterations does not exceed

(53) L= O(ml/:Z);

(ii) The total number of groups of iterations does not exceed

2+3y-2y2 y
(54) K=O(mn-o.2), o"

2(2+3y_y2)
0-2 2+37_72,

(iii) For each s one has

l+y 1-y
(55) q(s) <- q* rno.3/,/-o.4, 0-3

2 + 37- 3’2, 0-4
2 + 37 3"2,

so that

(56) q* <-_ n, q* <= m 1/:z"

(iv) The following relations hold:

K

(57) k(l) <- O(m);
/=1

(58) P O(m-o.sn20.3), 0-5 2
2l+y-y
2"2+33’-7

Now we can estimate the complexity of CG (3’).
From the "complexity comments" to the rules comprising CG (3") and in view of

(56), it is clear that

(59)

%(c(,))

<=O(rnnl+r/p+n In n+ln rn

+ m1/2{1 + rnn/p+ n(q*)r/p+ q* In q* + prnn/p+ p In rn + In: m}

E nZkV(l)/P + E nl+Vk(l)/P + E k(l) In k(l)+K In2 m
llK llK /=1
k(l)--n k(l)>n

In view of (53)-(58), the right-hand side of (59) does not exceed

where

O(S/p + T),

(60)
S mrt l+v + m3/:Zn +/’/2-vCr4m05+Yo.3 + ml5-o.sn 1+2o.3 + mo.(1-v)+’ng--o.2(1-v)

T rn In rn + m5-o.sn2o.3 In rn + mln.2 In2 m.

A straightforward computation shows that

S <- O(mn1+ + mr’’)nr:)), T <- O(m In m),

which immediately leads to (52). U

564 Y. NESTEROV AND A. NEMIROVSKY

[GL1988]

[Go1987]

[Ka1984]

[KMY1988]

[KMY1989]

[MA1989a]

[MA1989b]

[Ne1988a]

[Ne1988b]

[NN1989]

[Re1988]

[RV1989]

[So1988]

REFERENCES

D. GOLDFARB AND S. LIU (1988), An O(n3L) primal interior point algorithm for convex
quadratic programming, Tech. Report, Department of Industrial Engineering and
Operations Research, Columbia University, New York, NY.

C. C. GONZAGA (1987), An algorithm for solving linear programming problems in O(n3L)
operations, Tech. Report, Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA; also appeared in Progress in Mathematical
Programming: Interior-Point and Related Methods, N. Megiddo, ed., Springer-Verlag,
Berlin, New York, 1989, pp. 1-28.

N. KARMARKAR (1984), A new polynomial-time algorithm for linear programming, Com-
binatorica, 4, pp. 373-395.

M. S. KOJIMA, S. MIZUNO, AND A. YOSHISE (1988), An O(n/2L) iteration potential
reduction algorithm for linear complementarity problems, Res. Reports on Information
Sciences B-217, Department of Information Sciences, Tokyo Institute of Technology,
Meguro-ku, Tokyo, Japan.

(1989), A polynomial time algorithm for linear complementarity problems, Math.
Programming, 44, pp. 1-26.

R. D. C. MONTEIRO AND I. ADLER (1989), Interior path-following primal-dual algorithms.
Part I: Linear programming, Math. Programming, 44, pp. 27-42.

(1989), Interior path-following primal-dual algorithms. Part II: Convex quadratic
programming, Math. Programming, 44, pp. 43-66.

Yu. E. NESTEROV (1988), Polynomial-time methods in linear and quadratic programming, Izv.
Akad. Nauk SSSR Teckn. Kibernet., 3, pp. 3-6. (In Russian.)

(1988), Polynomial-time iterative methods in linear and quadraticprogramming, Voprosy
Kibernet. Moscow. (In Russian.)

Yu. E. NESTEROV AND A. S. NEMIROVSKY (1989), Self-concordantfunctions andpolynomial
time methods in convex programming, Central Economical and Mathematical Institute,
U.S.S.R. Academy of Science, Moscow.

J. RENEGAR (1988), A polynomial-time algorithm, based on Newton’s method, for linear
programming, Math. Programming, 40, pp. 59-93.

C. RODS AND J.-P. VIAL (1989), Long steps with the logarithmic penalty barrier function in
linear programming, Report 89-44, Department of Mathematics and Computer Science,
Delft University of Technology, Delft, the Netherlands.

V. I. SOLODOVNIKOV (1988), Parallel direct linear algebra algorithms, Kibernet. Vychisl.
Teck., 4, pp. 32-86.

SIAM J. OPTIMIZATION
Vol. 1, No. 4, pp. 565-582, November 1991

1991 Society for Industrial and Applied Mathematics
009

ORDERINGS FOR CONJUGATE GRADIENT PRECONDITIONINGS*

JAMES M. ORTEGA?

Abstract. Many preconditioners (e.g., SSOR, ILU) for the conjugate gradient method require the
solution of sparse triangular systems of equations. For elliptic boundary value problems, one approach to
obtaining additional parallelism in the solution of these systems is the use of red/black or multicolor
orderings. There has been increasing evidence, however, that these orderings degrade the rate of convergence
compared with the natural ordering. An alternative is the diagonal ordering, which maintains the rate of
convergence of the natural ordering but has less parallelism than multicolor orderings. This paper reviews
these as well as other orderings and then gives some results that help to explain why the red/black ordering
gives an inferior rate of convergence.

Key words, preconditioned conjugate gradient, orderings, rate of convergence, red/black, SSOR, incom-
plete Cholesky, parallel and vector computing

AMS(MOS) subject classifications. 65F10, 65N20

1. Introduction. We are concerned in this paper with the effect of orderings on
the rate of convergence of the conjugate gradient method with SSOR or incomplete
Cholesky (IC) preconditioning. We consider the linear system

(1.1) Ax=b,

which we assume arises from the discretization of a Poisson-type equation of the form

(1.2) V(K. Vu)=f

in two or three dimensions. Here K is a given vector-valued function of the spatial
variables such that (1.2) is elliptic. For simplicity, we will restrict ourselves to rectangular
or parallelepiped domains and Dirichlet boundary conditions, although many of the
considerations are more general. We also assume that finite difference discretizations
are done in such a way that A is symmetric positive definite, and has the usual
five-diagonal structure in two dimensions and seven-diagonal structure in three
dimensions.

The preconditioning step in the conjugate gradient method requires solving a
subsidiary system of equations

(1.3) M r

to obtain a modified residual vector . M is the preconditioning matrix, assumed to
be symmetric positive definite, and for many commonly used preconditioners, such as
SSOR or IC factorization, has the form

(1.4) M LDLT,
where L is lower triangular and D is diagonal. Thus, the solution of (1.3) requires the
solution of triangular systems with coefficient matrices L and L. In many cases, for
example, SSOR and no-fill IC factorization, L will have the same nonzero structure
as the lower triangular portion of A itself. The problem, then, is how to solve such
triangular systems effectively on parallel and vector architectures.

Received by the editors August 24, 1990; accepted for publication (in revised form) December 6,
1990. This research was supported in part by National Aeronautics and Space Administration grant
NAG-l-1112-FDP.

" Department of Applied Mathematics, University of Virginia, Charlottesville, Virginia 22903.

565

566 JAMES M. ORTEGA

There have been two main approaches to this problem. The first is to reorder the
unknowns so that the coefficient matrix takes the form A PAPT for some permutation
matrix P. The classical reordering is the red/black ordering (Young [1971]), in which

where D1 and D. are diagonal. The use of the red/black ordering for carrying out the
SOR iteration on parallel and vector machines dates back to the early 1970’s (Erickson
[1972], Lambiotte [1975]). More recently, various "multicolor orderings" (see, e.g.,
Ortega [1988] for a review) have been used for both Poisson-type equations and more
general equations with more general finite element or finite difference discretizations.
For a multicolor ordering, the coefficient matrix takes the form

D1 c2T1 CcT1
(1.6)

C T
c,c--

Col Cc._I Dc
where, again, the Di are diagonal, and c is the number of colors. For a multicolor
ordering, the solution of a lower triangular system Lx d of the same structure can
be computed by

(1.7) xi= DS, (di- Cijxj), i= l, c.
j<i

Since the Di are diagonal, the solution has been reduced to matrix-vector multiplica-
tions, which are potentially ideal for parallel and vector machines. In particular, for
the red/black ordering, (1.7) reduces to

(1.8) X2 D-’(tl2 CXl).

For regular problems, C consists of only a few nonzero diagonals and the multiplication
Cx is efficiently executed on vector machines by multiplication by diagonals (Madsen,
Rodrigue, and Karush [1976]).

Multicolor orderings exhibit a high degree ofparallelism but may have a deleterious
effect on the rate of convergence of iterative methods. For SOR itself, the asymptotic
rate of convergence for the red/black ordering is the same as the natural ordering
(Young [1971]) and the same result extends to many multicolor orderings (Adams and
Jordan [1985]). Moreover, the use of multicolor orderings seems to enhance the rate
of convergence in practice. Unfortunately, there has been growing evidence that the
rate of convergence of the conjugate gradient method may be degraded, sometimes
seriously, when such orderings are used for preconditioners (Poole and Ortega [1987],
Ashcraft and Grimes [1988]). For example for (1.2), on a 63 x 63 x 63 grid (250,000
unknowns), Harrar and Ortega 1990] reported 162 iterations for SSOR preconditioned
conjugate gradient using the red/black ordering and 38 iterations using the natural
ordering. Moreover, the red/black ordering is the basis for the reduced system conjugate
gradient method (see, e.g., Hageman and Young [1981]), and since this method is
mathematically equivalent to SSOR preconditioning on the original system (see, e.g.,
Harrar and Ortega [1990]), it suffers from the same rate-of-convergence problem.

A number of other reorderings have been considered but mostly with similar
results. Duff and Meurant [1989] reported on an extensive set of experiments using
incomplete Cholesky preconditioning for problem (1.2) on a 30130 grid in two

ORDERINGS FOR PRECONDITIONING 567

dimensions, with problems containing anisotropy, discontinuous coefficients, etc. They
considered 16 different reordering strategies, ofwhich only six gave rates of convergence
comparable to the natural ordering on all problems, and three of these orderings are
equivalent to the natural ordering.

The second main approach to solving the triangular systems effectively is to obtain
what parallelism is available in the natural ordering. The basic idea is exemplified by
the diagonal ordering shown in Fig. 1.1 in two dimensions.

"10
"6 "9
"3 "5
"1 "2

FIG. 1.1. Diagonal ordering of grid points.

In carrying out SOR with a five-point stencil, the unknowns on each diagonal can
be updated in parallel or with vector operations whose lengths are the number of
points in a diagonal. This is true because the five-point stencil couples unknowns only
from different diagonals. However, the updates produced from this ordering are exactly
the same as with the natural ordering. For example, the update at point 5 in Fig. 1.1
depends only on the updated values at 2 and 3 and the old values at 8 and 9; thus, it
makes no difference whether all the unknowns on the first row are updated before 5
is or not. This basic idea extends to three dimensions and is also related to multicolor
orderings, as will be discussed in the next section. In two dimensions, this diagonal
ordering was studied in Young [1971] as an example of a consistent ordering and
discussed as a possible paradigm for vectorization by Hayes 1978]. It has been explored
in both two and three dimensions in increasingly sophisticated ways by van der Vorst
[1983], [1989a], [1989b], Schlichting and van der Vorst [1989], and Ashcraft and
Grimes 1988]. We will discuss the diagonal ordering in more detail in the next section,
including extensions to more general discretizations.

Given the experimental results that certain orderings may degrade the rate of
convergence, why is this the case? One attempt at an explanation was Melhem [1986]
and the concept of "zero-stretch." He observed that orderings, such as the red/black
ordering, that moved elements of the matrix away from the main diagonal tended to
degrade the rate of convergence. However, we follow here the lead of Duff and Meurant
[1989], who computed the "remainder matrices" for their different orderings. We
discuss in 4, for a few particular orderings, the structure and size of these remainder
matrices. Prior to that, we collect in 3 some results on estimation of the condition
number as a function of reorderings.

Other results relevant to the general problem of the effect of reorderings on the
rate of convergence are given in D’Azevedo, Forsyth, and Tang [1990]; Doi and
Lichnewsky [1990]; and Eijkhout [1990].

2. Diagonal and related orderings. In this section, we expand on the discussion
of diagonal orderings, as exemplified by Fig. 1.1. As observed by Poole and Ortega
[1987], the fact that points on a diagonal are not coupled with themselves implies that
the ordering of Fig. 1.1 is a multicolor ordering if we assign a separate color to each
diagonal. The coefficient matrix in this ordering has the form shown in Fig. 2.1, which
is taken from Stotland [1990]. Note that this ordering is just the Cuthill-McKee (CM)
[1969] ordering for bandwidth/profile minimization. Duff and Meurant [1989] also

568 JAMES M. ORTEGA

UCC

FIG. 2.1. Matrix for diagonal ordering (two dimensions).

consider the reverse CM ordering, in which the numbering proceeds from the opposite
vertex of the grid, as well as a block CM ordering. These are also equivalent to the
natural ordering.

Figure 2.1 illustrates the vectors that can be used to carry out the multiplications
of (1.7). In particular, the vector lengths are 1, , N 1, N, N 1, , 1 on an N N
grid. These are considerably smaller than the corresponding vector lengths in the
red/black ordering, which are 0(N2/2). But Ashcraft and Grimes [1988] have given
results on a CRAY X-MP indicating that the diagonal ordering is superior to the
red/black ordering on that machine. However, Elman and Agron [1989] and Chan,
Kuo, and Tong [1989] have shown that red/black or multicoloring orderings will
probably be superior on highly parallel machines. In particular, the first of these two
papers gives theoretical results for a hypercube architecture, and the second gives
theoretical and computational results for a Connection Machine. Thus, the situation
seems to be that the diagonal ordering will be superior on machines requiring only a
modest degree of parallelism or vectorization, but as the parallelism of the architecture
increases, red/black or multicoloring orderings may become relatively more com-
petitive.

We next discuss a problem with the diagonal ordering and a way to alleviate it
that was observed by van der Vorst [1989a]. For the reordered matrix of Fig. 2.1, we
no longer have the long diagonals of the naturally ordered matrix to use in the
matrix-vector multiply in the conjugate gradient method. In particular, there are breaks
in the diagonals, corresponding to the different Cij of (1.6). On the other hand, we
can leave the matrix in the naturally ordered form and still carry out the updates
according to the diagonal ordering paradigm. This is the approach taken by Ashcraft
and Grimes [1988], but the vectors now have stride N-1, which may cause memory
bank conflicts on Cray machines. Thus, in the natural ordering, the data is arranged
optimally for the matrix multiply but not for the preconditioning and vice-versa for
the diagonal ordering. However, as observed by van der Vorst 1989a], we can circum-
vent this problem by means of the Eisenstat modification [1981], which eliminates the
need for the matrix multiply. Thus, we can use the diagonal ordering of Fig. 2.1 so as
to have suitable vectors for the preconditioning.

Ordering by diagonals is a special case of wavefront methods, which can be applied
to more general triangular systems; see Greenbaum [1986] and Saltz [1990]. Rather
than the general case, we next discuss another particular discretization. Consider the
nine-point stencil shown in Fig. 2.2, which is used for fourth-order approximations to

ORDERINGS FOR PRECONDITIONING 569

111 1.’2 1.’3 114 15 116 17
9. 19 1.1 1.2 1.3 1.4 1.5
7. .8 .9 19 1.1 1.2 1.3
5. .6 7. .8 9. 1.0 1.1
.3 .4 .5 .6 7 .8 .9
1 2 3 4 5 6 7

FIG. 2.2. Nine-point stencil and multicolor "diagonal" ordering.

Poisson’s equation or for equations containing a mixed derivative Uxy. A multicolor
"diagonal" ordering for the nine-point stencil is also shown in Fig. 2.2.

Again for SOR, unknowns corresponding to grid points of the same number in
Fig. 2.2 can be updated simultaneously. For example, after unknowns 1 and 2 have
been updated, both of the unknowns labeled 3 can be updated simultaneously, since
the only updated unknowns on which they depend are 1 and 2. The only difference
between this situation and the previous one with the five-point stencil is that now the
set of grid points of color is no longer a diagonal of adjacent grid points but, rather,
a bent "diagonal" of points separated by a "knight’s move," as shown in Fig. 2.2.

If the unknowns are ordered corresponding to the multicoloring of Fig. 2.2, the
coefficient matrix is again a multicolored matrix and takes the form

(2.1) A=

L12 L13 L14

Symm

Dc

The Di are diagonal: D1 and D2 are 1 x 1 matrices, D and D4 are 2 x 2, and so on to
the maximum size, which is O(N/2), after which they decrease in size. More precisely,
on an N x N grid, if N is even, there are 3N-2 colors (i.e., c 3N-2 in (1.6)) and
the maximum size of the Di is N/2, which is taken on by N+2 of the D. If N is
odd, c=3N and the maximum size of the Di is (N+l)/2, which is taken on by
(N+3)/2 of the D.

The off-diagonal matrices Li,/2 and Li,i+3 in (2.1) each have a single nonzero
diagonal whose length is the same as the corresponding Di. Except for the 1 x 1 matrices
L2 and Lc-l,c, the matrices L,+ each have two nonzero diagonals and the precise
structure depends on whether is odd or even, as shown in (2.2) and (2.3):

(2.2) Lii+l

(2.3) Lii+l

i+1 i+1
odd,

2 2

even, x -+ 1.
2 2

570 JAMES M. ORTEGA

Thus Li,i+l has diagonals of length i/2 if is even, and (i+1)/2 and (i-1)/2 if is
odd; this holds until the Li,+l reach their maximum size and then start decreasing.
Note that L./I is square if is odd but rectangular if is even, as shown by the matrix
sizes given in (2.2) and (2.3). This is illustrated in Fig. 2.3, which shows the first few
blocks of a typical matrix.

FIG. 2.3. Structure of matrix.

We next comment on the differences in vector lengths between the five-point and
nine-point stencils. With the nine-point stencil we have noted that the maximum size
of a Di is O(N/2); this is the maximum vector length if we do not attempt to couple
diagonals between adjacent blocks. This contrasts to the maximum vector length of
O(N) for the five-point stencil. Thus, the use of the nine-point stencil approximately
halves the vector lengths, as compared with the five-point stencil. This is analogous
to the use of the red/black ordering for the five-point stencil, which gives vector lengths
of 0(N2/2), compared with a four-color ordering for the nine-point stencil, which
gives vector lengths of O(N2/4)--nominally half the vector length of the red/black
ordering.

We next consider three-dimensional problems. For simplicity we will restrict
ourselves to Poisson-type equations (1.1) and the seven-point stencil. This stencil is
the natural extension to three dimensions of the five-point stencil for two dimensions.

Ordering the grid points by diagonals in two dimensions extends naturally to
ordering by diagonal planes for three dimensions. (See Ashcraft and Grimes [1988]
and van der Vorst 1989a].) This is illustrated in Fig. 2.4 for a 3 x 3 x 3 grid. Only two
diagonal planes are shown in Fig. 2.4 but there are seven such planes, including two
that consist of only a single point. The grid points in these seven planes are shown in
Fig. 2.5. The first three planes in Fig. 2.5 correspond to the planes shown in Fig. 2.4,
including the first plane, which contains only one point.

Points in a plane are assigned the same color. For the 3 x 3 x 3 example, there are
7 planes and, hence, 7 colors. For an N x N x N grid there are 3N-2 planes and
3N- 2 colors. If we order the grid points, and therefore the unknowns, corresponding
to these diagonal planes, we again obtain a multicolor block tridiagonal matrix. The

ORDERINGS FOR PRECONDITIONING 571

FIG. 2.4. Ordering by diagonal planes: 3 x 3 x 3 grid.

FIG. 2.5. Grid points in diagonal planes: 3 x 3 x 3 grid.

detailed structure of the matrix in the case of a 4 4 4 grid is shown in Fig. 2.6, which
is taken from Stotland [1990].

The maximum number of grid points in a plane is 3N2/4 if N is even and
(3N2+ 1)/4 if N is odd. Since all points in a plane can be updated by SOR in parallel,
the maximum degree of parallelism is 0(3N/4). However, an examination of Fig.
2.6 shows that the same is not true ofthe vector lengths. Consider one ofthe off-diagonal
blocks of maximum size. Although there is one long diagonal, the other diagonals
break up into lengths that are associated with two-dimensional problems. There is

FIG. 2.6. Matrix for diagonal ordering: Three dimensions, 4 x 4 grid.

572 JAMES M. ORTEGA

some overlapping of the diagonals across the submatrices corresponding to the two-
dimensional problems so that some vectors of length greater than N can be obtained.
Moreover, the gather operation can be used on some of the shorter vectors. However,
in three dimensions the vectorization properties of the diagonal ordering are not as
good as the parallel properties. This is in contrast to the two-dimensional situation.

We next consider orderings based on domain decomposition. Fig. 2.7(a) shows a
standard four-domain ordering in which the points in each subdomain are ordered
row-wise in such a way that within each domain the ordering proceeds from the outer
corner inward. In Fig. 2.7(b), the subdomain points are ordered diagonally, so that
vector or parallel properties of the diagonal ordering can be used within each sub-
domain. Duff and Meurant [1989] attribute these orderings within the subdomains to
van der Vorst (see also van der Vorst 1987]). In either case, the points in the separator
set are numbered last and with these orderings the coefficient matrix takes the familiar
arrowhead form

(2.4) A

A BT1
A3 B;/

A4 nff/
nl B2 B3 B4 As.]

Domain decomposition orderings have potentially good parallel properties, and
were suggested by Farhat [1986] as a way to parallelize the SOR iteration. They can
be used in the same way for SSOR or IC preconditioning. In particular, if there are
p processors, it would be convenient to have p subdomains. Consider, for example,
SSOR. In the solution of the corresponding lower triangular systems, each processor
could solve one of the systems

(2.5) Lix --di
and form its contribution Bixi to the final system

p

(2.6) Lsxs bs- Bixi.
i=l

Note that the additions in the right-hand side of (2.6) require a fan-in, and the parallel
solution of (2.6) is somewhat of a bottleneck.

In conjunction with SSOR or IC preconditioning, it is not necessary to have the
separator set. If the separator points in Fig. 2.7 are incorporated into the four sub-
domains and the subdomains are numbered counterclockwise, the coefficient matrix

22 23 24 47 33 32 31 21 23 25 43 34 32 30
25 26 27 48 36 35 34 24 26 27 47 36 35 33
37 38 39 49 42 41 40 40 44 48 49 46 42 38
7 8 9 45 18 17 16 6 8 9 45 18 17 15
4 5 6 44 15 14 13 3 5 7 41 16 14 12

2 3 43 12 11 10 2 4 37 13 11 10

(a) (b)

FIG. 2.7. Domain decomposition orderings.

ORDERINGS FOR PRECONDITIONING 573

now takes the form

B 0 B4

(2.7) A= A Br 0

Be A3 B3
LB4 0 B A4

where the Ai and Bi are not the same as in (2.4). For such nonseparator domain
decomposition orderings, Duff and Meurant [1989] reported at least as good conver-
gence results as for the natural ordering. (These orderings are called vdvl and vdv2
in that paper, corresponding to row-wise or diagonal ordering within the subdomains.)
Unfortunately, without the separator sets, the natural parallelism of (2.4) is lost.
However, it is still possible to work separately within each subdomain. For example,
on the forward sweep of SSOR, SOR may be applied separately in each subdomain.
When values from an adjacent subdomain are needed, the old ones are used. This is
no longer SSOR on the whole domain, however; it is block Jacobi with respect to the
subdomains and SSOR within each subdomain. Thus, the splitting of A for the forward
SOR sweep is

De-Le Us -B
D3 L3 Be U B(1’

D4 L4 I_-B4 0 B U4 .J

(2.8) A=

where Di- Li- U is the splitting of A into its diagonal and strictly triangular parts.
Although this approach has perfect parallelism, the rate of convergence is likely to be
inferior.

3. Condition numbers. In this section, we collect some basic results on the condi-
tion number of the preconditioned matrix. If M is the preconditioning matrix, we will
work primarily with M-1A, which is similar to the preconditioned matrix M-I/eAM-/2
for the conjugate method. We define the remainder matrix R by

(3.1) A=M-R.

Intuitively, the "smaller" R is, the better M approximates A and the smaller the
condition number of the preconditioned matrix should be. More precisely,

(3.2) M-A I- M-R,
and if the spectral radius p(M-R) is small, then the eigenvalues of M-IA will all be
close to 1, so that M-A will be well conditioned. Note that M-R is the iteration
matrix for a stationary linear iteration xk+= M-Rxk +d generated by the splitting
(3.1), and rapid convergence of this iteration is equivalent to a better-conditioned
matrix M-IA. (For the conjugate gradient method, the distribution of the eigenvalues
of M-A is also important.) We next give a more precise relation between the condition
number of M-A and the eigenvalues of M-R.

If A and M are symmetric positive definite, then the eigenvalues of M-A are
positive, and

A
(3.3) cond (M-1A)-

’rnin

where Ama and Ami are the maximum and minimum eigenvalues of M-IA. (Note that
M-A is not necessarily symmetric, but since it is similar to the preconditioned

574 JAMES M. ORTEGA

symmetric matrix M-1/2AM-1/2, it is customary to write cond (M-1A) as the 12
condition number of M-1/2AM-1/2.) For the following theorem, recall that (3.1) is a
regular splitting (Varga [1962]) if M-1 -->0 and R =>0, and a weak regular splitting
(see, e.g., Ortega and Rheinboldt [1970]) if M-I 0 and M-1R >--O.

THEOREM 3.1. If A and M are symmetric positive definite and the spectral radius
p(M-1R) < 1, then

(3.4) cond (M-1A)=
1-

1 -/-/.max

where/-/’max and]d,mi are the maximum and minimum eigenvalues ofM-1R. If, in addition,
A is an M-matrix and (3.1) is a weak regular splitting, then

(3.5) cond (M-1A) [1 + p(A-1R)](1 -/./min).

Proof. By (3.2), the eigenvalues A of M-1A and/x of M-IR are related by
Since the eigenvalues of M-1A are all positive and since p(M-1R) < 1, the eigenvalues
of M-1R lie in the interval [0, 1). Hence

Amin 1 bmax, Amax 1 sl/,min,

and (3.4) follows. For the second part, by a theorem in Varga [1962] (proved for
regular splittings but the same proof holds for weak regular splittings)

p(A-’R)
(3.6) p(M-’R)

I+p(A-1R)"

Thus,

].6ma I+p(A-1R)

and (3.5) follows. This completes the proof.
One can make the estimate

(3.7) 1 --/Zmin < 1 + I/Xminl < 1 +p(M-1R)

and obtain the following corollary that was proved by Axelsson and Eijkhout [1989]
under the weaker assumption that A and M are not necessarily symmetric, but that
the eigenvalues of M-1R are real.

COROLLARY 3.1. Under the assumptions of Theorem 3.1,

(3.8) cond (M-1A) _-< 1 + 2p(A-1g).

The proof of this corollary follows from (3.7) and (3.5) by using (3.6) to obtain the
identity

I+2p(A-R)
I+p(M-R)=

I+p(A-R)

Meijerink and van der Vorst [1977] showed that a no-fill ILU factorization of an
M-matrix is a regular splitting. The same is true for the SSOR splitting with o 1"

(3.9) M (D- L)D-(D LT), R LD-LT,
where L is the strictly lower triangular part of A, and D is the diagonal part. Thus, if
A is symmetric positive definite, Theorem 3.1 and Corollary 3.1 apply to both of these
preconditioners. Moreover, for (3.9), we can obtain a much sharper result.

ORDERINGS FOR PRECONDITIONING 575

COROLLARY 3.2. Ifthe conditions ofTheorem 3.1 hold and R ispositive semidefinite,
then

(3.10) cond (M-A) <- 1 + p(A-1g);

and if R is singular, then

(3.11) cond (M-A) 1 + p(A-1R).

In particular, (3.11 holds for (3.9).
Proof. The eigenvalues of R, and hence M-1 R, are nonnegative so that 1 -/d,mi 1;

thus, (3.10) follows from (3.5). If R is singular, then/Xmin= 0 SO that (3.11) is (3.5) in
this case. Finally, since L in (3.9) is strictly lower triangular, R is singular.

We note that Corollary 3.2 does not apply to incomplete Cholesky factorization,
even when R _-> 0, since R need not be positive semidefinite. Moreover, the weaker but
sufficient condition that the eigenvalues of M-1R be nonnegative does not necessarily
hold either, as is seen by the simplest example of the Poisson equation and no-fill
incomplete factorization.

4. Effect of ordering. We now wish to consider the effects of ordering on the rate
of convergence. Let As be the coefficient matrix in the natural ordering and Ac
PANP, where P is some permutation matrix. If AN MN- RN and Ac Mc- Rc
are the corresponding splittings (3.1), then

(4.1) Algc PANpT)-IR pAIpTRcPPT.
Thus, AIRc and ATvIPTRcP are permutationally similar so that

(4.2) p(AlRc) p(AvlpTRcP), IIAIRcll:z IIA-NpTRcPI[2
Therefore, the difference in the estimates (3.8)

(4.3) cond (MIAN) <-_ 1 + 2p(ARN) <_- 1 +
(4.4) cond (MIAc) <-_ 1 + 2p(A;)PRP) <= 1

depends only on the difference between IIRII)_ and IIRII= in the case of the norm
estimates. However, these norm estimates may be overly pessimistic and the more
critical factors are p(ARN) and p(ApTRcP). This is especially the case when
Corollary 3.2 applies, so that we have the exact condition numbers.

We first consider under what conditions

(4.5) p(A’RN) p(AIpTRcP).

Clearly, a sufficient condition is

(4.6) RN pTRcP,
which is equivalent to

(4.7) MN pTMcP
and we will use (4.7) and (4.6) interchangeably. We note that, in fact, the eigenvalues
of MIAN and MAc are the same if (4.7) holds for any nonsingular matrix P since

MAN (pTMcP)-’(pTAcP) p-1MIAcP,

so that MAN and MIAc are similar.
We next consider an example of when (4.6) holds. For the SSOR splitting (3.9),

where AN DN- LN- Lq and Ac Dc- Lc- L, (4.6) may be written as

(4.8) LND L PTLcppTDIppTLp.

576 JAMES M. ORTEGA

Since DN--pTDcP, (4.8) holds if

(4.9) LN PTLcP.
For in,complete Cholesky factorization, we have a similar condition; in this case, if LN
and Lc are the factors, then

RN LNLN AN, Rc [,c ac,
so that (4.6) is

n[, An PTcpPwp prAcP.
Thus a sufficient condition for (4.6) to hold is

(4.10) n=Prf,cP.
For a no-fill incomplete factorization, /N will have the same nonzero off-diagonal
structure as Ln, and similarly for/c and Lc. Thus (4.10) will hold if (4.9) does. Young
[1971] has defined a permutation matrix P to be nonmigratory if (4.9) holds, and has
shown that the permutation matrix that transforms the natural ordering to the diagonal
ordering of Fig. 1.1 is nonmigratory. Hence, these orderings are equivalent (as is
intuitively clear).

We can characterize the relation (4.9) in the following way, in terms of the
Gauss-Seidel iterations

(4.11a)

(4.11b)

D k+l k+l
NUN LNUN UNUkN bN

OcUkc+l- LcU+1- UcU bc.
We can rewrite (4.1 lb) as

(4.12) pTDcpprukc+, pTLcpprukc+l prUcPPTUck pTbc"

Thus if (4.9) holds (and, consequently, UN pTUcP also), then (4.12) becomes

(4.13) DNpTu+’- LNpTukc+I-- UNpTukc bN.

Therefore, provided that u pTuc, (4.11a) and (4.13) generate exactly the same
sequences u and pTuc, SO that

(4.14) Uc=Pu.
On the other hand, if (4.9) does not hold, (4.11a) and (4.11b) will not generate

sequences for which (4.14) holds, and the rates of convergence may be much different.
Duff and Meurant [1989] tabulated the maximum element of R and the Frobenius
norm ofR (=(Y r)1/2) for several different orderings on some two-dimensional Poisson-
type model problems ofthe form (1.2) using ICCG. While these numbers are interesting,
they are only qualitatively related to differences in the rates of convergence. The key
quantity is p(A-1R), as discussed in the previous section. Figure 4.1 compares these
quantities for SSOR (w 1) preconditioning on the problem (1.2) with K 1 for 7 x7

I+p(A-’R) max Iril IlRIIv
Nat (7 x 7) 3.99 .125 .89
RB (7 x 7) 6.83 .25 2.56
Nat (15 15) 13.7 .125 4.7
RB (15 15) 26.3 .25 13.9

FIG. 4.1. SSOR preconditioning.

ORDERINGS FOR PRECONDITIONING 577

and 15 15 grids on the unit square. The coefficient matrix A has been scaled to have
unit main diagonal. For this problem, (3.11) holds and thus I+p(A-R) gives the
exact condition number.

As seen in Fig. 4.1, max Iril gives very little indication of the difference in the
condition numbers. R v is better in that it increases as the condition number increases,
but it is of marginal value in ascertaining the size of the condition number.

Even though R by itself does not determine the condition number accurately, it
is certainly a key factor and we would like to understand how and why R changes for
different orderings. In the sequel, we will assume that A arises from the five-point
discretization of the Poisson-type problem (1.2) on an N N grid, and that M has
the form

(4.15) M (-L)-I(ff) LT),
where D is diagonal and L is the strictly lower triangular part of A. This will be the
case for no-fill Cholesky factorization (van der Vorst 1982]) or symmetric Gauss-Seidel
(SGS), but not for SSOR with to 1. Then

(4.16) R M-A=-D+L-L,
where D is the main diagonal of A. Note that in the case of SGS, D D so that
R LD-Lr.

We next obtain the structure of R by performing the multiplications L/)-1LT in
the following way. The ith row of Lff)-LT" is elL/)-1Lr, where ei is the ith unit vector.
In the natural ordering, the ith row of L has two nonzero elements and may be written
as

(4.17) Te/:rL ai,i-le-i + ai,i-ei-N,

where the ao are off-diagonal elements of A. Then

LT ----1 Te Lff)-lLT ai,i_ly_llef d- ai,i_Ndi_Nei_NLT.
NOW

and

Thus

LT Te’-I ai,i_le -I- ai+N_l,i_lei+N_l

ef L7" eL + ai e’.ai--N+l,i-- N+I ,i--

eLO-L7" a2 _11elq-aii_ (-__11eTi,i-1 lai+N-l,i i+N+I
(4.18)

+ ai,i-ai-+l,i-aY,-Nei N+, + ai_di_e.
The expression (4.18) for the ith row of L-L shows that R is a three-diagonal

matrix, in which the two off-diagonals are at a distance N- 1 from the main diagonal;
that is, they are shifted one position in, relative to the outermost diagonals of A itself.
The magnitudes of the elements of R are given by (4.18) and (4.16):

(4.19a) off-diagonals" aii_lai+N_l,i_ldi_l ai,i_Nai_N+l d-1

(4.19b) diagonal: a2 2 2N+ i aii.i,i-ld) + ai,i-s

Consider next the red/black ordering in which

C D2 C

578 JAMES M. ORTEGA

so that

0 0
R =D-D+

0 CD-Cr

Elman and Golub [1988] have computed the reduced system CD-Cr for a
somewhat different equation, but their general conclusions hold here also. In particular,
Ct-Cr is a nine-diagonal matrix corresponding to the stencil shown in Fig. 4.2.
(Note that the points of the original five-point stencil, except for the center point, do
not appear in the stencil for R. This would not be the case, however, for SSOR with
wl.)

+ (2N

i+]Q-1

i--2 i-i-2

i-]Q-1 i-]Q+I

FIG. 4.2. Nine-point stencil for R" Red black ordering.

The number of nonzero elements in CO-IC T is O((9/2)N2-8N). Thus R has
either this number of nonzero elements or 0(N2/2) more in case D /). In contrast,
R for the natural ordering has 0(3N2- 2N) nonzero elements, so that the red/black
remainder matrix has about 50 percent more nonzero elements, for large N. Moreover,
the magnitudes of the nonzero elements in the red/black remainder matrix are larger,
as we now discuss.

The elements of R for the natural ordering are given by (4.19). For the red/black
ordering, we will not give the elements precisely, but will indicate their magnitude as
follows. The elements of/)-ILT are of the form d-la, where a is an element of A
and d is an element of/). When/)-Lr is multiplied by elL, the elements of/)-lLr
are multiplied by another element of A to give terms of the form d-aa. The important
thing is that some of these terms may add together. In particular, the diagonal elements
of L-Lr will consist of a sum of four terms. Elements in the ith row corresponding
to the four grid points + N + 1 in Fig. 4.2 will consist of a sum of two terms, and the
elements corresponding to the grid points + 2N and + 2 consist of a single term.
Comparing this with (4.19), we would expect that, roughly, the diagonal elements of
R corresponding to LI-IL for the red/black ordering will be twice as large as the
diagonal elements of R for the natural ordering, and half of the off-diagonal elements
will also be twice as large. If we assume that the elements of the R for the natural
ordering all have the same magnitude r, then the Frobenius norm is [IR F,Nat "--- Nr,
based on the estimate of 0(3N2) elements in R. For the red/black.ordering, we would
have 0(N2/2) elements with magnitude 4r, 0(2N) with magnitude 2r, and 0(2N2)
with magnitude r. Thus, [IR F,RB "---X/T-g Nr, so that the ratio of the Frobenius norms
is about 2.5. This very rough estimate agrees quite well with the data in Fig. 4.1 for
SSOR preconditioning, in which the ratios are about 3, and with three of the four

ORDERINGS FOR PRECONDITIONING 579

problems in Duff and Meurant [1989] for ICCG for which the ratios are about 2. (The
fourth problem has very strong anisotropy and the ratio is 43.)

We comment on the difference between SOR and SSOR in terms of the remainder
matrix. Consider the Gauss-Seidel splitting A (D- L)- L. Here, in analogy to the
splitting A M-R, D-L corresponds to M and LT corresponds to R. In terms of
the natural and red/black orderings, L and LRn have the same number of elements
and, in the case of Poisson’s equation, exactly the same elements, just in different
positions. Hence, the ordering has no effect on the "size" of R. For SSOR (to 1),
however, the remainder matrices

(DN L)D-N(DN L),

are very different, as we have just seen, with the red/black remainder matrix having
many more, as well as larger, elements.

We consider one more class of orderings: those based on domain decomposition,
as discussed in 2. Consider first the ordering of Fig. 2.7(a) with four domains and a
separator set, so that the coefficient matrix A is given by (2.4). Then the strictly lower
triangular part of A is

L1

L4
B1 B2 B3 B4 L5

where Li is the strictly lower triangular part of Ai. The diagonal blocks of LtO-ILT
are then

4

(4.20) LiJ7 ILT i= 1,..., 4, Lff)-IL+ E BiJff)7,1BTi
i=1

and the off-diagonal blocks are

(4.21) Liff)7,1B f i= 1,..., 4, BiDs, 1L.T, i= 1,’", 4.

For simplicity, we will assume that each subdomain has N1 x N grid points so that
N 2N1 + 1, and there are 4N1 + 1 points in the separator set.

The matrices Liff)c, Lf, i= 1,..., 4, have the three-diagonal structure for the
natural order, as discussed earlier. The matrix L5 has the form

Ls,1
L5,2

L5,3
L5,4
v: o

where each Ls,i is lower bidiagonal (with zero main diagonal) and the vi are column
vectors with a nonzero element in the last position. It follows that Ls/)1L[is diagonal"
each diagonal element is zero or of the form d-laa except the last element, which is
a sum of four such terms. As before, a denotes some element of A, and d some element
of D.

The matrix Bf gives the connections of the points of domain with the separator
points and the only nonzero rows correspond to interior grid points adjacent to the

580 JAMES M. ORTEGA

separator points. Consider B1; the situation for the other Bi is similar. The nonzero
rows of B1 corresponding to points along the vertical and horizontal separator sets are

(4.22) aef, i=N1,2N1,...,N, aef, i=N,NI-1,...,N21-NI+I,

where the element a of A is different in each case. Thus, B1 may be expressed as a
sum of rank one matrices of the form aejef, where is one of the indices of (4.22)
and j denotes the position of the corresponding row in B1. Therefore, Bff)-flB is a
sum of terms of the form

T Taad-ejlei, ei2ej2,

and these matrices are nonzero only when il i2 i, where is one of the indices of
(4.22). Hence, BI-flBrl consists of2N nonzero elements of the form aad -1. Likewise,
the other matrices Bf)7,1Bf have 2N1 nonzero elements.

Finally, consider the matrix LI-flB. The ith row of L1/-1 is, in general, of the
form

ad-le i_l + ad-lef_N.

Thus the ith row of LI-B is a linear combination of the (i-1)st and (i-N1)th
rows of B. But both of these rows cannot be simultaneously nonzero, so that LI-IB
has no more nonzero elements that B1 itself. Similarly, the other L7,1B have no
more nonzero elements than B.

If we add the number of nonzero elements of each submatrix in L-IL, we have
at most

(4.23) 4.3N12+(4N1+4" 2N,)+8.2N1 12N12+28N1
nonzero elements. The first term in (4.23) gives the number of nonzero elements in
the first four matrices of (4.20), the second term is for the last matrix of (4.20), and
the third term is for the eight matrices of (4.21). We have previously shown that the
remainder matrix for the natural ordering has approximately 3N2 nonzero elements.
Since N 2N + 1, this gives 12N+ 12N + 1, which is only slightly smaller than (4.23)
for large N. Thus, the remainder matrices for the natural and domain decomposition
orderings have roughly the same number of nonzero elements. Although the above
discussion has only been for the case of four subdomains, one would expect that the
same conclusions would hold in more generality.

Suppose, next, that we remove the separator sets so that A has the form (2.7). In
this case

L1
B1 L2
0 B2 L3
B4 0 B3 L4

and the remainder matrix has the following submatrices"

(4.24)
L,)-’L, L,I7’Lf + Bi_,Di-_llBL,,

L4J-’L+ B4]’B+B3’B
(4.25) LiJ Bf, 1, 2, 3,

i=2,3,

ORDERINGS FOR PRECONDITIONING 581

plus the transposes of the matrices in (4.25). The LiC,lLf have the same natural order
structure as before, and the B have the same general structure as in the separator case,
since they provide the connections along the horizontal and vertical interfaces of the
subdomains. A rough estimate of the nonzero elements in LtO-1L7 is then

(4.26) 3Nl+2(3N+2N1)+3Nl+2 2Nl+ lO. 2Nl=12N1+28N1.
Since now N 2N1, 3N2= 12N2 is an estimate of the number of nonzero elements
in the natural order remainder matrix. Again, for large N, this is very close to the
estimate (4.26). This tends to explain why Duff and Meurant 1989] obtained essentially
the same number of iterations for their domain decomposition orderings (the "vdv"
orderings) as for the natural ordering.

Acknowledgment. I am indebted to my student Narinder Nayar for the computa-
tions of Fig. 4.1 and to two referees for some additional references and suggestions to
improve the paper.

REFERENCES

L. ADAMS AND H. JORDAN [1985], Is SOR color-blind ?, SIAM J. Sci. Statist. Comput., 7, pp. 490-506.
C. ASHCRAFT AND R. GRIMES [1988], On vectorizing incomplete factorization and SSOR preconditioners,

SIAM J. Sci. Statist. Comput., 9, pp. 122-151.
O. AXELSSON AND V. EIJKHOUT 1989], Vectorizable preconditioners for elliptic difference equations in three

space dimensions, J. Comput. Appl. Math., 27, pp. 299-321.
T. CHAN, C. C. KUO AND C. TONG 1989], Parallel elliptic preconditioners: Fourier analysis and performance

on the Connection Machine, Comput. Phys. Comm., 53, pp. 237-252.
E. CUTHILL AND J. MCKEE [1969], Reducing the bandwidth of sparse symmetric matrices, in Proc. 24th

Nat. Conf. ACM, pp. 157-172.
E. D’AZEVEDO, P. FORSYTH, AND W.-P. TANG [1990], Ordering methods for preconditioned conjugate

gradient methods applied to unstructured grid problems, Computer Science Report CS-90-04, Computer
Science Department, University of Waterloo, Waterloo, Ontario, Canada.

S. DoI AND A. LICHNEWSKY 1990], An ordering theory for incomplete LUfactorizations on regular grids,
INRIA Report, Institut de Recherche d’Informatique et d’Automatique, Le Chesnay, France.

E. DUFF AND G. MEURANT 1989], The effect of ordering on preconditioned conjugate gradients, BIT, 29,
pp. 635-657.

V. EIJKHOUT 1990], Vectorizable and parallelizable preconditioners for the conjugate gradient method, Ph.D.
thesis, University of Nijmegen, the Netherlands.

S. EISENSTAT [1981], Efficient implementation of a class of conjugate gradient methods, SIAM J. Sci. Statist.
Comput., 2, pp. 1-4.

H. ELMAN AND E. AGRON 1989], Ordering techniques for the preconditioned conjugate gradient method on

parallel computers, Comput. Phys. Comm., 53, pp. 253-269.
H. ELMAN AND G. GOLUB [1988], Iterative methods for cyclically reduced non-self-adjoint linear systems,

Computer Science Report CS-TR-2145, Computer Science Department, University of Maryland, College
Park, MD.

J. ERICKSEN [1972], Iterative and direct methods for solving Poisson’s equation and their applicability to

ILLIAC IV, Tech. Report 60, Center for Advanced Computation, University of Illinois at Urbana-
Champaign, Urbana, IL.

C. FARHAT 1986], Multiprocessors in computational mechanics, Ph.D. thesis, Civil Engineering Department,
University of California, CA.

A. GREENBAUM [1986], Solving sparse triangular linear systems using Fortran with parallel extensions on the
NYU ultracomputer prototype, Ultracomputer Note 99, New York University, New York.

L. HAGEMAN AND D. YOUNG [1981], Applied Iterative Methods, Academic Press, New York.
D. HARRAR AND J. ORTEGA [1990], Solution of three-dimensional generalized Poisson equations on vector

computers, Iterative Methods for Large Linear Systems, D. Kincaid and L. Hayes, eds., Academic Press,
New York, pp. 173-191.

L. HAYES 1978], Timing analysis of standard iterative methods on a pipeline computer, Report CNA-136,
Center for Numerical Analysis, University of Texas, Austin, TX.

582 JAMES M. ORTEGA

J. LAMBIOTTE 1975], The solution oflinear systems ofequations on a vector computer, Ph.D. thesis, Department
of Applied Mathematics, University of Virginia, Charlottesville, VA.

N. MADSEN, G. RODRIGUE, AND J. KARUSH 1976], Matrix multiplication by diagonals on a vector
processor, Inform. Process Lett., 5, pp. 41-45.

J. MEIJERINK AND H. VAN DER VORST 1977], An iterative solution for linear systems ofwhich the coefficient
matrix is a symmetric M-matrix, Math. Comp., 31, pp. 148-162.

R. MELHEM 1986], Toward efficient implementation ofpreconditioned conjugate gradient methods on vector

supercomputers, Internat. J. Supercomputer Appl., 2, pp. 70-98.
J. ORTEGA [1988], Introduction to parallel and vector solution of linear systems, Plenum Press, New York.
J. ORTEGA AND W. RHEINBOLDT 1970], Iterative Solution of Nonlinear Equations in Several Variables,

Academic Press, New York.
E. POOLE AND J. ORTEGA [1987], Multicolor ICCG methods for vector computers, SIAM J. Numer. Anal.,

24, pp. 1394-1418.
J. SALTZ 1990], Aggregation methods for solving sparse triangular systems on multiprocessors, SIAM J. Sci.

Statist. Comput., 11, pp. 123-145.
J. SCHLICHTING AND H. VAN DER VORST [1989], Solving 3D block bidiagonal linear sytems on vector

computers, J. Comput. Appl. Math., 27, pp. 323-330.
S. STOTLAND [1990], Vectorizing the conjugate gradient method with preconditioning using the diagonal

ordering, Master’s Project, Department of Applied Mathematics, University of Virginia, Charlottesville,
VA.

H. VAN DER VORST [1982], A vectorizable variant of some ICCG methods, SIAM J. Sci. Statist. Comput.,
3, pp. 350-356.

1983], On the vectorization ofsome simple ICCG methods, First Internat. Conference on Vector and
Parallel Computation in Scientific Applications, Paris.

1987], Large tridiagonal and block tridiagonal linear systems on vector and parallel computers, Parallel
Comput., 5, pp. 45-54.

[1989a], High performance preconditioning, SIAM J. Sci. Statist. Comput., 10, pp. 1174-1185.
1989b], ICCG and related methodsfor 3D problems on vector computers, Comput. Phys. Comm., 53,

pp. 223-235.
R. VARGA 1962], Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ.
G. WITTUM [1989], On the robustness of ILU smoothing, SIAM J. Sci. Statist. Comput., 10, pp. 699-717.
D. YOUNG [1971], Iterative solution of large linear systems, Academic Press, New York.

SIAM J. OPTIMIZATION
Vol. 1, No. 4, pp. 583-602, November 1991

() 1991 Society for Industrial and Applied Mathematics
010

AN INTERIOR POINT METHOD FOR BLOCK ANGULAR
OPTIMIZATION*

GARY L. SCHULTZt AND ROBERT R. MEYERt
Abstract. An interior point method for block angular optimization is developed and the conver-

gence properties of the method are described. A major motivation for such a method is that most of
the computation is easily parallelized. Computational results are presented for a class of large-scale
linear programming models. These models are multicommodity flow problems that arise from an Air
Force (Military Airlift Command) application and generate problems as large as 100,000 rows and
300,000 columns.

Key words, large-scale linear programming, block angular optimization, multicommodity net-
work flow, parallel numerical methods, interior point methods

AMS(MOS) subject classifications. 90C06, 65Y05

1. Block angular optimization. A block angular optimization problem is de-
fined as the following: Given a smooth, convex function c]RN --. IR, find a minimizer
x* of c subject to

A2 Xl b2
x2

XK
<_ d

and bounds l _< x _< u. The dimension of the kth block Ak is Mk Nk and we define
M "= ,k Mk and N := k Nk. The dimension of D is J N. The vectors Xk, bk,
etc. conform to these dimensions. Note that linear multicommodity problems are an
important subclass of this class of problems.

We assume that solving a set of K linear subproblems"

minimize kXk }AkXk --k for k 1,..., K(2) subject to [k <_ xk <_ tk

is easy relative to solving the entire original problem (1). This is quite reasonable
for most applications, since the problems (2) are independent subproblems, and may,
therefore, be solved in parallel. This is particularly appropriate in a MIMD compu-
tational environment. Second, some types of structure in the Ak may be exploited
which could not be directly used if (1) were solved with the entire set of constraints.
An example of this is the multicommodity flow problem, where each Ak is a node-
arc-incidence matrix. In this case (2) may be solved with a special purpose network
code. And third, we note that the difficulty of solving most linear programs (in some
sense the easiest of optimization problems) in practice increases as a quadratic or

Received by the editors September 26, 1990; accepted for publication (in revised form) March
15, 1991. This research was supported in part by National Science Foundation grant CCR-8907671
and Air Force Office of Scientific Research grant 89-0410.

Computer Science Department, University of Wisconsin, 1210 West Dayton St., Madison, Wis-
consin 53706.

583

584 G.L. SCHULTZ AND R. R. MEYER

cubic function with the size of the problem, so that it is much more efficient to solve
a set of small problems than a single aggregate problem.

2. The decomposition scheme. In this section we describe a scheme that al-
lows us to deal with the block constraints explicitly and the coupling constraints
implicitly via a barrier function. Define the set of feasible points for the block con-
straints by

/3 := {xlAx b and l < x < u},

and the set of feasible points for the coupling constraints by

C := {xlDx < d}.

The algorithm begins by finding x as the solution of a relaxed problem

(3) minimize x subject to x E B.

Here could approximate the gradient of the original cost function Vc(2) at some
point 2, but we require only that x E BMdom c. The case where dom c IRN will not
be considered further in this paper, as it produces technical difficulties without being
enlightening. In subsequent iterations, the algorithm solves additional subproblems
with block constraints, and then does a smaller (typically K-dimensional) search to
coordinate the solutions of the subproblems, forming a new point in B. During this
process information about C is introduced into the objective function by using a barrier
function.

We shall introduce the barrier function, discuss its fundamental properties, and
show how to obtain feasible points in 2.1. Section 2.2 will show how to generate a se-
quence of feasible points that approximates the solution. Section 2.3 then summarizes
the decomposition method.

2.1. Shifting barriers to obtain feasibility. Define the shifted logarithmic
barrier function

p"]RN x {T E]RIT > 0} X]RJ ---+]R U---cx:)

by

and let

j

p(x, -, 0)"= -7" ln(0j Djx) if 0 > Dx,
j=l

+cx otherwise,

y(x, 0) .= + 0)

denote the original objective function augmented by the shifted logarithmic barrier
function. Also, define the corresponding barrier problem as

79(T, 0)" minimize f(x, T, O) subject to x e B,

i.e., 79(-, 0) represents the optimization problem with parameters T > 0 and 0 E]RJ.
p was defined so that p(., T, 0) is a barrier function modeling the constraints Dx < O.

INTERIOR POINT BLOCK ANGULAR OPTIMIZATION 585

Thus, for 0 d, we have dom p(., T, d) int C. Allowing 0 d has the property of
"shifting" the barrier, hence the name.

Once an initial point x E B has been found by solving the relaxed problem (3),
the parameters 01 and T are chosen so that T1 > 0 and 01 > Dx. This will have the
effect of making x E B an interior point of domf(.,Tl,01). We then compute x by
approximately minimizing the barrier problem P(T, 01). In general, if Dx < d, we
have produced a feasible point. If not, then we choose 0i+ as described below while
maintaining T+ T; then set - + 1 and do the process again. We will prove
that if a point x B N int C exists, then such a point is generated in a finite number
of iterations, under appropriate assumptions given below in Theorem 2.4.

Suppose first that our 0 are chosen so that

(4) Dx < 0+ <_ 0 and 0 >_ d.

This implies that O "= limi-oo O is well defined. We make one more assumption on
our choice of O"

(5) either d or 3j such that lim.inf (} Djx) O.

In order to develop expressions for derivatives of p needed in the convergence
proof, let

()(6) q(x, T,) 1 Dlx" Oj Djx

and

Q(x,-,0) .=

7"

(01 -DlX)2

T

(02 D2x)2

0 0

0

0

(Oj-Djx)2

Provided Dx < O, we have

(v)
(s)
(9)

Vxp(x, T, O) q(x, ’, O)D,
Vxp(x, T, O) DTQ(x, , O)D,
Vp(x, T, O) -q(x, T, 0), and

Veep(x, T, O) Q(x, T, O).

We briefly review some definitions. A function is antitone if a _> b =v (a) _<
(b). A function is said to be essentially smooth (see 26 of Rockafellar [16]) if

dome - , is differentiable on dome, and liml(xi)l +c for all sequences
{xi} C dom converging to a point 2 bdy dom. We shall denote the restriction
of a mapping to a set S by [s and if S is a subspace of T, the quotient space of S
in T is denoted by T/S. Where y is a point and S is a set, we use y + S to denote
+ e s}.
THEOREM 2.1. Let and denote the mappings

x p(x, T, O) and 0

586 G.L. SCHULTZ AND It. R. MEYER

respectively, where T > O. Let y be any fixed vector in]RN and let S :- y -t- ker D
and S+ := y + (IRN/ker D), so that S and S+ are translated subspaces. Then the
following are true:

(i) dome (xlDx < },
(ii) is essentially smooth,
(iii) is convex,
(iv) 1s is constant,
(v) 1s+ is strictly convex,
(vi) dome {OlDx < },
(vii) is essentially smooth,
(viii) is antitone,
(ix) is strictly convex.

Proof. Clearly (i) and (vi) hold. Then (ii) and (vii) hold from the definition.
Since q(x, T, 0) > 0 whenever Dx < 0 and T > 0, (9) shows (viii) to be true. Since
Q(x, T,) is positive definite whenever Dx < and " > 0 we see from (8) and (10)
that (iii) and (ix) are true. Note that p is constant on S y + ker D, so that (iv)
holds, and we have shown all but (v).

For x e S+ fq {xlDx < 0} there is a one-to-one correspondence with {sis < }
given by s Dx. (The reader may prove this by showing that the linear mapping
x H Dx is a bijection from S+ to range D.) Therefore, it suffices to show that the
mapping

is strictly convex for s < 0. This is true because its Hessian is given by Q(x, T, 0),
which is positive definite.

We let A’(T,/9) C B denote the set of minimizers of 79(-,/9) as a function of T > 0
and . Also let f*(T,):= f(x, ’,) for x e X(T, O) be the optimal value function. In
the case where domf(.,’,O)NB= O, we define X(r, 0) O and f*(T, 0) +(X). The
following shows that A’ is nonempty in the other case.

THEOREM 2.2. Suppose T > 0 and 0 E]RJ are fixed. If there is some point
z E dom f(., T, O) f B, then. X(T, O) 0 and f* (T, O) <

Proof. Since B is compact and the level set {x]f(x, T,O) < f(z, T,O)} is closed, the
intersection of these two sets is compact. Since f(., T,/9) is a continuous function, it
must attain its minimum on this compact intersection. Clearly, this minimum f*
is less than +c.

The next result is quite easy to prove. It is stated as a lemma so that we may
refer to it later.

LEMMA 2.3. Suppose T > 0 and the sequences {xi} C]RN and {0i} C IRJ satisfy
XOj > Dj for each O, 1,... and j 1,..., J. Then the following are equivalent:

(i) p(xi, T, 0i) is bounded for all 0, 1,...,
(ii) II.q(xi, T, 0)11 is bounded for all 0, 1,...,
(iii) 0. Djx is bounded away from 0 for all O, 1,... and j 1,..., J.
Proof. One may see from the definitions of p and q that (iii) is equivalent to both

(i) and (ii).
THEOREM 2.4. Suppose c(.) is bounded from below on 13. Let 0+1 be chosen to

satisfy (4) and (5). Let x B be computed so that

f(x ’r, 0i)
_

f* (7",

INTERIOR POINT BLOCK ANGULAR OPTIMIZATION 587

for a constant > O. If a point z E B N int C exists, such a point will be found in a

finite number of steps. On the other hand, if no such z exists, then f(xi, T, Oi) +OC.

(Note that by using a procedure for convex programming that generates lower
bounds by solving linear programs, we may actually compute each x in a finite
number of steps.)

Proof. Assume such a z exists. Then

f* (-, 0i) <_ f(z, T, 0i) <_ f(z, T, d) < +c

where the second inequality follows from antitonicity in (part (viii) of Theorem 2.1).
Therefore, for all i, f(x, T,) is bounded above by/ + f(z, T, d). By Lemma 2.3 and
because c(xi) is bounded from below, -Djx >_ / > 0 for all i,j. Therefore, for
some finite , dj -Djx _> /2 > 0 for all j, and a point with Dx < d has been
found in a finite number of iterations. If no such z exists, then (4) and (5) imply
that -Djx - 0 for at least one j E {1,...,J}. Lemma 2.3 then shows that

j(x, ,) --, +c.
Assume from now on that the x are computed so that Dx < 0i. We will now

give a particular method for computing that guarantees that (4) and (5) are satisfied
(see Theorem 2.5). After computing x B, set

(12)
if Djx (dj,

if Djx >_ dj,

where A > 0 is a constant. (A > 0 places x in the interior of the shifted feasible
region.) In general, after computing xi, set

(3) {}+1 +__ { dj if Dxi< dj,

AoDx + (1 A0)0} if Djx >_ dj,

where Ao (0, 1) is a constant.
THEOREM 2.5. Suppose the x are computed so that Dx < O. If the 0 are

computed by the rules (12) and (13), then (4) and (5) are satisfied.
Proof. We show the result for each component j. If Dx >_ dj, then 0+1

AoDjx + (1 A0)0}. Condition (4) follows from this since nx < } and Ao (0, 1).
If Djx < dj, then 0 dj for all > and again condition (4) follows. If, for some

finite i, Djx < dj, then condition (5) follows. In the other case (Djx >_ dj for all i),
the limit

is well defined since the sequence is monotonic and bounded. Then (13) shows that
for any s acc{Djx } we have

Therefore s? 0?, which shows that (5) holds.

588 G.L. SCHULTZ AND R. R. MEYER

2.2. e-Optimal solutions. In this section we assume that 0 d and that we
have found some point in B N int C. We develop a method that converges to a feasible
point whose objective value is within a prespecified optimality tolerance e. As before,
we let X(T, d) denote the set of minimizers of :P(T, d).

The following result (see Fiacco and McCormick [6] or McCormick [13, p. 341]
for related results) gives us a useful bound on the error of x E X(T, d) as compared
with an optimal solution of (1).

THEOREM 2.6. Suppose - > O, x X(T, d), and x* is an optimal solution of the
original problem (1). Then

< <

for TJ, where J is the number of rows of D.
Proof. The second inequality follows from the feasibility of x and the optimality

of x*. The KKT conditions show that solving the barrier problem P(T, d) exactly
gives multipliers p for the rows of A satisfying

r Vxf(x, T, d) + pA,

and complementary slackness

max{rk,n(Xk,, fk,n), rk,n(Xk,n Uk,n)} 0 Vk, n.

(The vector r is so named because it is the "reduced cost" vector.) Define q-]RJ

as in (6). We note that (x,p, q, r) is feasible for the dual of the original problem (1).
The dual may be stated

maximize
x,p,q,r

subject to

c(x) + p(Ax b) + q(Dx d) + r+(x) + r_(u x)
Vc(x) + pA + qD r

q>_O
} 0 Vk,

It is well known that the objective value of the dual is a lower bound on c(x*). The
feasibility of x and the complementarity of x and r show that the objective function
of the dual is equal to

J
T(Djx dj) c(x) TJ,c(x) + q(Dx d) c(x) +
dj Djx

which completes the proof.
It is instructive to point out the relation between the set-valued "trajectory"

,(T, 0) (as a function of T > 0) and the central trajectory in the interior point
literature (see Bayer and Lagarias [1], especially Theorem 6.3). For the linear program
in standard form

minimize -2 subject to 2 ; >0,

the central trajectory is the function 2(7) (T > 0) where

2(-) := arg min {-2- Tln(2’)[n=l

INTERIOR POINT BLOCK ANGULAR OPTIMIZATION 589

RELAXED PHASE
i-0
Compute x as the solution of the "relaxed" problem (3)
If we determine that B
Then terminate (block constraints are infeasible)

Set 1 as in (12) and initialize T1

If X Eint(: go to the REFINE PHASE
Otherwise go to the FEASIBILITY PHASE

FEASIBILITY PHASE
i-i+l
Generate x as an approximate solution of P(-, 0)
Set 0i+1 as in (13)
Ti-1 ._ T

If x E B N int (
Then go to the REFINE PHASE
Otherwise repeat the FEASIBILITY PHASE

REFINE PHASE
i*-i+l
Generate x as an approximate solution of P(T,)
Set 0+1

__
d

Ti+l +’- max{A-Ti, Tinf}
Repeat the REFINE PHASE

FIG. 1. The three-phase method.

We see that both trajectories are defined as solutions of optimization problems where
certain inequality constraints have been converted into barrier terms in the objective.
Traditional trajectory-following methods would compute a sequence {x} of approxi-
mations to the sequence {A’(T,)} where T 0 in order to approximate the limit of
the trajectory as T $ 0.

Instead of letting T 0, we use a sequence {T } generated by the recurrence

Ti+1 -- max(ArT/, Tinf}

where T1,Tinf > 0 and A [0, 1). Since T 7inf for sufficiently large, it suffices
to use one step of a convergent iterative method for solving P(T,) at each iteration.
Thus, doing an infinite number of steps gives a sequence with acc{x} C X(Tinf, d).
Using Theorem 2.6, we may choose ’inf a priori so that c(x) differs from c(x*) by not
more than a prespecified tolerance for x A’(Tinf, d). Note that the sequence T Tiff
for all will suffice in theory. In practice, we begin with T1 >> 7"inf because 7)(T, d) is
ill conditioned for T 0. We do not explicitly enforce any criterion making x near
to X(T, 0). This trajectory-following idea may be viewed as a heuristic method for
coping with ill-conditioning.

2.3. The three-phase method. The method we have been developing fits nat-
urally into a three-phase framework. We assume that we are given the objective func-
tion c and the constraint sets B and C. Also, we are given constants A, he, , Tiff,

and T as introduced above.
The algorithm we use is described in Fig. 1. Note that both the FEASIBILITY

PHASE and the REFINE PHASE contain the procedure
Generate x as an approximate solution of P(Ti, oi).

We shall now discuss how this is implemented.

590 G.L. SCHULTZ AND It. It. MEYEIt

Note that the sequences {Oi} and {Ti} generated by the REFINE PHASE of this
method have the properties that 0i d and -i Tinf for all sufficiently large. Thus,
for the REFINE PHASE, we use only one step of some iterative method for convex
programming to generate xi+1 from xi. The resulting sequence {xi} will then have
acc{xi} C ,(’inf, d). For the FEASIBILITY PHASE, one step may suffice, but the
hypotheses of Theorem 2.4 (finite feasibility) would not necessarily hold.

3. Solving barrier problems approximately. We assume in this section that
T > 0 and are given, and that at the current iteration we are given x E B such
that f(x, T,O) is finite. Our method for obtaining approximate solutions of barrier
problems consists of approximating the objective function to allow the computation of
search directions separately for each block, and then coordinating them. The method
we use is a generalization of the Frank-Wolfe method that uses a trust region and
takes advantage of the block structure of the constraints by using a multi-dimensional
search rather than a line search.

3.1. Linearizing to obtain block search directions in parallel. Suppose
we are given a current point x E B. Linearizing P(T,) and adding a trust region
R(x) gives the following problem:

(14) minimize Vf(xi, -,)y subject to y B 3 R(x),
Y

which is of the form (2) with 5 Vxf(xi, T, 8) and R(xi) {y[<_ y <_ }. Let y
denote the solution of (14) and define the block search direction as 5y :- yi-x.
Recall our assumption that (14) is easy to solve and may be solved in parallel by
taking advantage of block structure and decomposing into K independent subproblems.

The purpose of the trust region is to take into account the poles of the barrier
function, where the logarithm is undefined. We use the following choice for the trust
region R(.). Recall that the objective function is

f(x + 5y, r, O) c(x + y) In (Oj Dj(x / 5y))

from which we immediately see that

(15) x //iy dom f == (Vj) DjSy < -Dx.
This shows that enforcing x + 5y B Ndom f would involve essentially the same con-
straints as the original problem (1). Instead, we propose approximating condition (15)
by modification of the simple bounds that already occur in the constraints x + 5y B.
To this end, suppose we were to let only one component (the (k, n) component, say)
of 5y be nonzero. Then x + 5y dom f only if Dj,k,nYk,n (Oj Dxi. Therefore,
we use the "one-sided" trust region R defined by

(6) R(xi) {x xi + 5y]Dj,k,nSYk,n <_ max {, ’(Oj Dixi)) j, k,n}
where > 0 and e (0, 1] are constants (see Fig. 2); > 0 guarantees that the
distance to the boundary of the trust region is bounded away from 0. Such a trust
region does not guarantee that x / 5y dom f, but tends to limit extreme violation
of this "domain constraint." Enforcement of "domain constraints" is ensured by the
coordinator process, discussed below.

INTERIOR POINT BLOCK ANGULAR OPTIMIZATION 591

FIG. 2. A typical trust region (B is represented by the solid polygon).

More generally, the trust region property that we require in the convergence proof
is the following.

ASSUMPTION 3.1. Let z E B and the sequence (x} C B, and define

c max (lx -t- c(z xi) e R(xi)}.
0<c<l

Then lim infi_. i > 0.
If this assumption is satisfied, there is always some room to move in any direction

from x without being constrained by the trust region. Assumption 3.1 is clearly true
for our choice of R in (16) because 5 > 0 and B is bounded.

3.2. Coordination. The Frank-Wolfe method would use a one-dimensional
search along the line segment conv(xi, yi) from x to yi. If we search over a larger
region we may expect to do better. The block structure of the original problem makes
a multidimensional search quite natural. More precisely, we will show that the block
structure of A means that we may solve a K-dimensional optimization problem with
simple bounds in order to "coordinate" the subproblem solutions. In this section, f(.)
and Vf(.) are used in place of f(., T, 0) and Vxf(’, T,) since - and are fixed.

Let Yi denote the N K matrix of block search directions:

5y 0 0
o o
0 0 ". 0
0 0

so that the kth column of Y corresponds to the kth block of the update 5y. The
coordination problem that we consider generates w as an approximate solution of

(17) minimize f(x + Yiw) subject to <_ x + Yiw <_ u.
W

We will then choose xi+l x / Yiw for our next iterate. Note that Xi+l B if
x B because Yi is in the null-space of the equations defining B. Also, it is easy to
enforce xi+l dom f since x dom f. Our approximate solutions of (17) will satisfy

min f(x)-(18) f(xi+1) f(xi)
_
t

xEcnv{xi,yi}

592 G.L. SCHULTZ AND It. It. MEYEIt

where # E (0, 1) and where the minimization is taken over the line segment from x
to yi. (We consider below specific methods for guaranteeing satisfaction of (18) in a
finite number of iterations.)

We now show that this method converges to solutions of T’(T, O) where - and 0 are
fixed. From (18) we may deduce that the algorithm is monotonic, i.e., f(xi+1) <_ f(xi).
Consider a subsequence {x() } C {x} that has x() "2 and y() --. . This
subsequence must exist because B is compact. Also define 5y - "2 so that
5y,(i) ---. Pick any A E (0, 1]. Then

f(x’(i) + Ay’(i)) f(x()) > [min f(x)- f(x(i))l
[xEconv{x() ,y(o }
1 [f (x(i)+l (i>_)_f(:

Since f(.) is bounded from below on B, taking the limit as - gives f(’2 + by)
f(’2) >_ 0, and taking the limit of this as A 0 gives

(19) 0

Suppose now that z B is an arbitrary point. Since R satisfies Assumption 3.1,

ci-- max {olxi .-b o(z xi) e R(xi) }
O<a<l

has lim inf a > O. Then

Vf(xi)(yi- xi) Vf(xi)oi(z xi)

by the definition of y. By taking the limit, and using (19) and the convexity of f,

0 <_ Vf(’2)(z "2) _< f(z) f(’2).

This shows that "2 is a global minimizer of f over B and hence "2 X(T,).
Except in special cases, the minimum in condition (18) may not be computed in

a finite number of steps. We therefore substitute a computable lower bound.
Let (w) f(x + Yiw), so that the coordinator problem (17) may be stated

(20) minimize (w) subject to w < w _<

for bounds w and that correspond to the bounds of (17). (Note that w < 0 < 1 _<
because x and x + yi satisfy the bound constraints.) Since is convex,

+ <_

for all w. Restricting the linearization on the left to w conv{0, 1} (which corre-
sponds to x E conv{x, yi} in the original space) we will obtain a lower bound on the
minimum in (18). Clearly this linearization restricted to a line segment will achieve
its minimum at an endpoint. Therefore, defining

() () + min {V(b)(0), V()(1)},

The components wk and k are computed by looking at all rtios of the form

(’k,n ’ n) /Yik and (Uk,n ;gi) /yik in order to obtain the box {wlw < w < } C {wit. <,n ,n
yiw <_ u} that is the largest possible.

INTERIOR POINT BLOCK ANGULAR OPTIMIZATION 593

we have shown

(@) <_ min (w) min f(x).
wecony{0,1 } xEconv{x ,yi }

Thus, instead of satisfying (18) directly, we instead require

(o) < (o)],
in order to accept wi. A w satisfying (21) may, therefore, be computed in a finite
number of iterations for # < 1. Then setting x+1 x + Yiw implies that (18) is
satisfied.

We may define the "reduced gradient" of at w componentwise as

[(V(W))k]+ if wk W__k,

(rg (w))k := --[(V(w))k] if Wk

(V(w))k otherwise.

In practice, we have found that it is better to choose w to satisfy both (21) and

Ilrg (wi)ll < #’ Ilrg

(in some norm I1"11) for some #’ e (0, 1). That is, we accept w as a solution to the
coordinator problem if it has sufficient decrease to ensure convergence (i.e., (21) is

satisfied) and the reduced gradient is sufficiently reduced in norm.
The coordinator problem may be enriched by utilizing one or more sets of "prior"

updates as well as the "current" updates yi. Since all updates lie in the null space of
the equality constraints of B, we need only take into account the bounds / < x < u.
We shall discuss the case where our prior updates are merely the set of updates y-i
from the previous iteration. Let v be the vector of weights for the prior update y-l,
analogous to the role of w for the current update Y. The coordination constraints
are then

(22) I < x + Yi-lv + Yw < u,

which no longer reduce to simple bounds on v and w. However, we may easily compute
sets of separate bounds on v and w that form an "inner approximation" of (22) in
the sense that any (v, w) feasible for the bounds must also be feasible for (22). To do
this, choose a constant E (0, 1) and constrain w by w < w < , where w__ and
are obtained exactly as above. Having set these constraints, it is easy to compute v
and such that

[W <w< and v<v<] = (v,w) satisfies (22).

The convergence proof is extended in a straightforward manner to cover generalized
coordination procedures of this type. This approach is related to the PARTAN method
of combining update information (see Himmelblau [10] and Lee et al. [12]), and also
to restricted simplicial decomposition (see von Hohenbalken [11], Mulvey, Zenios, and
Anlfeld [14] and nearn, Lawphongpanich, and Ventura [9]).

4. Numerical results for a large-scale application. This section describes
our test problems and documents the results produced by our decomposition algo-
rithm. Section 4.1 describes our code and the key parameters used. In 4.2 we
describe the problems that motivated this decomposition algorithm. Finally, 4.3
shows the timing results on the large-scale problems.

594 G.L. SCHULTZ AND R. R. MEYER

4.1. Description of the code and parameters. We ran our code on two ma-
chines: a DECstation 3100 running the ULTRIX operating system, and a 20 processor
Sequent Symmetry $81 running the DYNIX operating system. Most of the code was
written in C, with the portion used to solve the network subproblems being written in
FORTRAN (see further discussion below). The C programming language was chosen
primarily because of its ability to work properly with modern data structures. The
code was compiled with the default code optimization (-{31). Double precision was
used for all calculations.

The following parameter values were used in our runs (see 2):
A 1: Assumes right-hand side of moderate size (dj e [-106, 106]).
Ae 0.9: We found that if this parameter is smaller, the method does not
find feasible solutions as quickly. Larger values of Ae do not seem to cause
numerical problems for our test problems.
A 0.5: Smaller values tend to introduce the problems of ill-conditioning
earlier, so that convergence is hampered. Larger values require too many
iterations until T is sufficiently small.
1 10: We normalize the cost coefficients so that Ilcllo 1, making T1 ten
times the maximum absolute value of the cost coefficients.

TinfJ 10-s: (See Theorem 2.6.) Eight places of accuracy in the ob-
jective function is a fairly ambitious goal for problems as large as our test
problems. This was not always achieved in 50 iterations.

The code takes full advantage of the network structure of the Ak, since solving
multicommodity networks was the initial goal of this work. The code also takes
advantage of the special structure of the matrix D. Typically, for multicommodity
networks, a constraint D.ix < d. represents a physical situation where the flow of a
given "topological arc" (an arc appearing at most once in each commodity) can only
handle a certain capacity of flow. In this case Dj,k,n E {0, 1}, and for each j and k,
there is at most one t such that Dj,k, 1. Our code has a J K array of pointers to
this h (it stores 0 if no such h exists). This saves space because J and K are usually
much smaller than N.

To solve the network subproblems we use a modified version of RNET, written in
FORTRAN by Grigoriadis and Hsu [8]. RNET is an implementation of the network
simplex method. This code was modified by the authors to work in double precision
rather than integer arithmetic, and to use parameters to specify input data. We begin
RNET with an all-artificial basis at each iteration. The parameters given to RNET
are mostly determined by the suggestions in Grigoriadis and Hsu [8]. We allow for a
large number of pivots.

For the trust region in 3.1 we set 7 0.7 and 10-s. We found that
7 E [0.5, 0.9] worked reasonably well. We also found, somewhat to our surprise, that
using smaller seemed to make the algorithm perform better. Using a smaller means
that we let the current point get closer to the boundary of the trust region, possibly
at the expense of being able to move less within the null space of D. We found that

0 (in which case our convergence proof fails) worked just fine in practice.
The coordinator algorithm uses an active set method in conjunction with the

steepest descent direction. We stop when both the function and the norm of the
projected gradient have been sufficiently decreased, as is explained at the end of 3.2.
The code uses tt 0.4 and #’ 0.03. If we stop when the function values have been
sufficiently decreased, but ignore the projected gradient, then the method converges
in theory, but in practice it seems somewhat problematic. Using a larger tt’ would

INTERIOR POINT BLOCK ANGULAR OPTIMIZATION 595

allow the algorithm to terminate, when in fact the coordinator could probably find a
significantly better point at low cost. We run the coordinator algorithm for at most
15 iterations within each major iteration.

As part of this coordinator method we need to use a one-dimensional line search
method. The one-dimensional line search algorithm we used is (2.6.4) in Fletcher [7].
Special structure of the objective function allows us to use Newton’s method in place
of the usual minimization of a quadratic or cubic interpolant. Parameters were set to
attain a line search of medium accuracy.

4.2. Patient Distribution System (PDS) problems. The test problems we
used were obtained from the CINCMAC analysis group of the Military Airlift Com-
mand (MAC) at Scott Air Force Base (Chmielewski [4]). The model is called the
Patient Distribution System (PDS) and is a logistics model designed to help make
decisions about how well MAC can evacuate patients from Europe. The PDS prob-
lems are a class of problems: PDS-:D denoting the problem that models a scenario
lasting T days, for integers :D E [1, 85]. As :D becomes larger, the size of PDS-:D grows
quite large, as may be seen in Table 1. The PDS problems are linear multicommodity
network flow problems, which are block angular linear programs where each Ak is a
node-arc-incidence matrix. (See Fig. 3.)

These PDS problems have received considerable attention lately, partly because
they are a real-world application, and partly because they seem to be quite challeng-
ing. Carolan et al. [2] used the KORBX system at Scott Air Force Base to solve
numerous problems, including some of the smaller PDS problems. It took the KO-
RBX system (using default parameters) between 3.3 hours and 4.5 hours to solve
PDS-10. Only one out of the four KORBX codes finished within 24 hours on PDS-20.
Setiono [18] has solved small- and medium-sized PDS problems using a dual proximal
point linear programming algorithm, solving the resulting linear systems with the
preconditioned conjugate gradient method. Setiono solved PDS-20 in 25.5 hours on
an Astronautics ZS-1 computer [19]. 2 Using a decomposition technique, Pinar and
Zenios [15] solved many of the PDS problems. The largest problem they report on
is PDS-30, taking slightly more than two hours to solve on a CRAY Y-MP. Cheng
et al. [3] report the solution of problems as large as PDS-50 in 10.2 hours using the
KORBX system (apparently not the same version as Carolan et al. [2] use). In an
unpublished work, De Leone [5] has solved PDS-40 using an SOR-based technique in
approximately 27 hours on a DECstation 3100.

4.3. Results of numerical experiments. We shall now present the perfor-
mance results of our codes on a subset of the PDS problems. We were interested in
two things when beginning these tests. First, we wanted to develop algorithms that
compute approximate solutions to multicommodity network flow problems quickly.
Second, we want our method to compute accurate solutions. Although our solution
is primal feasible (always <_ x <_ u, Dx < d, and IIAx- bll /Ilbll ’ machine
epsilon), our method does not provide good bounds on the gap between the objective
value obtained and the optimal value. We compute duals on the network constraints
and the dual estimates q (defined in (6)), and these will give lower bounds as in the
proof of Theorem 2.6. When we have computed these lower bounds, however, they
are not even as good as the lower bound given by solving the relaxed problem (3).
However, when we compare our final objective values with those obtained by others,

2 For reference we note that Smith and Klinger [19] claim that the ZS-1 achieves 3.0 Mflops on
the 24 Livermore loops and 6.3 Mflops on the 100 100 Linpack benchmark.

596 G.L. SCHULTZ AND R. R. MEYER

\ \ \ \ \ \ \ \ \ \

FIG. 3. Sparsity structure of the constraint matrix for PDS-01.

TABLE 1
Sizes of some of the PDS problems. We also remind the reader that each PDS problem has

eleven blocks (i. e., K 11).

Problem
Name

max size of block
maxk M(k) maxk N(k)

Coupling

PDS-01 126 339 87
PDS-02 252 685 181
PDS-03 390 1117 303
PDS-05 686 2,149 553
PDS-06 835 2,605 696
PDS-10 1,399 4,433 1,169
PDS-20 2,857 10,116 2,447

26,034

M
1,386
2,772
4,290
7,546
9,185
15,389

5,719

31,427
PDS-30 4,223 15,126 3,491 46,453
PDS-40 5,652 20,698 4,672 62,172 212,859
PDS-50 7,031

Dimension of A
N

3,729
7,535
12,287
23,639
28,655
48176
105,728
154,998

PDS-60 8,423 31,474 6,778
PDS-70 9,750 36,262 7,694
PDS-80 10,989 40,259 8,302

77,341 270,095
92,653 329,643
107,250 382,311
120,879 426,278

they typically match to between five and seven significant figures.
We ran the code for 50 iterations in all cases. Figures 4, 6, and 8 show the

original objective functions cxx as a function of iteration for three of the larger
PDS problems. Note that the objective function increases during the FEASIBILITY
PHASE and then decreases steadily during the REFINE PHASE. Figures 5, 7, and 9
graph the improvement

hi:__
lgl (

undefined

if cTxi-1 > cTxi,

otherwise

as a function of the iteration for the same three problems. (One might say that "the
aith digit of the objective function changed from iteration i- 1 to iteration i.") These
figures show that the improvement in the objective function cxx tends to become
small after 50 iterations. The large improvement for PDS-60 in iteration 49 illustrates

INTERIOR POINT BLOCK ANGULAR OPTIMIZATION 597

that convergence is not always predictable from objective functions alone. The primal
objective function values we obtained matched known good approximations of optimal
values to between five and seven digits [5], [18].

Tables 2 and 3 contain timings and optimal objective function values for the PDS
problems we solved. The column of the table labeled "relaxed" contains statistics for
computing the solution to (3). The column labeled "feasible" contains statistics for
computing a feasible point. The number of iterations required to obtain a feasible
solution via the shifted barrier approach varied between 11 and 16. The column la-
beled "Final" contains statistics for computing the final approximation of the optimal
solution. The row of the table labeled "Total iterations" is the number of iterations
the method has taken to attain a given phase. The row labeled "Objective 10-1’’

is the value of 10-1c-x where x is the current point and c is the original cost vector
(llcll is not necessarily 1). A row labeled "DECstation" shows the performance on
the DECstation 3100 A row labeled "Sequent(go)" shows the performance on the
Sequent Symmetry using go processors. All times reported are wall clock time.

The version of the code on the Sequent Symmetry uses the most obvious parallel
strategy; at each iteration a separate subproblem for each commodity is solved on a
separate processor. While there are other possibilities for parallelism in the program
(e.g., parallel function evaluation in the coordinator or overlapping coordinator and
subproblems in a chaotic fashion [17]), most of the work is done in solving the (large
scale) subproblems. Speedups of 4 or 5 are typical with 11 processors (and 11 com-

modities). This corresponds to perfect (linear) speedup of the subproblem solutions
if between 80 percent and 90 percent of the work is done in solving the subproblems.

2.41e+10

2.4e+10

2.39e/10

2.38e+10

2.37e+10

2.36e+10

2.35e+10

2.34e+10

2.33e/10
10 20 30 40 50

FIG. 4. PDS-20: objective function vs. iterations.

598 G.L. SCHULTZ AND R. R. MEYER

o o %

0 10 20 30 40 50

FIG. 5. PDS-20: -log of improvement (,) vs. iterations.

1.95e+10

1.9e+10

1.85e+10

1.8e+10

1.75e+10

1.7e+10
10 20 30 40 50

FIc. 6. PDS-40: objective function vs. iterations.

INTERIOR POINT BLOCK ANGULAR OPTIMIZATION 599

7-

6-

5

4-

3-

2-

1 -<>

0
0 10 20 30 40 50

FIG. 7. PDS-40: -log of improvement () vs. iterations.

1.55e/10

1.5e/10

1.45e+10

1.4e/10

1.35e+10

1.3e/10

1.25e+10

1.2e/10
0 10 20 30 40 50

FIG. 8. PDS-60: objective function vs. iterations.

600 G.L. SCHULTZ AND R. R. MEYER

10 20 30 40 50

FIG. 9. PDS-60: -log of improvement () vs. iterations.

TABLE 1.
Timing and objective value results for small PDS problems.

Phase II Relaxed Feasible Final

Total iterations 0
Objective 10-1 2.9033

DECsation

11
2.9096

5O
2.9084

1.4sec 18sec lmin 30sec
Sequent(ll) 1. lsec 12sec lmin 4sec

Ii PDS-02

Phase II Relaxed Feasible Final

Total iterations
Objective 10-l 2.8758

12
2.8876

5O
2.8858

DECstation 2.9sec 42sec 3min 17sec
Sequent(11) 1.5sec 22sec 2min 9sec

II PDS-03 II
Phase il Relaxed

Total iterations 0
Objective 10-1 2.8442

DECstation

Feasible

13
2.8622

Final

5O
2.8597

4.7sec lmin 20sec 5min 47sec
Sequent(11) 2sec 39sec 3min 38sec

II PDS-05 II
Phase II Relaxed Feasible Final

Total iterations
Objective xl0-1

DECstation
Sequent(ll)

2.7824
16

2.8125
5O

2.8054
15sec 3min 14sec 11min 28sec
4.2sec lmin 33sec 6min 43sec

PDS-06

Phase [I Relaxed Feasible Final

Total iterations 0
Objective 10-l 2.7526

16
2.7846

5O
2.7761

DECstation 17sec 4min 17sec 15min 4sec
Sequent(ll) 4.6sec lmin 56sec 8min 44sec

INTERIOR POINT BLOCK ANGULAR OPTIMIZATION 601

TABLE 2
Timing and objective value results for large PDS problems.

Ii PDS-10 II
Phase II Relaxed

Total iterations 0
Objective xl0-1 2.6333

DECstation

Feasible

16
2.6857

Final

5O
2.6727

30sec 8min 15sec 28min 31sec
Sequent(ll) 9sec 3min 57sec 16min 39sec

Phase Relaxed Feasible Final

Total iterations 0
’Objective xl0-10 2.3342

DECstation 2min 22sec
Sequent(11) 40sec

14
2.4069

33min 19sec
9min 44sec

5O
2.3822

2hr 12min
50min 43sec

II PDS-3O

Phase [[Relaxed Feasible Final

Total iterations
Objective x 10- 10 2.0284

12
2.1818

5O
2.1390

DECstation 4min 38sec lhr 9min 5hr 23min
Sequent(ll) lmin 40sec 16min 43sec lhr 48min

II PDS-4o

Phase [[Relaxed Feasible Final

Total iterations 0
Objective x 10-1 1.7188

14
1.9452

5O
1.8866

DECstation 8min 53sec 2hr 39min 10hr 27min
Sequent(l l) 3min 45sec 32min 32sec 2hr 54min

II PDS-50 II
Phase I[Relaxed Feasible Final

Total iterations
Objective xl0-1 1.5002

13
1.7336

5O
1.6625

DECstation 13min 28sec 3hr 50min 16hr 46min
Sequent(ll) 4min 35sec 54min 2sec 5hr 30min

PDS-60

Phase Relaxed Feasible Final

Total iterations 0
Objective xl0-1

DECstation
Sequent(ll)

13 5O
1.2159 1.5288 1.4462

18min 40sec 5hr 27min 24hr 6min
5min 38sec lhr 19min 6hr 55min

PDS-70

Phase [I Relaxed Feasible Final

Total iterations
Objective xl0-10 0.9309

16
1.3191

5O
1.2311

Sequent(11) 8min 12sec 2hr 9min 9hr 24min

602 G.L. SCHULTZ AND R. R. MEYER

5. Summary and conclusions. We have developed an interior point method
for block angular problems. This three-phase approach takes advantage of the con-
straint structure by keeping the block-structured constraints explicitly and using bar-
rier functions to model the coupling constraints. We obtain a starting point for the
shifted barrier approach by relaxing all coupling constraints. In computational ex-
perience with large-scale PDS problems, this shifted barrier approach has produced
feasible points in a small number of iterations. The block angular structure allows
us to compute search directions for a coordination process quickly and in parallel.
We also discussed techniques that assure convergence to an -optimal point. This
algorithm is particularly well suited to multicommodity flow problems, since the sub-
problems are then linear single-commodity networks. Computational experience with
a class of real-world multicommodity problems arising from an Air Force MAC appli-
cation indicates that the method is very efficient, even for problems with hundreds of
thousands of variables.

REFERENCES

[1] D. BAYER AND J. LAGARIAS, The nonlinear geometry of linear programming. II Legendre trans-
form coordinates and central trajectories, Trans. Amer. Math. Soc., 314 (1989), pp. 527-
581.

[2] W. CAROLAN, J. HILL, J. KENNINGTON, S. NIEMI, AND S. WICHMANN, An empirical evaluation
of the KORBX algorithms for military airlift applications, Oper. Res., 38 (1990), pp. 240-
248.

[3] Y.-C. CHENG, D. HOUCK, JR., J.-M. LIU, M. MEKETON, L. SLUTSMAN, R. VANDERBEI, AND

P. WANG, The AT&T KORBXTM system, ATT Tech. J., 68 (1989), pp. 7-19.
[4] R. CHMIELEWSKI, Private communication, March 1989.
[5] R. DE LEONE, Private communication, 1990.
[6] A. FIACCO AND G. McCORMICK, Nonlinear Programming: Sequential Unconstrained Mini-

mization Techniques, John Wiley and Sons, New York, 1968.
[7] R. FLETCHER, Practical Methods of Optimization, Second Edition, John Wiley and Sons, New

York, 1987.
[8] M. GRIGORIADIS AND TAU HSU, RNET, The Rutgers Minimum Cost Network Flow Subroutines,

Users’ Documentation, 3.6 Edition, Department of Computer Science, Hill Center for the
Mathematical Sciences, Rutgers University, New Brunswick, NJ, October 1979.

[9] D. HEARN, S. LAWPHONGPANICH, AND J. VENTURA, Restricted simplicial decomposition: com-
putation and extensions, Math. Programming Stud., 31 (1987), pp. 99-118.

[10] D. HIMMELBLAU, Applied Nonlinear Programming, McGraw-Hill, New York, 1972.
[11] B. VON HOHENBALKEN, Simplicial decomposition in nonlinear programming algorithms, Math.

Programming, 13 (1977), pp. 49-68.
[12] D. LEE, K. MEDHI, J. STRAND, R. Cox, AND S. CHEN, Solving large telecommunications

network loading problems, AT&T Tech. J., 68 (1989), pp. 48-56.
[13] G. McCORMICK, Nonlinear Programming, Theory, Algorithms, and Applications, John Wiley

and Sons, New York, 1983.
[14] J. MULVEY, S. ZENIOS, AND D. ANLFELD, Simplicial decomposition for convex generalized net-

works, J. Inform. Optim. Sciences, 11 (1990), pp. 359-387.
[15] M. PINAR AND S. ZENIOS, Parallel decomposition o] multicommodity network flows using a

linear-quadratic penalty algorithm, Tech. Report 90-12-06, Decision Sciences Department,
The Wharton School, University of Pennsylvania, Philadelphia, PA, December 1990.

[16] R. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[17] G. SCHULTZ AND R. MEYER, A flexible parallel algorithm for block-constrained optimization

problems, in Impacts of Recent Computer Advances on Operations Research, R. Sharda,
B. Golden, E. Wasil, O. Balci, and W. Stewart, eds., North Holland, New York, 1989.

[18] R. SETIONO, Interior dual proximal point algorithm using preconditioned conjugate gradient,
Tech. Report 951, Computer Sciences Department, University of Wisconsin, Madison, WI,
July 1990.

[19] J. SMITH AND S. KLINGER, Performance of the Astronautics ZS-1 central processor, Tech.
Report, Astronautics Corporation of America, 5800 Cottage Grove Rd., Madison, WI
53716, March 1988.

SIAM J. OPTIMIZATION
Vol. 1, No. 4, pp. 603-619, November 1991

()1991 Society for Industrial and Applied Mathematics
011

ON THE RATE OF CONVERGENCE OF A PARTIALLY
ASYNCHRONOUS GRADIENT PROJECTION ALGORITHM*

PAUL TSENG

Abstract. Recently, Bertsekas and Tsitsiklis proposed a partially asynchronous implemen-
tation of the gradient projection algorithm of Goldstein and Levitin and Polyak for the problem of
minimizing a differentiable function over a closed convex set. In this paper, the rate of convergence
of this algorithm is analyzed. It is shown that if the standard assumptions hold (that is, the solution
set is nonempty and the gradient of the function is Lipschitz continuous) and (i) the isocost surfaces
of the objective function, restricted to the solution set, are properly separated and (ii) a certain
multifunction associated with the problem is locally upper Lipschitzian, then this algorithm attains
a linear rate of convergence.

Key words, partially asynchronous computation, gradient projection, locally upper Lips-
chitzian multifunction, linear convergence

AMS(MOS) subject classifications. 49, 90

1. Introduction. A frequently encountered problem in optimization concerns
finding a stationary point of a continuously differentiable function f in m, the m-
dimensional Euclidean space, over a closed convex set X in m. In other words, it is
desired to find a solution to the fixed point problem

x -[x- Vf(x)]/,

where [.]+ denotes the orthogonal projection onto X, i.e., Ix]+ argminyex I]x- YlI.
In our notation, all vectors are column vectors and lxll denotes the Euclidean norm
of x, that is, Ilxll v/Ix, xl, where Ix, Y/ denotes the Euclidean inner product of x
with y.

A well-known iterative method for solving the above problem is the gradient pro-
jection algorithm proposed by Goldstein [Go164] and by Levitin and Polyak [LeP65].
In this algorithm, each new iterate is obtained by moving the previous iterate along
the negative gradient direction, and then projecting the resulting point back onto the
feasible set X, that is,

(1.1) x :--Ix- Vf(x)]/,

where " is some appropriately chosen positive stepsize. This algorithm possesses nice
numerical properties and has been studied extensively (see [Ber76], [Ber82a], [BeG82],
[CaM87], [Che84], [Dun81], [Dun87], [GaS82], [GaB84], [Go164], [Go174], [LeP65]).

Recently, Bertsekas and Tsitsiklis [BET89, 7.5] (also see [Tsi84], [TBA86]) pro-
posed a partially asynchronous implementation of the above algorithm, in which X is
decomposed into the Cartesian product of closed convex sets ’1,’", Xn (n _> 1) and
the iteration (1.1) is distributed over n processors, with the ith processor being respon-
sible for updating the block-component of x belonging to X. Each processor carries

*Received by the editors August 17, 1990; accepted for publication (in revised form) January 11,
1991. This work was supported by U.S. Army Research Office contract DAAL03-86-K-0171 (Center
for Intelligent Control Systems) and by National Science Foundation grant NSF-DDM-8903385.

Department of Mathematics, GN-50, University of Washington, Seattle, Washington 98195.

603

604 PAUL TSENG

its own estimate of the solution, communicates to the other processors by message
passing, and may act independently of the other processors. Such an "asynchronous"
(or "chaotic") computing environment, proposed by Chazan and Miranker [ChM69],
offers several advantages over a synchronous (either sequential or parallel) computing
environment: for example, the synchronization penalty is low and the fast proces-
sors need not wait for the slower ones. In addition, asynchronous computation brings
forth interesting and challenging questions about the convergence of algorithms. For
a detailed discussion of asynchronous computation, see [BeT89].

It is known, under a standard Lipschitz continuity condition on the gradient Vf,
that if - is sufficiently small, then every limit point of the iterates generated by the
partially asynchronous gradient projection algorithm is a stationary point [BET89,
7.5]. However, little is known about the convergence or the rate of convergence of
the iterates. In fact, even in the sequential case (i.e., the original gradient projection
algorithm), fairly little is known about the rate of convergence. Rate of convergence
analysis typically requires the solution points to be isolated and the objective function

f to be locally strongly convex (see [LeP65], [Dun81], [Dun87]), which in general does
not hold. (An exception to this is [BeG82], which proves linear rate of convergence
for the case where k’ is polyhedral and f is the composition of an affine mapping
with a strongly convex differentiable function.) Recently, Luo and Tseng [LuT90]
(also see [LuW89], [TsL90a], [WsL90b] for related analyses) proposed a new approach
to demonstrating the linear rate of convergence of iterative optimization algorithms,
based on bounding the distance to the solution set from a point x near the solution
set by the norm of the "residual" at x, namely,

x- Ix- Vf(x)]+.

Such a local "error bound" does not hold in general, but can be shown to hold for
a number of important problem classes, including quadratic programs and strongly
convex programs.

In this paper, we adapt the approach of Luo and Tseng to analyze the partially
asynchronous gradient projection algorithm. In particular, we show that the algorithm
attains a linear rate of convergence, assuming only that (i) the solution set is nonempty,
(ii) f is bounded from below on k’, (iii) Vf is Lipschitz continuous on k’, (iv) the
isocost surfaces of the objective function, restricted to the solution set, are "properly
separated" from each other, and (v) the above error bound holds near the solution
set. Thus, even in the sequential case, our rate of convergence result appears to be a
significant improvement over existing ones. (Assumptions (i) to (iv), as we shall see,
hold for most problems, so the key assumption is (v).)

This paper proceeds as follows: In 2 we describe the partially asychronous gra-
dient projection algorithm and state our main convergence result for this algorithm.
In 3 we prove the main result for the special case where the computations take place
sequentially. In 4, we prove the main result, building on the ideas developed in 3.
In 5 we discuss possible extensions of our work.

2. Algorithm description and convergence results. We formally describe
the partially asynchronous gradient projection algorithm below (also see [BET89,
7.5]). In this algorithm, k’ is decomposed into the Cartesian product of closed convex
sets XI,... X, (n >_ 1), that is,

(2.1)

PARTIALLY ASYNCHRONOUS GRADIENT PROJECTION 605

According to the above product structure of X, let the elements x of ,’ be decomposed
into block-components, so x (xl,x2,...,xn), with x E X’. Let Vf(x) denote
the partial derivative of f(x) with respect to x, and let [x]+ denote the orthogonal
projection ofx onto X’. Then, for a given fixed stepsize 7 > 0, the algorithm generates
a sequence of iterates {x(1),x(2),...} in X’ according to the formula:

(2.2) xi(t + 1) { xi(t),[xi(t) -/Vif(xi(t))], otherwise,ift e Ti; 1, n,

where T is some subset of {0, 1, 2,...} and xi(t) is the vector in X’ given by

(2.3)

with each T (t) some nonnegative integer not exceeding t. (The initial iterate x(0) X’
is assumed given.)

Roughly speaking, T is the set of times at which x is updated (by processor i);
x(t) is the solution estimate known to processor at time t; and T(t) is the time at
which the value of xj used by processor at time t is generated by processor j (so
t--T(t) is effectively the communication delay from processor j to processor at time
t). A key feature of the algorithm is that the components are updated using values
which may be out-of-date.

We make the standing assumption that the iterates are updated in a partially
asynchronous manner.

PARTIAL ASYNCHRONISM ASSUMPTION. There exists an integer B > 1 such that
(a) {t,t+l,...,t+B-1}NT # , for all t > O and all i;
(b) O < t Tj(t) < B l, for all t T, all j and all i.

(Roughly speaking, the Partial Asynchronism Assumption states that no processor
waits an arbitrarily long time to compute or to receive a message from another pro-
cessor. The justification for this assumption is discussed in 7 of [BeT89].)

We make the following standard (and reasonable) assumptions about f and X’.
ASSUMPTION A. (a) f is bounded from below on X.
(b) The solution set X* { x e m x [x- Vf(x)]+ } is nonempty.
(c) Vf is Lipschitz continuous on X, that is,

IlVf(y) Vf(x)ll Lily

where L > 0 is the Lipschitz constant.
The following convergence result is due to Bertsekas and Tsitsiklis (see Proposi-

tion 5.3 in [BET89, 7.5]).
PROPOSITION 2.1. Under Assumption A, there exists a scalar’o > 0 (depending

on L, n, and B only) such that if 0 < " < "o, then any limit point of the sequence
{x(t)} generated by the partially asynchronous gradient projection algorithm (2.2),
(2.3) is an element of X*.

The above result is rather weak since it does not assert that {x(t)} has a limit
point. To prove the convergence of {x(t)}, we need to make, in addition to Assumption
A, the following assumptions on f and X’.

ASSUMPTION B. (a) There exists a scalar e > 0 such that

x X* X*YE

606 PAUL TSENG

(b) For every ? there exist scalars > 0 and > 0 such that

(x) llx- Ix- Vf(x)]+ll

for all x e X with f(x)

_
and llx- Ix- Vf(x)]+[I

_
5, where we let (x)

minex, IIx 211.
The main result of this paper is stated below. Its proof, which is quite involved,

is given in 4.
PROPOSITION 2.2. Under Assumptions A and B, there exists a scalar /1 > O,

depending on L, n, B, and x(O) only, such that if 0 < / < /, then the sequence
{x(t)} generated by the partially asynchronous gradient projection algorithm (2.2)-
(2.3) converges at least linearly to an element of X* with a B-step convergence ratio

of 1 -c/, where c > 0 is some scalar constant.
A few words about Assumption B are in order. Assumption B(a) is a technical

assumption which states that the isocost surfaces of f, restricted to the solution set
A’*, are "properly separated" from each other. This assumption clearly holds if A’* is
a finite set. More generally, it can be seen to hold if f takes on only a finite number
of values on ,* or if the piecewise-smooth path connected components of X* are
properly separated from each other. (We say a set is piecewise-smooth path connected
if any two points in that set can be joined by a piecewise-smooth path lying entirely
in that set.) Thus, it holds automatically when f is convex (since X* is then convex)
or when X is polyhedral and f is quadratic (see Lemma 3.1 in [TsL90a]).

Assumption B(b) is closely related to the notion of a locally upper Lipschitzian
multifunction (see [Rob81], [Rob82]). More precisely, for any fixed scalar y, let R be
the residual function given by

R(x) x- Ix- Vf(x)]/,

restricted to the domain { x e X f(x) g }. Then Assumption B (b) effectively
says that the inverse of R, a multifunction, is locally upper Lipschitzian at the origin
or, more precisely, there exist scalars 5 > 0 and a > 0 such that

for all z E m with lzll _< 5, where B denotes the unit Euclidean ball in m.
A simple example (e.g., A’ and f(x) -Ixl with A > 2 a fixed scalar) will

show that Assumption B (b) does not hold in general. On the other hand, it does hold
for a number of important problem classes. For example, it holds when Vf is strongly
monotone and Lipschitz continuous (see [Pan87]). Alternatively, it holds when A’ is
polyhedral and f is either quadratic (see [Rob81], [WsL90a]) or of the form

f(x) g(Ex) + (b, x),

for some k m matrix E, some b E m, and some convex twice differentiable function
g in k with V2g positive definite everywhere (see [LuT90]). It also holds when X
is polyhedral and f is the dual functional associated with a problem of minimizing a
strictly convex function subject to linear constraints (see [TsL90b]).

3. Convergence proof for the sequential case. As the proof of Proposition
2.2 is quite intricate, it is instructive to first examine a simpler case to gain a feel for
the main ideas used in the proof. In this section, we give a proof of Proposition 2.2 for

PARTIALLY ASYNCHRONOUS GRADIENT PROJECTION 607

the special case of the algorithm (2.2)-(2.3) in which B 1 (i.e., the original gradient
projection algorithm). We remark that, even for this special case, our convergence
result (see Proposition 3.1) appears to be new since it assumes neither convexity of f
nor uniqueness of solution (compare with [SeG82], [BET89, 3.5.3], [Dun81], [Dun87],
[LuT90, 4], [LeP65]).

For B 1, the partially asynchronous gradient projection algorithm (2.2)-(2.3)
reduces to the sequential algorithm

(3.1) x(t + 1) Ix(t) /Vf(x(t))]+, t O, 1,...,

with x(0) E X given. To analyze the convergence of {x(t)} we need the following
lemma, which follows from the observation that, for any x and d in m, the function
p(7)]x- Ix- d]+]] is monotonically increasing in > 0 and the function p()/7
is monotonically decreasing in > 0 (see Lemma 1 in [GaB84]; also see Lemma 2.2 in
[CaM87]).

LEMMA 3.1. For any x X and any scalar > O,

min{1, 7}lx- Ix- Vf(x)]+ll N llx- [x- 7Vf(x)]+ll.

We now state and prove the main result of this section. The proof is patterned
after one given in 3 of [TsL90a] and is based on using the locally upper Lipschitzian
condition (2.5) to show that {x(t)} tends toward X* (cf. (3.5)) and that, near X*,
the difference in the f value of x(t + 1) and that of an element of X* nearest to x(t)
is at most of the order lx(t + 1) x(t)ll 2 (see (3.9)).

PROPOSITION 3.1. Under Assumptions A and B, if 0 < < 2/L, then the se-
quence {x(t)} generated by the sequential gradient projection algorithm (3.1) converges
at least linearly to an element of X* with a convergence ratio of 1- cT, where c > 0
is some scalar constant.

Proof. It is well known, by using (2.4) and (3.1), that

(3.2) f(x(t + 1)) f(x(t))

(See, for example, [Go164] or [LeP65].) Since 0 < 7 < 2In and, by Assumption A (a),
f is bounded from below on X, then (3.2) implies

(3.3) x(t) x(t + 1) 0,

so (3.1) and Lemma 3.1 yields x(t)- Ix(t)- Vf(x(t))]+ O. Since f(x(t)) f(x(O))
for all t (cf. (3.2)), this together with Assumption B (b) implies that there exist an
index and a scalar > 0 (depending on x(0)) such that, for all t [, (2.5) holds
with x x(t), so

(a.4) max 1, Ilk(t) (t + 1)11,

where (t) denotes an element of X* for which Ilk(t)- e(t)ll ((t)), he second
inequality follows from Lemma a.1, and he equality follows from (a.1). Combining
(a.a) wih (a.4) gives

(a.) (t) (t) o,

608 PAUL TSENG

so 2(t) -2(t 4- 1) --. 0. Then, Assumption B (a) implies that 2(t) eventually settles
down at some isocost surface of f, i.e., there exist an index > and a scalar (C) such
that

(3.6) f (hc(t)

We have, from ’(t) e X* and x(t) e X that (Vf((t)), x(t) (t)) > 0 and from
the Mean Value Theorem that f((t))- f(x(t)) (Vf((t)),(t)- x(t)), for some
m-vector (t) lying on the line segment joining (t) with x(t). Upon summing these
two relations and using (3.6), we obtain

where the last inequality follows from the Lipschitz condition (2.4) and
IIx(t)- (t)l]. This, together with (3.5), yields

(3.7) lira inf f(x(t))

Since x(t + 1) is obtained by projecting x(t)- 7Vf(x(t)) onto X (cf. (3.1)) and
2(t) X, we have

(3.8) (x(t) 7Vf(x(t)) x(t + 1), x(t + 1) (t)}

Also, by the Mean Value Theorem, for each t k there exists some ((t) lying on the
line segment joining x(t + 1) with (t) such that

f(x(t + 1)) f(()) (Vf(($)), x(t + 1) (t)),

which, when combined with (3.6) and (3.8), yields

f(x(t + 1)) f(x(t + 1)) f((t))

Lll((t x(t)l +]]x(t) x(t + 1)[I IIx(t + 1) (t)l

((1))
1

x ([Ix(t + 1) x(t)ll + I[(t) x(t)ll)
(a.9) ll(t +)- (t)ll,
where the third inequality follows from the Lipschitz condition (2.4), the fourth in-
equality follows from the fact that ((t) lies between x(t + 1) and 2(t), and the last

PAFLTIALLY ASYNCHI:tONOUS GI:ZADIENT PI:tOJECTION 609

inequality follows from (3.4), with /1 being some scalar constant depending on L, ,
and 7 only.

Using (3.2) to bound the right-hand side of (3.9) gives

where /2 is some positive scalar depending on L, , and 7 only. Upon rearranging
terms in the above relation, we obtain

i+/2

On the other hand, we have from (3.7) and the fact that f(x(t)) is monotonically
decreasing with t (cf. (3.2)), that f(x(t)) > (C) for all t, so the above relation implies
that {f(x(t))} converges at least linearly to 0. Since I]x(t + 1) x(t)ll 2 is of the order
f(x(t))- f(x(t + 1)) (cf. (3.2)), this implies that {x(t)) converges at least linearly.
Since (x(t)) 0 [cf. (3.5)], then the point to which {x(t)} converges is in X’*. That
the convergence ratio is of the form 1 -7c can be seen by explicitly writing out 2 as
a function of 7. D

We remark that we need not have assumed 7 to be fixed or small in the above
analysis, so long as 7 is chosen so that IIx(t) x(t + 1)]12 is of the order f(x(t))
f(x(t + 1)) (cf. (3.2)). This is an important generalization since, in practice, 7 is
typically not fixed but determined by some linesearch rule, such as the Armijo-like
rule of Bertsekas [Ber76].

4. Convergence proof for the general case. In this section we extend the
analysis in 3 to prove Proposition 2.2, the main result of this paper. Our argument
is very similar in idea to the proof of Proposition 3.1, but, owing to the presence of
asynchronism in computations, error quantities arise in many places and have to be
carefully estimated. We show that the errors caused by asynchronism are of second
order in 7 and are negligible when 7 is small.

We assume throughout that Assumptions A and B hold. Let {x(t)} be a se-
quence of iterates generated by the partially asynchronous gradient projection algo-
rithm (2.2)-(2.3). For the moment, the only restriction that we place on the stepsize
7 is that it be positive. We will, in the course of the proof, impose additional upper
bounds on 7.

For each t > 0, let

(4.1) si(t) xi(t + 1) xi(t), 1,..., n.

(For notational simplicity, we have defined si(t) slightly differently from [BET89,
7.5.4].) Then, by (2.2), for every there holds

si(t) O, Vt C T,
8i(t) [xi($) 7Vif(xi(t))]i+ xi(t) Vt E Ti.

For notational simplicity we will use O(Tk), for any integer k, to represent any
continuous function g" (0,) ---, with the property

610 PAUL TSENG

for some scalar c > 0 depending on L, n, B, and x(0) only. We will implicitly assume
that -y is always taken sufficiently small so that each g(7) encountered is positive.

First we have the following result analogous to (3.2).
LEMMA 4.1.

t+B-1

(4.4) f(x(t+B)) <_ f(x(t)) 0(7-1 E [[S(T)[[2 + O(1) E
Proof. For any and any t 6 Ti, since xi(t) + si(t) is the orthogonal projection

of xi(t) -7Vif(x(t)) onto Xi (cf. (4.3)) and xi(t) Xi, we have, from a well-known
property of orthogonal projections, that

(si(t), 7Vif(xi(t)))

_
-II()ll.

Combining this with (4.1)-(4.2) and using (2.4) and an argument analogous to that
in [BET89, pp. 529-530] gives

By using the identity a. b _< a2 + b2, we can bound the right-hand side of the above
relation:

f(x(t + 1))- f(x(t))

1 -,TLiis(t)ii + L Bv lls(t)ll + IIs(-)ll
v=-B

t-i1 7L /LBvrdlls(t)ll. + Lv/- E II(-)ll
’7 =t-B

Applying the above argument successively to t, t / 1,..., t + B- 1 we obtain

(4.5) f(x(t / B)) f(x(t)) <_ 1 7L "yLBvI- t+--i ii ()ll
")’ ’=t

t+B-1

+ LB/- E I1()11"’=t-B

(We analyze the B-step decrease in f because, in the worst case, B time units can
pass before any component of x is iterated upon.)

By summing (4.4) over all t 0, B, 2B,..., we see that, for -y sufficiently small
so that the 0(7-1) term dominates the O(1) term in (4.4), there holds

lim sup f(x(t)) < f(x(O)) 0(-1) E I1()11.
t-cx ’r=O

PARTIALLY ASYNCHRONOUS GRADIENT PROJECTION 611

(In fact, it can be seen from (4.5) that it suffices to take 7 < L + 3LBv/-. This
implies that (f(x(t))} is bounded (cf. Assumption A (a)) and

(4.6) x(t) x(t + 1) -- 0

(cf. (4.1)), so, by using (2.3)-(2.4) and (4.3) and the Partial Asynchronism Assump-
tion, we can conclude that

x(t) -[x(t) -7Vf(x(t))]/ --+ 0.

(See [BET89, pp. 530-531] for a more detailed argument.) Up to this point our
analysis has followed closely the proof of Proposition 5.1 in [BET89, 7.5], but it starts
to diverge from here on.

Equation (4.7) and Lemma 3.1 imply x(t)- [x(t)- Vf(x(t))]+ - 0, and since
{f(x(t))} is bounded, then, by Assumption B (b), there exists a threshold [_> 0 and
a scalar a > 0 (depending on x(0) only) such that

For each t, let (t) be an element of A’* satisfying I[x(t)- (t)l (x(t)). Then, we
have from the above relation and Lemma 3.1, that

(4.8) I]x(t) 2(t)11 _< amax 1, [Ix(t) -[x(t) -7Vf(x(t))]+[[Vt >_ .
Combining (4.7) with (4.8) gives

(4.9) x(t) 2(t) --. O,

so (4.6) yields (t)-(t+ 1) 0. Then, Assumption B (a) implies that (t) eventually
settles down at some isocost surface of f, so there exist an index _> and a scalar (C)

such that

(4.10) f(2(t)) Vt >_ .
Then, an argument identical to the proof of (3.7), with (3.5) and (3.6) replaced by
(4.9) and (4.10), respectively, gives

(4.11) lim inf f(x(t)) >_ (C).

To prove our next main result (Lemma 4.4), we need the following two technical
lemmas. The first lemma says that IIx(t)-[x(t)-TVf(x(t))]+ll 2 is upper bounded by

=t IIS(T)I plus a smaller term. The proof of this, trivial in the sequential case
(cf. (3.1)), is complicated owing to the presence of asynchronism in the computations.

LEMMA 4.2. For all t >_ O, there holds

t+B-1 t-1

IIX(t) IX(t) --’Vf(x(t))]+ll2

_
O(1) E 118(T)112 "" O() Ev=t -=t-B

Proof. Fix any t E {0, 1,...}. For each index E {1,..., n}, let t be the smallest
element of T that exceeds t. Then (cf. (4.1), (4.2))

(4.13) xi(t) xi(t),

612 PAUL TSENG

and, by (4.3),

(4.14) () [() vf(x())]: x().

Also, by part (a) of the Partial Asynchronism Assumption, there holds t <_ t <_
t + B- 1. Combining (4.13) with (4.14), we have

IIs(t’)ll II[x(t) 9/Vif(xi(ti))] "+, x(t)ll
>_ I[[xi(t) /Vif(x(t))]. xi(t)[/llVif(x(t)) Vif(xi(ti))ll
>_ II[x(t) Vf(x(t))]7 x(t)ll LIIx(t) x(#)ll,

where the last inequality follows from the Lipschitz condition (2.4). By using the
identity (a--),b) 2 _> (1- ")a2 -7b2, we obtain from the above relation that

(4.15) IIs(#)ll 2 >_ (1 ")ll[x(t) 7Vf(x(t))]+ x(t)ll 2 /L211x(t) x(t)ll 2.

Also, since t <_ t _< t + B 1 so that (by part (b) of the Partial Asynchronism
Assumption) t- B + 1 _< T(ti) _< t + B- 1, we have from (4.1) that, for all j,

2

IIx(t) X(T(t))ll2 <
\r=t-B+l

t+B-1

-r=t-B+l

where the second inequality follows from the identity (al +... + a2B)2 < 2B(al)2 +
+ 2B(a2B)2. Summing the above relation over all j and using (2.3) yields

t+B-1

v=t-B

Using the above to bound the right-hand side of (4.15) then gives

t+B-1

I]si(ti)ll 2 > (1)ll[x(t) /vif(x(t))]7 x(t)ll 2 27L2B E IlS(T)ll2
r=t--B

Since the choice of was arbitrary, the above relation holds for all E {1,..., n},
which when summed over all and using the "obvious" inequality [cf. t _< t _< t+B-1]

t+B-1 n t+B-1 n

=t i=1 ’=t i=1

then gives

t+B-1 t+B-1

E II(T)Ii 2 > (1 -)ll[x(t) /Vf(x(t))]+ x(t)ll 2 2/L2Bn
r=t ’=t-B

IIs(r)ll 2,

Taking - < 1 and rearranging terms in the above relation proves (4.12).

PARTIALLY ASYNCHRONOUS GRADIENT PROJECTION 613

We next have a technical lemma on the behaviour of f over X’. Its proof is given
in 6.

LEMMA 4.3. For any x and xl, ,xn in m and any 6 2d, there holds
(.6)

I() I(.) <_ (’-)11 [vI()]+ll + (1) I1 s:ll + I1 11
i=1

where z is the m-vector with components z,--[x- 7V,f(x’)]+, i- 1,..., m.
By using (4.8) and (4.10) together with Lemmas 4.2 and 4.3, we can now upper

bound f(x(t + B))- (C) in a manner analogous to (3.9).
LEMMA 4.4. For all t > , there holds

Proof. Fix any t > . For each i, let t denote the smallest element of T exceeding
t. Then, by (2.2),

(4.18) x(t’ + 1)--[x(t)- 7V,f(x(t’))]

and, by part (a) of the Partial Asynchronism Assumption,

(4.19) t <_ t

x xi(t) for all i, and 2 2(t). This thenLet us apply Lemma 4.3 with x x(t),
gives

f(z) f(2(t)) <_ O(7-2)r(t) + O(1) IIx(t) (t)ll 2 + IIx(t) x’(t’)ll 2
i=1

where z is the m-vector whose ith component zi is xi(t / 1) [cf. (4.18)] and for
convenience we have let r(t)= IIx(t)- Ix(t)- 7Vf(x(t))]+ll 2. By applying (4.8) and
(4.10) to the above relation, we obtain the simpler bound

n

f(z) (C) e(.y-.)r(t) + O() ’ IIx(t) x(t’)ll
i--1

n

e(.-)r(t) + e(1) IIx(t) x(-j(t))ll
=1 j=

where the equality follows from (2.3). Since (4.19) holds, then part (b) of the Partial
Asynchronism Assumption implies t- B + 1 < T(t) g t + B- 1 for all and all j,
so the above relation, together with (4.1), yields

(4.20)

n t+B-1

f(z) (C) < e(,-lr(t) + O(l): I1(-111
j=l r=t-B+l

t+B-1

e(!/-.lr(t) + O(1) I1(-111.
"r=t-B+l

614 PAUL TSENG

Also, we have from (4.1), (4.19), and the definition of z that

+B-I

xi(t + B) zi xi(t + B) xi(t + l) E
so an argument similar to the proof of (4.4) yields

t-1

f(x(t + B)) f(z) + O(1)
r=t-B

This, combined with (4.20), and then using the definition of r(t) and (4.12), gives

By using the bounds (4.4), (4.11), and (4.17), we can now prove the linear con-
vergence of {x(t)}. To simplify the notation, let

(t) f(x(t)) ,
t--1

v=t-B

for all t >_ . Then, we have from (4.4), (4.11), and (4.17), respectively, that, for any
t>{,

(4.21) a(t + B) <_ a(t) "-lAlfl(t + B)+ A2fl(t),
0 <_ lim inf a(T),

a(t + B) <_ 7-2A3fl(t + B)+ /-iA3fl(t),

where A, A2, A3 are positive scalars depending on L, n, B, and x(0) only. (Of course,
we always assume, implicitly, that - is sufficiently small.) Note that we are now
explicitly writing out the constant in the O(.) notation. For this part of the proof,
the constant matters. Our goal will be to show, by induction, that {a(t)} and, in
particular, {fl(t)} converge at least linearly (see Lemma 4.5). (Note that fl(t) >_ 0
but, in contrast to the sequential case, a(t) may be negative. This fortunately does
not complicate our proof to any significant degree.)

Fix any t _> + B. Applying (4.23) to bound the fl(t / B) term in (4.21) and
then rearranging terms gives

(1 + 9/A/A3)a(t + B) <_ a(t) + (A + A2)fl(t).

Also, by substituting t-B for t in (4.21) and rearranging terms, we obtain --Afl(t) <_
a(t B) a(t) + A2fl(t B), which, when applied to bound the right-hand side of
the above relation, yields

(1 + 7A/A3)a(t + B) <_ a(t) + 7(1 + A2/A) (a(t B) a(t) + A2(t B))

After rearranging terms, we obtain

(4.24) a(t + B) < 1
1 + 7A/A3 ((1 /A4)a(t) + 9/A4 (a(t B) + A2(t B))),

PARTIALLY ASYNCHRONOUS GRADIENT PROJECTION 615

where for convenience we let A4 1 + A2/A1. Also, for any integer k > 2, we have
from repeated applications of (4.21) that

k k-1

a(t + kB) < a(t) "y-iA E(t + 1B) + A2 E (t + 1B)
/=1 /----0

a(t) (’I-A As) y (t + 1B) -"-A(t + kB) + A23(t).

By taking -), < A/A2, we then obtain from the nonnegativity of/3(T), for all T, that

a(t + kB) <_ a(t) (7-A A2)3(t + B)+ A2/3(t).

By letting k - cx) in the above relation, we obtain from (4.22) that

0 <_ a(t)- (7-AI A2)/3(t + B) + A2/3(t),

which, upon rearranging terms, gives

/ (a(t) + A2fl(t)).(4.25) (t + B) <_
A -"A2

Fix any two scalars a > 0 and b > 0 satisfying

(4.26) 8A3A4A2b Aa,

with a and b taken sufficiently large so that

(4.27) a(i) < a, a(i + B) <_ a, < Z(i + B) <

Also let

(4.28) A1
2A3 + 2A."

By using (4.24)-(4.28), we obtain the following main result of this section.
LEMMA 4.5. There exists a scalar / > 0 (depending on L, n, B, and x(O) only)

such that if 0 < / < "yl, then, for all r O, 1, 2,..., there holds

(4.29) a(i + rB) <_ apr-,
(4.30) (i + rB) <_ bpr-,
where

(4.31) p 1 9’c.

Proof. Suppose that - is sufficiently small so that furthermore

(4.32a)
(4.32b)
(4.32c)
(4.32d)
(4.32e)

"y < l/A4,
<

"y <_ A/(8A3A4c),
"y<l,

"(a/b + A2) _< (A "yA2)(1 -),c).

616 PAUL TSENG

We will show by induction on r that (4.29) and (4.30) hold for all r _> 0.
By (4.27), both (4.29) and (4.30) hold for r 0, 1. Suppose that (4.29) and (4.30)

hold for all r from 0 up to some k >_ 1. We show below that (4.29) and (4.30) hold for
r k / 1, which would then complete the induction on r and show that (4.29) and
(4.30) hold for all r >_ 0. For convenience, we denote t / kB in what follows.

First we show that

(4.33) a(t + B) <_ apk.

Since (4.29) and (4.30) hold for all r up to k, we obtain from (4.24) and (4.32a) that

1
a(t + B) <_

1 + ?A/A3 ((1 -/A4)apk- + /A4 (apk-2 + A2bpk-2))

1<_ (1- /A4 + /A(1 + A2b/a)(1 + 2/c))apk-
1 /A1/A3+

1
(1 + ,22A4c + ,A4(1 + 2/c)A2b/a) apk-1

1 AI/A3+
1<- 1 + /A/A3 (1 + /A/(2A3))apk-

(/A)aPk-1-
2A3+’2A

_< 1-2Aa+2A Pk-’

where the second inequality follows from the bound p- _< 1 + 2c [cf. (4.31), (4.32b)],
the third inequality follows from (4.26) and (4.32b)-(4.32c), and the last inequality
follows from (4.32d). The above relation, together with (4.28) and (4.31), proves

Next we show that

(4.34) (t / B) g bpk.

Since (4.29) and (4.30) hold for all r from 0 up to k, we have from (4.25) that

/ (apk- + A2bpk-)(t + B) <_
A -/A2
/(a/b + A2)
A-A

bp-

This, combined with (4.32e) and (4.31) shows that (4.34) holds.
Since (4.33) and (4.34) hold, then (4.29) and (4.30) hold for r k
Lemma 4.5 implies that ((t)} converges at least linearly with a B-step conver-

gence ratio of 1- c. Since IIx(t)- x(t- B)II 2 (_ B(t) for all t (cf. (4.1) and the
definition of (t)), this shows that (x(t)} converges at least linearly with a B-step
convergence ratio of x/1 ,c, which is at most 1- c/2. Since (x(t)) 0 (cf. (4.9)),
it follows that the point to which (x(t)} converges is an element of A’*.

5. Extensions. For simplicity, we have assumed that Vf is Lipschitz continuous
everywhere on A’ (cf. (2.4)), but this need not be so. More generally, it suffices that

f tends to c at any boundary point of its effective domain and that Vf is Lipschitz
continuous on each level set of f, intersected with X.

PARTIALLY ASYNCHRONOUS GRADIENT PROJECTION 617

In [TsB86] (also see 7.6 of [BET89]), a distributed asynchronous routing algo-
rithm is discussed. This algorithm is based on the idea of gradient projection and,
by making suitable modifications to our analysis, it is possible to show that, under
conditions analogous to Assumptions A and B, this algorithm also attains a linear
rate of convergence.

A drawback of our main result (Proposition 2.2) is that convergence requires the
algorithm to take very small steps. Intuitively, if f is approximately separable with
respect to the components x (that is, f(x) , -,i f(x) for some functions fi), then the
algorithm should be able to take much larger steps. This notion can be made precise
by incorporating the effect of second-order quantities such as Of/OxOxj (assuming
that f is twice differentiable) into the convergence analysis.

6. Proof of Lemma 4.3. For each i, since z is the orthogonal projection of
x- 7Vf(x) onto the closed convex set ,’ and (cf. 2 E ,’ and (2.1)) 2 E X, we
have

0.

Also, by the Mean Value Theorem, there exists some (lying on the line segment
joining z with 2 such that f(z) f(2) (z 2, Vf()/, so the above relation yields

(6.1)

where the third inequality follows from the Lipschitz condition (2.4). Now we bound
the right-hand side of (6.1). Since is between z and 2, we have I1- xll < IIz- xll-4-
112 xll so that

(6.2)
Let 2 Ix- 7Vf(x)]+. Then we have, from the definition of z and the nonex-

pansive property of the projection operators [.]+, 1,..., n, that

(6.3)

618 PAUL TSENG

where the last inquality follows from the Lipschitz condition (2.4).
By bounding the right-hand side of (6.1) using (6.2) and the triangle inequality,

we have

f(z) f() <_ IIz 11 LII xll + L[Ix x*ll / (L -4-
i----1

i=1

_<n 3 L+ +4 (llz-211

n

/3L2llx-xll2,
i=1

(1))+ n+ (llz-211+l12-xll)

2 + [[2- x]l 2) + n(3L2 + 4)llx- 112

where the last inequality follows from expanding out the product in the line above
and then using the bound a. b < a2 -4- b2 on each term of the expansion. Using (6.3)
to bound the IIz- 2112 term in the above relation, obtain (4.16).

Acknowledgment. Thanks are due to Z.-Q. Luo for his many helpful comments
on an earlier draft of this paper.

REFERENCES

[Ber76] D. P. BERTSEKAS, On the Goldstein-Levitin-Polyak gradient projection method, IEEE
Trans. Automat. Control, AC-21 (1976), pp. 174-184.

[Ber82a] , Projected Newton Methods for Optimization Problems with Simple Constraints,
SIAM J. Control. Optim., 20 (1982), pp. 221-246.

[Ber82b] ., Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New
York, NY, 1982.

[BeG82] D. P. BERTSEKAS AND E. M. GAFNI, Projection methods for variational inequalities with
application to the traffic assignment problem, Math. Programming Stud., 17 (1982),
pp. 139-159.

[BeT89] D. P. BERTSEKAS AND J. N. TSITSIKLIS, Parallel and Distributed Computation: Numerical
Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[CaM87] P. H. CALAMAI AND J. J. MORI, Projected gradient methods for linearly constrained
problems, Math. Programming, 39 (1987), pp. 93-116.

[ChM69] D. CHAZAN AND W. L. MIRANKER., Chaotic relaxation, Linear Algebra Appl., 2 (1969),
pp. 199-222.

[Che84] Y. C. CHENG, On the gradient-projection method for solving the nonsymmetric linear
complementarity problem, J. Optim. Theory Appl., 43 (1984), pp. 527-541.

[Dun81] J. C. DUNN, Global and asymptotic convergence rate estimates for a class oj: projected
gradient processes, SIAM J. Control Optim., 19 (1981), pp. 368-400.

[Dun87] , On the convergence of projected gradient processes to singular critical points, J.
Optim. Theory Appl., 55 (1987), pp. 203-216.

[GAB82] E. M. GAFNI AND D. P. BERTSEKAS, Convergence of a Gradient Projection Method,
Report No. P-1201, Laboratory for Information and Decision Systems, Massachusetts
Institute of Technology, Cambridge, MA, 1982.

[GaB84] E. M. GAFNI AND D. P. BERTSEKAS, Two-metric projection methods for constrained
optimization, SIAM J. Control Optim., 22 (1984), pp. 936-964.

[Go164] A. A. GOLDSTEIN, Convex programming in Hilbert space, Bull. Amer. Math. Soc., 70
(1964), pp. 709-710.

PARTIALLY ASYNCHRONOUS GRADIENT PROJECTION 619

[Go174] A. A. GOLDSTEIN, On gradient projection, in Proc. 12th Annual Allerton Conference on
Circuits and Systems, Allerton Park, IL, 1974, pp. 38-40.

[LeP65] E. S. LEVITIN AND B. T. POLYAK, Constrained minimization methods, Zh. Vychisl. Mat.
Mat. Fiz., 6 (1965), pp. 787-823; English translation in USSR Comput. Math. Phys.,
(), . -0.

[LuT89] Z.-Q. Luo AND P. TSENG, On the convergence of the coordinate descent method for con-
vex differentiable minimization, Report No. P-1924, Laboratory for Information and
Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, December
1989 (revised July 1990); J. Optim. Theory Appl., 72 (1992), to appear.

[LuT90] On the linear convergence o] descent methods]or convex essentially smooth mini-
mization, Report No. P-1979, Laboratory for Information and Decision Systems, Mas-
sachusetts Institute of Technology, Cambridge, MA, June 1990; SIAM J. Control Op-
tim., to appear.

[Mor89] J. J. Mortl, Gradient projection techniques]or large-scale optimization problems, in Proc.
28th Conference on Decision and Control, Tampa, FL, December 1989.

[Pan87] J.-S. PANG, A posteriori error bounds for the linearly-constrained variational inequality
problem, Math. Oper. Res., 12 (1987), pp. 474-484.

[Rob81] S. M. ROBINSON, Some continuity properties of polyhedral multifunctions, Math. Program-
ming Stud., 14 (1981), pp. 206-214.

[Rob82] , Generalized equations and their solutions, part II: Applications to nonlinear pro-
gramming, Math. Programming Stud., 19 (1982), pp. 200-221.

[TsL90a] P. TSING AND Z.-Q. Luo, Error bound and convergence analysis of matrix splitting al-
gorithms for the aJfine variational inequality problem, Report P-1988, Laboratory for
Information and Decision Systems, Massachusetts Institute of Technology, Cambridge,
MA, June 1990; SIAM J. Optimization, to appear.

[TsL90b] , On the linear convergence of dual ascent methods for minimizing a strictly convex

function subject to linear constraints, in preparation.
[Tsi84] J. N. TSITSIKLIS, Problems in decentralized decision making and computation, Ph.D. thesis,

Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Cambridge, MA, 1984.

[TsB86] J. N. TSITSIKLI$ AND D. P. BERTSEKA$, Distributed asynchronous optimal routing in data
networks, IEEE Trans. Automat. Control, AC-31 (1986), pp. 325-332.

[TBA86] J. N. TSITSIKLIS, D. P. BERTSEKAS, AND M. ATHANS, Distributed asynchronous de-
terministic and stochastic gradient optimization algorithms, IEEE Trans. Automat.
Control, AC-31 (1986), pp. 803-812.

SIAM J. OPTIMIZATION
Vol. 1, No. 4, pp. 620-642, November 1991

() 1991 Society for Industrial and Applied Mathematics
012

PARTITIONED DYNAMIC PROGRAMMING FOR OPTIMAL
CONTROL*

STEPHEN J. WRIGHT
Abstract. Parallel algorithms for the solution of linear-quadratic optimal control problems

are described. The algorithms are based on a straightforward decomposition of the domain of the
problem, and are related to multiple shooting methods for two-point boundary value problems. Their
arithmetic cost is approximately twice that of the serial dynamic programming approach; however,
they have the advantage that they can be efficiently implemented on a wide variety of parallel
architectures. Extension to the cae in which there are box constraints on the controls is simple.
The algorithms can be used to solve linear-quadratic subproblems arising from the application of
Newton’s method or two-metric gradient projection methods to nonlinear problems.

Key words, discrete-time optimal control, parallel algorithms, dynamic programming, multiple
shooting

AMS(MOS) subject classifications. 49M40, 65Y05, 90C39

1. Introduction. The unconstrained N-stage discrete-time optimal control prob-
lem with Bolza objectives has the form

N

(1) minF(u) de._f N+I(XN+I) " E ei(Xi’ ui)

(2) Xi+l fi(xi, ui), 1,... ,g, (fixed);

wherexi E Rn, i= 1,...,N+I, andui E Rn, 1,...,N. Thexi variables are
usually referred to as states and the ui as controls. (The costates pi are the Lagrange
multipliers corresponding to the constraints (2).) In Dunn and Bertsekas [5] and
Wright [14], algorithms which exhibit local quadratic convergence to nondegenerate
minimizers of (1)-(2) are discussed. These algorithms are Newton’s method (Algo-
rithm III of [14]), and variants of sequential quadratic programming (Algorithms I
and II of [14]), and they all require the solution of a linear-quadratic subproblem of
the following form at each iteration:

minv,y N=l rvi + zy + 1/2(yQy + 2yRvi + vSv)
zT() + ++ ++Q++,

y+ Ay + Bvi + si, 1,...,N, y so.

Here, y, v, q denote the steps in x, ui, p, respectively,

Q Ox R OxOu Ou
(4) A

Of B Off
Ox-- Ou-- z 0 r Ou---

s -x+ + (x, u),

Received by the editors August 21, 1990; accepted for publication (in revised form) March 1,
1991. This research wa supported by the Applied Mathematical Sciences subprogram of the Office
of Energy research, United States Department of Energy, contract W-31-109-Eng-38, and by the
National Science Foundation under contract DMS-8900984.

Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439.

620

PARTITIONED DYNAMIC PROGRAMMING 621

and is the Lagrangian for (1)-(2), specifically:

N N

(, x,) +(x+)+ ,(,, u,)- i(,+ I,(x,, ,)).
i=i i=i

The first-order conditions for a set of vectors Yi, vi, qi to be a solution of (3) are the
following system of linear equations:

()
()
(s)
(9)

ri + Ryi + Sivi + Bqi+l O,
T

zi + Rivi + Qiyi -qi + Ai qi+l O,

ZN+I -" QN+IYN+I qN+l O,
Si --y+ + Ay + Bvi O, i- 1,...,N.

When the initial value yl so is included, the unknowns are ordered as

(ql, yl, Vl, q2, y2, v2 qN+l, YN+I),

and the equations are ordered appropriately, the coefficient matrix for this linear
system becomes

-I
Q1 R1 AT
R1T S1 ST
A1 B1 0

-I
-I
Q R2 AT
R s B
A2 B2 0

-I
-I
Q R3 AT
R S B
A3 B3 0

-I
-I

with a right-hand side of

(11) (-SoT, -zT, -rT, -sT, -z2T, -r2T, --s2T, --Sv --Zv+l)T.
The matrix is symmetric, with dimension 2n(N + 1) + mN, and a half-bandwidth of
(2n +m- 1).

A necessary and sufficient condition for (3) to have a unique, finite solution is
that

(12)
N

1 i T(, +Rv +S,) ++Q/+ > 0
i=1

for all y, v which satisfy

(13) y+ Ayi + Bv, 1,..., N, yl O.

Under this assumption, the point which satisfies the first-order conditions (6)-(9) is
identical to the solution of (3). Second-order sufficient conditions for the vectors x,

622 STEPHEN J. WRIGHT

u, p* to be a solution of (1)-(2) include the requirement that (12)-(13) be satisfied
when Qi, Ri, etc., are defined by (4), evaluated at xi, ui, pi. When the functions li
and fi are sufficiently smooth, then (12)-(13) will also hold in some neighborhood of
this optimal point. If (12)-(13) fails to hold, then the solution of (6)-(9) may be a
saddle point for (3), and hence may not be a suitable search direction for the nonlinear
algorithm. Clearly, modifications to the basic algorithms of [5] and [14] are needed to
ensure that satisfactory global convergence properties will hold. Dunn and Bertsekas
[5] suggest a Levenberg-Marquardt strategy, in which damping terms are added to
the matrices S of (10). This does not destroy the structure of the matrix (10).

Another possible difficulty arises when the second derivatives of the functions

fi and li are difficult to obtain. In this case, "pointwise" quasi-Newton methods,
or finite differencing, can be used to replace the matrices Qi, Ri, Si by suitable
approximations. (See Kelley and Sachs [8] for a pointwise quasi-Newton method for
the infinite-dimensional analog of (1)-(2).) Again, the linear algebra task remains the
same.

When pointwise constraints are applied to the controls ui (for example, bounds
on their magnitudes), projected gradient or active set methods give rise to linear
systems similar to (10)-(11), in which transformation of the variable space leads to
"reduction" of Si, Ri, Bi, ri. This is discussed further in 4.

From the above discussion, it should be clear that, implicitly or explicitly, the task
of solving a problem of the form of (3) (or, alternatively, (10)-(11)) is at the heart
of most practical algorithms for solving (1)-(2). Indeed, computationally speaking,
it is usually the most time-consuming task. In this paper, we focus on this "inner
loop," and present methods for efficiently solving (10)-(11) on multiprocessor com-
puters. These methods take more account of the structure of the problem than the
approach of [14], in which a general parallel bandsolver, with some modifications, was
applied directly to (10)-(11). They are therefore faster, and lend themselves better to
recursive, or "multilevel," implementation (see 3.3). The tradeoff is that, in contrast
to the bandsolve approach, they may fail to find a solution to the system (10)-(11),
even when the coefficient matrix is nonsingular. Such an occurrence is anticipated to
be rare (it has not yet been observed on any test problems), but it would be wise to
retain the bandsolve approach as a backup strategy.

The remainder of the paper proceeds as follows. In 2, known serial algorithms for
efficiently solving (6)-(9) are described. Partitioning of the problem by what amounts
to a domain decomposition, and corresponding modifications of the algorithms, are
described in 3. In 4 we show how to modify the algorithms when constraints on the
controls ui are present, while in 5 some timing analysis of the performance of recursive
implementations of these algorithms on multiprocessor architectures is given. Some
results from an implementation on a shared-memory architecture are presented in 6.
Finally, in 7, we discuss the continuous-time analog of (3), namely, the problem of
finding functions y: [0, T] Rn and v: [0, T]--, Rm such that

(14) f[1 (t)TR(t) (t) + 1/2v(t)Ts(t)v(t) + v(t)Tr(t) + y(t)Tz(t) dt
+1/2Y(T)TQIy(T) + y(T)Tzl,

where 1 A(t)y + B(t)v + s(t), y(O) Yo

is minimized. Here Q, R, S, r, z, A, B, and s are functions of appropriate dimen-
sionality defined on the interval [0, T]. We show how the algorithms of 2 and 3 can
be adapted to this case.

A recent paper by Chang, Chang, and Luh [3] proposes a parallel algorithm for

PARTITIONED DYNAMIC PROGRAMMING 623

(15)

where

(1)-(2) which has a similar flavor to the methods discussed here. They use an approach
that is similar to multiple shooting for two-point boundary value problems, defining
the state variables for certain equally spaced values of the index as unknowns in a
reduced optimization problem. The Hessian of this problem can be formed in parallel,
and Newton steps are calculated by using cyclic reduction. The main differences from
our algorithms are that, in [3], the problem is partitioned at the level of the nonlinear
problem, and the algorithm consists of two distinct levels (whereas our methods can
be implemented in up to log2 N] levels). We believe that exploiting parallelism at
the level of the linear algebra allows more flexibility to enhance the algorithm at the
nonlinear level (for example, by modifying it to handle constraints, to ensure global
convergence, or to use approximate Hessians), without causing complications.

2. Dynamic programming. It is known that linear systems with dimension M
and bandwidth K can be solved by using Gaussian elimination in O(MK2) operations.
For the system (10)-(11), this translates to O(N(m3 / n3)) operations. The dynamic
programming approaches described below have just such a complexity bound; in fact,
they can be thought of as specialized block elimination algorithms for this system.

One algorithm, described by Polak in [10], proceeds by first eliminating the vi
using equation (6). Substitution in (7)-(9) yields the system

y + .Tq+ q + 0, 1,’’’ ,N,
-Y+I + fiy + jq+ + O, 1,...,N,

2{ Ai Bi(Si)-R,
-B(S)-B.T,
Q,-
zi Ri(Si)-ri,
si Bi(Si)-ri.

Then, a Riccati substitution is made for qi; that is, we seek matrices Ki and vector
bi such that

(17) qi Kiyi + bi.

Clearly, from (8), gg+l QN+I and bg+l Zy+l. By combining (15), (16), and
(17), we can obtain expressions of the form

(18) Wiyi + w O, 1, N,

where W depends on K and K+, and w depends on b and b+. Since (18) must
be satisfied for all values of y, we deduce that W 0 and w 0. This yields
recurrence relations for the K and b, which give rise to the following algorithm.

624 STEPHEN J. WRIGHT

Yl -- 0;
for ---1, N

recover qi+l from (17); recover vi from (6).

Note that the factorizations of the matrices (I-Ki+li) (needed in the first loop)
can be re-used as factors of (I- Ki+lji)T in the second loop.

In counting the higher-order terms in the operation count for this algorith, we
assume that advantage is taken of symmetry, where appropriate (Ki, Ji, and Qi are
all symmetric), and that additions, multiplications, and divisions each count as one
operation. We find that approximately

(9) N(7n3 + 4n2m + 4nm2 + 1/2m3)
operations are needed for Algorithm RI.

We note for later reference that this algorithm can be trivially modified if a term
involving qi+l is introduced into equation (9). If (9) is replaced by

(20) 8i --Yi+l "t- Aiyi / Bivi / Jiqi+l O,

we need only modify the definition of i to Ji Bi(Si)-IB[. The remainder of the
algorithm is unchanged.

From the outset, RI depends on the nonsingularity of the matrices Si. Although
an analogous property is usually assumed to hold in the continuous-time problem (as
we note in 7), Dunn and Bertsekas have noted that in the discrete-time case, this
property may not hold even when (3) has a unique, finite solution. The algorithm
described in [5] will, on the other hand, produce a solution for (3) whenever one exists.
It proceeds by finding matrices 0i and Fi, and vectors/i and %, such that

qi 0iyi + i, 1,...,N + 1

vi Fiyi + /i, 1, N.

Substitution into the equations (6)-(9), and some manipulation, gives the following
algorithm.

Algorithm DP

ON+I "-QN+I; N+I (--" ZN+I;

for N,..., 1

F, -[Si + BO,+IBil-I(R + B[Oi+IAi),

Oi (Qi + AOi+lAi) + (Ri + AO+B)F (i 1),
Tfli - ATOi+I(Bi/i + si) + Ai fli+l + z + Ri/i (i 1).

The steps vi and yi can then be recovered in the following loop:

Yl 0;

PARTITIONED DYNAMIC PROGRAMMING 625

for/-- 1,...,N
vi Fiyi /

Yi+I *-- Aiyi + Bivi + si.

The following operation count is obtained:

(21) N(3n3 + 5n2m + 3nm2 + 1/2m3) + O(N(m2 + n2)).
As they stand, these algorithms can only exploit parallelism and veetorization

within each iteration (i.e., in the matrix multiplications and faetorizations), and hence
reasonable efficiency can be expected only when m and n are fairly large. When the
matrix (10) is sparse within its band, the situation is complicated further by a need
for parallel sparse linear algebra algorithms. Moreover, the number of stages N is
typically quite large. This is the motivation for considering parallelism across the
loop, which we proceed to do in the next section.

3. Partitioned dynamic programming. Here we describe variants of the al-
gorithms above which are more arithmetically expensive, but more amenable to paral-
lel implementation. The problem is broken up into P partitions, where each adjacent
pair of partitions is separated by a single stage. Within each partition, a variant of
either DP or RI is used to express the "internal" variables for each partition in terms
of the variables in the adjoining separator stages. A reduced problem consisting of P
stages is then formed, and the process is repeated, possibly recursively. A detailed
analysis of the possibilities appears in 5.

3.1. Partitioned version of DP. The initial partitioning is done by choosing
"separator indices" I, I2,..., Ip, Ip+ that lie in the range 1, 2,..., N + 1 and satisfy
the relationships

I 1; Ij+l > Ij + 2, (j 1,... ,P); Ip+l N + 1.

It follows from these requirements that P cannot exceed (N + 1)/2. Usually, the
separator indices are chosen to be spaced approximately equally, in which case they
are approximately (N+ 1)/P stages apart. The variables qb, Yb and vb, j 1,..., P
will be referred to as "separator variables." For these, it is convenient to use the
notation

def def def(22) qj qI Yj YI j =Vlj.

These variables are the unknowns in the reduced system. Each partition consists of
the indices strictly between two separators; partition j will consist of stages Ij + 1 to
Ij+- 1 inclusive.

Within each partition, we start by seeking matrices 0i, Fi, Di, and Fi and vectors
/3i and "i such that

(23) q Oiyi + Dqb+ +/3, I + 1,..., Ij+l 1,

(24) v Fiyi + FiqI+l + ", Ij + 1,..., I+1 1.

Proceeding as in DP, using the equations (6)-(9) and (23)-(24), we can compute these
matrices and vectors as follows.

Algorithm PDP

(25) Oh+ 0; /3b+ *-- 0; Db+

626 STEPHEN J. WRIGHT

for I+ 1, I+ 2,...,I + 1

(26)
()
(2s)
(29)
(30)
()

We now aim to construct a reduced system in which only the separator variables
are unknown. One equation can be deduced from (9) with Ij+l 1, namely,

s4+i-I -F Ab+i-lY/+i-i -F B4+i-iv4+i-i /+i.

The variables vb+l_l and Yb+-i can be eliminated by substituting from (24) with
Ij+l 1, and then (9) with Ij+l 2. This substitution yields an equation

in which the unknowns on the left-hand side are Yb+x-2 and vb+_2. This process
is repeated for Ig+l 2 down to I, at which point and appear. The
resulting equation is

(32)

where

T AbAj D4+
T iB4/j =D4+

b+-i
Jj= DT BiFii+1

i=I+1

T
sj E DiT+l(BiTi + si) + Dl+tSlg.

A second equation is derived by setting Ij in (7), Ij + 1 in (23), and Ij in
(9):

(33) t + Rj + Qjj q + A qj+t O,

where

A third equation is derived by setting Ij in (6), Ij + 1 in (23), and Ij in
(9)"

(34) ~T~+ Ry + + B q+ o,

PARTITIONED DYNAMIC PROGRAMMING 627

where

T (6)ij -5 Ij+lrj rlj + Bb +isb TOI Bbj SIj -5 BIj +1

and/j and/}j are as defined above.
Two additional equations, for the first and last partitions, complete the system.

From the initial condition, we have

(35) 1 so,

while from (8), using Ip+l N / 1, we have

(36) 4P/l QN/lflP/I -5 ZN+I.

If the separator variables are ordered as

and the right-hand sides are ordered as

the coefficient matrix for (32)-(34), (35), and (36) has the following form:

(37)

-I

-I
-I

Ap p Jp
-I

-I
(N+I

In comparison with DP, the main additional ex_pens_es in this parti_tioned algorithm
involve calculation of the matrices Fi, Di, o?j, Aj, Bj, (j, and Rj. Savings can
be made in the first iteration of each loop (25)-(31) by taking note of the initial
values of I and D/. Again, if lower-order terms are ignored, the operation count is
approximately

(38) 3(N- P)[6n3 + 9n2m + 5nm2 + -m].

All of the above constitutes phase I of the algorithm. The remaining phases
consist of solving the reduced system (phase II) and recovering the internal states yi

from (9) and the internal controls and Lagrange multipliers vi and qi from (23) and
(24) (phase III). The total operation count for phase III is O(N(m2 -5 n2)), so its
cost is dominated by that of phase I unless m and n are very small. We do not take
account of phase III in the timing analyses below. Phase II takes O(P(m3 + n3)) and,
therefore, may be significant; this situation will be discussed further.

628 STEPHEN J. WRIGHT

Unfortunately, in doing the partitioning of the dynamic programming algorithm,
we lose the property that the inverses of the operators [Si + BOi+lBi] exist for all i.
This phenomenon is similar to rank deficiency in the submatrices obtained by parti-
tioning nonsingular banded linear systems (see, for example, [13]). The robustness of
a parallel code could therefore be improved by including the algorithm of Wright [14]
as a backup, in case PDP fails.

3.2. Partitioned version of RI. We now specify a partitioned version of RI
applied to the equations (6), (7), (8), and (20). The controls can be eliminated as
before, and the system (15)-(16) can be obtained, with the appropriate modification
to the definition of Ji. For in the range Ij to Ij+l 1, we make the following
"Riccati" substitution for

T~(39) qi Ky -+- L q+ + b.

Manipulating the equations in the usual way, we obtain the following scheme for
calculating Ki, Li, and

Algorithm PRI (part 1)

K4+ O, Lb+ -- I, bb+ 0;

for Ij+t 1,Ij+ 2,...,Ij

Ki [I gi+,]i]-igi+fi.i +

Again, we need to define a reduced system. One equation in this system can be
found by setting I in the formula (39), giving

(40) qj K4j + LIj+ + bi.
The second equation is derived by seeking matrices Hi and Mi, and vectors hi, such
that for Ij,... ,Ij+ 1,

Hiyi + Mij+ + + hi O.

This can be achieved by the following loop.

Algorithm PRI (part 2)

M4+ O, Hb+ I, hb+ O.

for Ij+ 1,Ij+l 2,...,I

hi hi+ + Hi+(I- ,]iKi+)-i(,]ibi+ + ,i).

It is easy to see that Hi Li for all i. Of course, parts 1 and 2 can be combined in
the same loop. Setting Ij, we obtain the second equation of the reduced system:

(41) L4 + Mb(tj+ -+ + h4 O.

PARTITIONED DYNAMIC PROGRAMMING 629

It is important in this context to distinguish between the Kb+ used as an initial
value for the partition-j calculations (that is, KI+I 0), and the Kb+ obtained
as the end product of the partition- (j / 1) calculations. In constructing the reduced
system, we assume the latter. Below, the notation/j is used for Kb, and so on, and
we again use the additional equations (35)-(36) for the first and last partitions.

Ordering unknowns as

and the right-hand side as

we get as the coefficient matrix for the reduced system

(42)

-I

-I

Lp Jp -I
-I QN+I

In counting operations for the algorithm so far, we note that S-, ?i, -i, and
(i must be calculated for all N stages. Savings can be made by noting that the first
iteration of each of the loops above (that is, calculation of Kb+_, Lb+_ Mb+_
is virtually free; hence we multiply the cost for each iteration of these loops only by
(N P). The higher-order terms sum to

(43) N[15n3 + 3n2m + 5rim2 + 1/2rn3] P[15n3].
3.3. Recursive implementation. The two partitioned algorithms above can

be used in conjunction with the serial algorithms of 2 to devise recursive methods
for solving (3). We note the following two facts:

both the serial and partitioned dynamic programming algorithms have lower
operation counts than the corresponding Riccati-based algorithms, but
Algorithms RI and PRI can be used when (9) has been replaced by (20).

If we apply PDP to solve the original system (as we should, because of the first fact),
we obtain a reduced system which contains equations of the form (20) instead of (9).
Hence, because of the second fact, the reduced system, and any other reduced systems
which arise at subsequent levels of recursion, can be solved only by using RI or PRI.
In general, the optimal strategy for solving (3) consists of an application of PDP,
followed by repeated applications of PRI (on fewer and fewer processors), followed by
an application of RI on a single processor. Recall that we have the constraint that
the size of the reduced system must decrease by a factor of at least 2 at each level of
recursion; hence the theoretical limit on the number of levels is [log2 N. In 5, we
discuss "optimal" strategies for multiprocessor implementation.

The variant of the method in which the maximal number of levels is used is,
effectively, a specialized form of cyclic reduction. It may be worth considering im-
plementation of this variant on vector architectures, particularly when n and m are
very small, so that factorizations involving individual blocks cannot be vectorized
efficiently. We do not pursue this issue here, but refer the reader to Wright [15], in
which cyclic-reduction-like algorithms for linear systems arising from general two-
point boundary value problems are implemented and discussed.

630 STEPHEN J. WRIGHT

4. Constrained problems. Usually, additional constraints are applied to the
controls and/or states in the problem (1)-(2). The partitioned methods of the previous
section can be extended in a straightforward way to the control-constrained case; this
is the topic we discuss in this section.

Suppose that in (1)-(2) we have the additional constraints

(44) gi(ui) <_ O, i- 1,... ,N.

Often these constraints are simple bounds, or Cartesian products of simple geometric
shapes such as spheres or cones (see Gawande and Dunn [6]). Algorithms such as two-
metric gradient projection, or sequential quadratic programming with an active set
strategy, may then be applied to solve (1), (2), and (44). It is not our aim to discuss
the properties of these methods here, but rather to focus on the main computational
tasks and their implementation. Both methods give rise to subproblems of the form
(3), with the additional constraints

(45) Givi + gi 0,

where the vector gi in (45) may contain only a subset of the components of gi(ui)
from (44). The terms in the objective function of (3) must be defined in terms of the
modified Lagrangian

N N N

i--i i=i i=i

First-order necessary conditions for (3), (45) yield the equations (7), (8), (9), (45),
while (6) is replaced by

T(46) ri + RTi yi -t- Sivi / Bi qi+l / G#i O, 1,..., N.

Standard null-space techniques can now be used to eliminate the #i and obtain a
system of the form (6)-(9). Assuming without loss of generality that the Gi have full
row rank, we can define orthogonal matrices Ui and upper triangular matrices Ti such
that

Partitioning Ui in the obvious way as

and writing

U= U2

we obtain by substitution in (7), (9), (20), (45), and (46) the system

(47)
(48)
(49)
(50)

fi2 +//T2yi + i22i2 +/)iT2qi+l 0,

t- +/i2i2 + Qiyi -qi + Aqi+ O,

ZN+I "Jr" QN+lYN+I qg+l O,
-yi+ + Aiyi + Bi2i2 0, i-1,...,N.

PARTITIONED DYNAMIC PROGRAMMING 631

Here/2,/2, i22 are parts of the transformed matrices

[UB & gi&gRi UiRi i2 i2 i21
while

The vectors il and #i can be found from

il -T-T

T
#i -T:fUi[ri + Riyi + Sii + Bi qi+].

Clearly, the serial and parallel methods discussed in 2 and 3 can be applied to
solve (47)-(50), and this is typically the most expensive part of each major iteration.
However, gradient projection algorithms for (1)-(2) perform two other significant
calculations at each iteration. These are solution of the adjoint equation

PN+I

Ofi T(51) Pi Oxi Pi+l" Oxi
i= N,... 1

(which is needed as part of the calculation of VF(u)), and the evaluation of the
nonlinear recurrence (2) for a given set of controls ui. The technique for parallelizing
(51) is essentially the same as that used in 3. The stages are partitioned into P
groups, and within partition j, matrices Ei and vectors ei are sought such that

Pi EiPb+ + ei, i Ij+ 1,... ,Ij + 1.

Recurrence relations for Ei and ei can be derived.
When the state equations fi are all linear, an identical technique can be used to

speed up evaluation of (2). Here, in partition j, we seek Hi and hi such that

(52) xi Hixx + hi, Ij + 1,..., Ij+ 1.

When the fi are nonlinear, it is impossible to derive such linear relationships between
the xi which are the basis of the speedup techniques described in this paper. It is
possible, in principle, to develop nonlinear analogs of (52), but implementation of
these would require nonnumerical computing techniques which are outside the scope
of this paper. One way around this bottleneck could be to use a two-level algorithm.
At each outer iteration, the "IQP variant" of sequential quadratic programming is
applied to (1), (2), and (44) to obtain a subproblem (3), with the additional linear
inequality constraints

Givi + gi <_ O, 1,...,N.

This linearized problem (with linearized state equations) can then be solved by using
two-metric gradient projection.

For problems with additional constraints on the states, quite different techniques
from those above are required. This requirement is discussed in Psiaki and Park
[11], who propose a recursive method involving variable elimination and pairwise
combination of stages. We note that their method can be extended to allow merging
of any number of successive stages at each level of recursion (not just 2), but refer the
reader to [11] for details.

632 STEPHEN J. WRIGHT

5. Optimal multiprocessor implementation. The operation count expres-
sions derived in earlier sections can be used to give some insight into optimizing the
number of levels of recursion, and optimizing the allocation of processors within each
level for the algorithm of 3.3. The results of this section apply to the unconstrained
problem, and to the cost of solving the reduced system (47)-(50) for the constrained
problem. We start by introducing new notation for the operation counts of 2 and
3. Since it is usually true that m _< n, we write

m ot

where a E (0, 1]. Then, scaling in each place by n3, (19), (21), (38), and (43) can be
replaced by

where

Algorithm RI: NAa,
Algorithm DP: NBa,
Algorithm PRI: NCa PDa,
Algorithm PDP: (N- P)Ea,

7 + 4a + 4c2 -P 1/203,
3 + 5a + 302 + 1/2Or3,

10315+3a+5a2+
15,
6 + 9a + 5a2 + 1/2a3.

In the remainder of this section, quantities denoted by T can be converted to
absolute runtimes by multiplying by rt35, where 5 is the time required for one floating-
point operation. For simplicity, however, we refer to the T themselves as "runtimes."

5.1. Shared-memory machines. We start by discussing implementation on
shared-memory multiprocessors. This is the simplest case, as we do not need to take
account of interprocessor communication costs, so the operation counts above will give
a reasonable indication of the elapsed time needed to solve a problem (3). However,
when n is small, we also need to take into account the lower-order terms that were
discarded earlier. When the total amount of data in the problem (O(Nn2)) is large,
the presence of hierarchical memory may also affect the times. This effect should at
least be consistent as N increases, since in all algorithms, the data is processed in two
or three sequential sweeps. Other costs which are ignored are costs of array indexing
and manipulation of data structures, particularly the manipulation necessary to build
up the reduced systems. The ratio of these costs to the arithmetic costs varies like
l/n, so they may be significant when n is small.

On a shared-memory machine, the number of available processors P will typically
be substantially smaller than the number of stages N. It seems reasonable, therefore,
to consider a a-level algorithm, in which PDP is first performed on all P processors,
and then the reduced systems are solved by using PRI on fewer and fewer processors,
until finally at the lowest level, RI is performed on a single processor. In general, at
level k, a problem with Pk stages is solved on Pk-1 processors (P N, P_I P,
P0 1). The runtime is proportional to

a-2N- P
Ea + E Pa-Ca P--Da + PAa.(53) T p p_

_
i=1

PARTITIONED DYNAMIC PROGRAMMING 633

TABLE 1
Theoretical optimal processor allocations and scaled run-

times, where P 16, c .5 and N >_ 32.

o" P1 P2 P3 P4 P5 To-,opt TDP
16.0
5.3 16.0
3.7 7.7
3:1 5.3
2.8 4.3

16.0
9.2
6.6

16.0
10.3 16.0

161
91.9
81.1
78.4
78.1

Minimizing T with respect to P-2,
Pk are

P1, we find that the optimal values for the

giving an optimal runtime of

(55) + (a- 1)Ca (AaPca) (a- 2)Da.

To illustrate this analysis, we insert some typical values of the parameters. Setting
a .5 and P 16, and assuming N _> 32, values of Pk,opt and Ta,opt are given
in Table 1. We actually tabulate T,opt -TDp, where TDP ((N/P)- 1)Ea, (that
is, we exclude that part of the runtime expression which is independent of a). The
theoretical minimizing a is 5.62, for which an adjusted runtime of 78.0 is obtained.
Because we have the constraints that a and the Pk are integers, that Pk _> 2Pk_ 1, and
that, preferably, P}/Pk-1 are integers, we use Table 1 as a guide and look for a nearby
feasible schedule. The schedule a 4, P1 4, P2 8, P3 16 produces a near-
optimal adjusted runtime of 81.3. The five-stage schedule P1 2, P2 4, P3 8,
P4 16 gives a time of 81.8. (We call this a "cyclic reduction" schedule, since after
the initial execution of PDP on 16 processors, the size of the reduced system is halved
at each level, as occurs in cyclic reduction applied to block-tridiagonal systems. See,
for example, Golub and Van Loan [7].)

Finally we note that for systems with small numbers of processors, the scheduling
above is in the nature of fine-tuning, since most of the work takes place at the top level
in PDP. As mentioned, we have discounted the time required for this phase from the
calculations in Table 1. In this example, ((N/P)- 1)Ea would be 177 when N 256
and 1498 when N 2048.

5.2. Message-passing machines. We turn now to implementation on message-
passing architectures. Here, we need to take into account the communication overhead
needed in moving from one level of the algorithm to the next, and the availability of
more processors than are typically found on shared-memory machines. Fortunately,
the communication pattern is quite regular.

We assume that, at the top level of the algorithm, each of the P processors
contains the data needed to execute its share of PDP. Processor j needs to have Ak,
Bk, Qk, Rk, Sk, sk, zk, and rk for k _/j,..., Ij_+l 1. After doing its computation,
this processor contributes the blocks Aj, Bj, Jj, Qj, Rj, Sj, , {, and b to the
reduced system. If processor j is not among the Pc-2 processors which will be used

634 STEPHEN J. WRIGHT

at the next level, it needs to send these blocks to another processor. The total length
of the message will be n3Fa, where Fa (3 + 2a / o2)/n T (2 + o)/n2 words.

During the final phase, in which values of Yk, vk, and qk are being recovered,
communication takes place in the reverse direction: processor j needs to know the
values of j+l and/)j. These may need to be sent from one of the P0.-2 processors
which were used at the next lower level. A total of (P0.-1 -P0.-2) messages of length
n3Ga words is involved, where Ga 2In2.

In general, communication between level i + 1 and level requires a total of
Pi Pi-1 messages of length n3Fa to be sent (concurrently) during the first phase,
and Pi Pi-1 messages of length n3Ga to be sent (concurrently) during the second
phase.

We assume that the time required to send a message of length M eight-byte words
can be approximated by the formula

(56) 7 + M,

where M is the number of words. This timing model has often been used for transfer
of data between adjacent (i.e., directly connected) processors. However, newer hy-
percubes, such as the Intel iPSC/2 and the Ncube, use a routing mechanism which
makes (56) a reasonable timing model for transfer between any two processors.

By modifying (53), we model the total runtime for a distributed-memory machine
as

N
1 Ea/ + P1Aa(57)

where

-(a- 2)Da + (a- 1)Ha,

2h- + (F. + a.)

Note that the new term is independent of P1,"" P0.-1 and so, for fixed a, the optimal
processor allocation will be the same as in the shared-memory case (54). Again we
focus on the case in which the number of available processors P is less than N/2. For
the optimal processor schedule (54), the runtime will be

+ (a- 1)Ca (AaPca) 11(o"--1
-(a- 2)Da + (a- 1)Ha.

Again, we use some reasonable parameter values to obtain a feeling for perfor-
mance. The experiments of Dunigan [4, Tables 3 and 6] show that, for double-precision
arithmetic, approximate values of-y, , and 6 for the Ncube are

7 384#s, / 20.8#s, 6 7.8#s.

We give predicted results for this machine, on an example in which N 2048 and
a .5. The number of available processor.s P is varied, as is the dimension of the
state vector n. Most of the entries in Tables 2 and 3 are relative times, which are
calculated by dividing each absolute time by the time required for serial algorithm
DP, executed on a single processor of the system, and multiplied by 100 percent.

Table 2 gives the theoretical optimal values for a and T, together with the time
TOP required for the top level of the process, namely, execution of algorithm PDP

PARTITIONED DYNAMIC PROGRAMMING 635

TABLE 2
Ncube: optimal number of stages and

normalized runtimes for N 2048, a .5,
and various P and n. Runtimes expressed as
percentages of runtime for Algorithm DP on a
single processor.
P n
16 3

5
10

64 3
5
10

O’opt Topt TDp

3.59 .83
4.28 .71
4.91 .65
5.22 1.28
6.35 1.08
7.36 0.99

TDP
11.63

2.84

TABLE 3
Ncube: best feasible schedules and normal-

ized runtimes for N 2048, a .5, and various
P and n. Runtimes expressed as percentages of
runtime for Algorithm DP on a single processor.

P n r
16 3 4 4,8,16

5 4 4,8,16
10 5 2,4,8,16

64 3 5 4,8,32,64
5 6 4,8,16,32,64
10 6 4,8,16,32,64

schedule Ta TDP
.84
.71
.67
1.34
1.09
1.00

on the P available processors. Here, Topt Ta,opt with a aopt. Since the ratio of
communication cost to computation cost is not too high for this machine, the aopt
values are quite close to the cyclic reduction maximum of a log2 P / 1. Table 3
gives the best feasible schedules for the various P and n; it can be observed that the
times required are very close to the theoretical optima from Table 2.

Efficiency of a P-processor algorithm can be defined by the general formula

efficiency Ts/(P * Tp),

where Ts is the execution time for the best serial algorithm on a single processor, and
Tp is the execution time for the P-processor parallel algorithm. From Table 2, we
see, for example, that when n 10 and P 16, the parallel algorithm requires 12.3
percent of the execution time of the serial method. Hence, Tp/Ts .123, and the
efficiency is .51. When n 10 and P 64, the efficiency is still .41. These are quite
competitive with the efficiencies attained in the shared-memory case.

A recently released hypercube, based on the Intel i860 chip, is characterized by
a very high ratio of communication cost to computation cost. Despite this, a similar
timing analysis on the problem above with the i860 parameters in place of the Ncube
parameters showed that efficiencies of .42 and .21 could be still attained on 16 and
128 processors, respectively, for the problems in Tables 2 and 3. These results are
very encouraging, given the fine-grained nature of the latter calculation.

6. Computational results. Results of the implementation of the algorithms
on shared-memory and distributed-memory machines are given here. We use two
simple test problems with small state and control dimension, but with a large number

636 STEPHEN J. WRIGHT

of stages N. Both are discretizations of continuous-time problems, with an Euler
discretization being applied to the original state equation

I(x,

PPOBLEM 1 (Bertsekas [2]). (m 1, n- 2.) Choosing h l/N,

2min h ’/N=I 6u + 2x+1, + xi+,2

s.t. xi+= -h 1 x+ h u, i=1,...

PPOBLEM 2 (Russell [12]). (m- 2, n- 3.) h- l/N,

+
s.t. x+ (I + h)x + hu,

where

5.2478 -5.2896 0
-5.2896 7.5183 -1.6938

0 -1.6938 1.3119

-.25 -2.1706 1.8752
0 -1 -1

-.873 0
0 -.873
0 0

We also use both problems to test the constrained algorithms by imposing bounds
on the components of ui.

The All;ant FX/8, an eight-processor shared-memory machine, was used in the
tests described below.

For the unconstrained problem, the following algorithms were implemented:
Algorithm RI;
Algorithm DP;
The two-level algorithm consisting of PDP on eight processors, followed by
RI to solve the reduced system;
The three-level algorithm consisting of PDP on eight processors, followed by
PRI on four processors and, finally, RI on a single processor.

The "serial" algorithms were compiled by using the -0g FORTRAN compiler
option to run on a single processor, and also with the -0gc option to run on all eight
processors (and hence to reveal any parallelism in the algorithms). In the parallel
version of RI, the initial elimination and final recovery of the state variables were done
in a parallel loop. The two- and three-level parallel algorithms were also compiled
to run both on a single processor and in concurrent mode. LINPACK routines were
used to perform the various matrix factorizations and triangular solves.

Results are given in Table 4. Some improvement can be noted in the serial algo-
rithms in concurrent mode, particularly for RI, because of the elementary optimization
described above. The one-processor timings of the two- and three-level methods give
an idea of how much "overhead" is involved in PDP, in the formation of matrices Di,
Fi, and , and so on. It is seen that runt;me increases by about 50 percent over serial
DP. The eight-partition, eight-processor version of the two-level algorithms is about

PARTITIONED DYNAMIC PROGRAMMING 637

TABLE 4
Alliant FX/8 runtimes (in seconds) for unconstrained Problems 1 and 2 (N 2000).

RI
DP
PDPmRI
PDP--PRImRI

Problem 1
1 processor 8 processors

3.15 1.90
1.57 1.25
2.48 .361
2.61 .379

Problem 2
1 processor 8 processors

6.56 3.25
3.82 2.30
5.95 .820
6.27 .877

TABLE 5
Alliant FX/8 runtimes (in seconds) for gradient projection algorithm, Problem 1 (N 2000).

RI
DP
PDP--RI
PDP--PRI--RI

ubourd--’l. 0 (18.4% active)
1 processor 8 processors

11.8 7.94
7.45 6.35
12.2 2.18
12.0 2.14

ubound=0.1 (81.5% active)
1 processor 8 processors

17.8 10.1
11.7 8.05
14.2 2.76
14.0 2.71

6.4 times faster than the eight-partition, one-processor version for the first problem
and 7.1 times faster for the second problem. This speedup lags behind the ideal fig-
ure of 8, mainly because solution of the reduced system is a serial bottleneck. The
three-level version of the algorithm took slightly longer, possibly because the overhead
involved in additional levels of subroutine calls was not justified by the small amount
of computation needed to solve the reduced system.

Defining "speedup" to be the ratio of the time taken by the best serial algorithm
on one processor to the time taken for the best parallel algorithm on eight processors,
we obtain a figure of 4.5 for the first problem and 4.6 for the second. These figures
correspond well to the theoretical predictions of 5.

For the bound-constrained problem, the two-metric gradient projection framework
from Bertsekas [2] is used, with each of the four unconstrained algorithms being used
to solve the reduced system (47)-(50). The results are given in Tables 5 and 6. In
the multiprocessor versions of the four codes, solution of the adjoint equation and
evaluation of the states and objective function are parallelized as discussed in 4.
The results are qualitatively similar to the unconstrained case, except that here the
three-level algorithm has a slight advantage. Two factors inhibit perfect speedup in
going from one to eight processors in the two- and three-level codes. The "serial"
parts of these codes are proportionately more significant than in the unconstrained
case, because of the small m and n values. There is also a load-balancing problem.
An equal number of stages is assigned to each processor, but processing times for each
partition vary because different numbers of ui components are at their bounds within
each partition. This means that the decrease factor in runtime in going from one to
eight processors may be as low as 5.1 (as in Problem 1 with ubound 0.1).

The number of iterations (i.e., solutions of reduced systems) is between 2 and 4
in each case. The sequence of iterates generated by each algorithm was the same,
with the minor exception of the two serial methods, which because of roundoff error
required an extra function evaluation of the last iteration of Problem 1 when the
control bound was 0.1.

Speedups (ratio of best serial time to best parallel time) range from 3.5 to 4.3

638 STEPHEN J. WRIGHT

TABLE 6
Alliant FX/8 runtimes (in seconds) .for gradient projection algorithm, Problem 2 (N 2000).

RI
DP
PDP--RI
PDP--PRI--RI

ubotmd--0.2 (6.8% active)
1 processor 8 processors

32.5 16.9
21.4 14.3
36.2 5.83
35.3 5.63

ubound=0.05 (70.0% active)
1 processor 8 processors

40.9 23.9
27.8 17.8
42.7 7.28
42.0 7.13

and do not seem to depend strongly on the proportion of active constraints at the
solution.

7. Continuous-time problems. The discrete-time problem and the algorithms
discussed above have continuous-time analogs which we briefly describe in this section.
These have an interesting relationship to known algorithms for two-point boundary
value problems in ordinary differential and differential algebraic equations.

Given the problem (14), we can introduce the costate function q and apply stan-
dard constrained optimization techniques to obtain the following set of necessary
conditions:

(5s)
(59)
(60)

r(t) + n(t)Ty + S(t)v + B(t)Tq O,
(1 + A(t)Tq + Q(t)y + R(t)v + z(t) O, q(T) QIy(T) + zl,

9- A(t)y- B(t)v s(t) O, y(O) Yo.

This is a system of semi-explicit differential algebraic equations in q, v, and y; it will
have index 1 if S(t) is uniformly nonsingular on [0, T]. In fact, a standard second-order
condition (the strengthened Legendre-Clebsch condition) for (14) to have a unique
minimizer is that

(61) S(t) is positive definite a.e. on [0, T].

It is, therefore, reasonable to use (58) to eliminate v from the system above and obtain
the two-point boundary value problem

(62) 9 A(t)y + Y(t)q + (t), y(0) Yo,

(63)

where

ft A- BS-1RT,
s BS-Ir,

-BS-BT,
z- RS-lr.

Q RS-IRT,

A continuous version of Algorithm RI can be deduced by making the Riccati
substitution

(64) q K(t)y + b(t).

Combining (64) with (62)-(63), we obtain final value problems in K and b:

(65)
(66) -[J](t)T K(t)J(t)]b- [K(t)(t) + 2(t)], b(T) zy.

PARTITIONED DYNAMIC PROGRAMMING 639

Substitution into (62) then yields the following initial value problem for y"

(67) 9 [.(t) + (t)g(t)]y + [J(t)b(t) + (t)], y(0) y0.

Hence it may be possible to solve (14) by integrating backward to solve (65) and (66),
then integrating forward to solve (67), and finally obtaining q and v by substitution
in (64) and (58), respectively. Of course, for this algorithm to work, we must be able
to find a finite solution g(t), t e [0, T], of (65). In the literature it is often simply
assumed that such a solution exists (see, for example, Maurer [9]). However, Russell
[12] and Polak [10] show that a finite g(t) exists provided that, in addition to (61),
we have

(68) [Q(t) R(t)]R(t)T S(t) is positive semidefinite a.e. on [0, T].

It is not difficult to derive an analog for Algorithm PRI. We first partition the
interval [0, T] into P subintervals using meshpoints tl, t2,..., tp+l which satisfy

O tl < t2 < < tp+ T.

Now we introduce the notation i y(ti) and i q(ti), 1... P + 1. The aim
is now to express y(t) and q(t) purely in terms of 9i and i, 1,..., P / 1, and to
derive a "reduced" linear algebraic system in which the i and i are the unknowns.
On each interval [ti, ti+] we make the "Riccati" substitution

(69) q gi(t)y + bi(t) + Li(t)i+, t 6 [ti, ti+].

The usual manipulation yields final value problems for Ki, bi, and

(70) ki --f(t)Tgi gil(t) giJ(t)gi O(t), gi(ti+) 0,

(71) i -[.(t) + gi(t)2(t)]bi -[gi(t)(t) + (t)], bi(ti+) O,
(72) L -[l(t)T + K(t)J(t)]L, n(t+) I.

By setting ,i ni(ti), [-ii Ki(ti), and i bi(ti), we deduce from (69) the following
equation:

To obtain another equation which relates the i and i, we seek Hi(t), Mi(t), and
hi(t) such that for t [ti, ti+],

(73) H(t)y + M(t)4+ + + h(t) O.

Substitution into (62) and (63) shows that

(74) H(t) i(t)T,
and we obtain final-value problems in Mi and hi:

(75) -L(t)Tj(t)L(t), M(t+) O,
(76) hi -Li(t)T[j(t)bi(t) + (t)], hi(ti+) O.

By setting t ti in (73) and using the notation/l:/i Mi(ti), [zi hi(ti), we obtain

640 STEPHEN J. WRIGHT

When the boundary conditions for 1, P+l, and P+I are included, we obtain a
reduced linear system with unknown vector

(77) (41,/)1, 2, 2,""", q-P+1, P+1),

right-hand side

and coefficient matrix

0 -I

(79) -I k2

The partitioned algorithm can be summarized as follows: we first obtain/i, i,
i, /17/i, and zi, for 1,... ,P by integration of (70), (71), (72), (75), and (76),
respectively. Then, (77)-(79) is solved to find i, /)i, 1,..., P + 1. Finally, y(t)
and q(t) can be recovered by substituting into (73) and (69).

The scheme just described can be placed in the framework of "theoretical multiple
shooting" applied to the boundary value problem (62)-(63) (see Ascher and Mattheij
[1]). We are effectively solving a set of P subproblems, one on each interval [ti,
and for the ith subproblem we enforce the separated end conditions

(80) q(ti+l) (+1, y(ti) fl.

(At this point, of course, i+1 and i are unknowns.) This approach contrasts with
"standard" multiple shooting in which only initial conditions are enforced for each
subproblem. We are effectively using Riccati substitution techniques to find solutions
to the particular and fundamental problems

fp, A(t)yp, + J(t)qp, + S(t),, -A(t)rq, 2(t), (t),

?, 4(t)Y, + J(t)P,,
P, -4(t)rP, 2(t)Y,,

?, A(t)Y, + J(t)P,,
P, -4(t)P, Q(t)Y,,

It can be shown that the following identities hold:

Yp,i(ti+l) hi,

q, 4

PARTITIONED DYNAMIC PROGRAMMING 641

Given this connection to multiple shooting, we can briefly address the remaining
issues associated with the partitioned method. One is the existence of solutions of
the subproblems on each interval. Again, the conditions (61), (68) restricted to the
interval [ti, ti+l] are sufficient for the existence of a finite solution Ki to (70). Then,
under weak assumptions on the coefficient functions in (14), we can deduce existence
of solutions to (71), (72), (75), and (76).

A second important issue is the stability of this procedure. It is easy to see from
(72) and (75) that there is a possibility of exponential growth in Li (and hence Mi). A
large body of literature has appeared in recent years on stability of numerical methods
for two-point boundary value problems; from this we can state, loosely speaking, that
if (62)-(63) is well conditioned (that is, not too sensitive to perturbations in the
boundary conditions), then the method outlined above will be stable provided that
the interval lengths are sufficiently small, and the reduced system (77)-(79) is solved
in a stable way. The system (77)-(79) has the same form as the system (15)-(16)
arising from Algorithm RI, and hence could be solved by the discrete algorithms
RI or PRI. If such a procedure turns out to be unstable (something which is easily
detected substituting the calculated solution into (77)-(79) and finding the residual),
a stable parallel solver along the lines of those discussed in Wright [15] can be used
instead.

Finally, we note that the partitioned algorithm just outlined, with its special
choice of boundary conditions on each interval, is by no means the only possible
parallel algorithm for (62)-(63), though it does seem to be a reasonably intuitive one.
Another possibility is to use a global finite-differencing scheme to set up a large block-
banded matrix, and then to use parallelism at the level of the linear algebra (again,
see [15] for details).

8. Conclusions. We have described parallel methods for optimal control prob-
lems, and described their implementation on various parallel architectures. In the
discrete-time case, the parallelism is implemented at the computationally intensive
"inner loop" in which a linear-quadratic regulator problem (3) must be solved. This
allows flexibility in the choice of nonlinear optimization framework to be used to solve
the problem (1)-(2). Good speedups over the best serial algorithms were observed
on a shared-memory machine, and some simple timing analysis shows that good re-
sults can also be expected on distributed-memory architectures. Under appropriate
assumptions, the continuous-time "limit" of the partitioned algorithms is a special
multiple shooting algorithm.

Acknowledgments. I thank the referees for their perceptive comments, which
improved the manuscript.

REFERENCES

[1] U. M. ASCHER AND R. M. M. MATTHEIJ, General framework, stability and error analysis for
numerical stiff boundary value problems, Numer. Math., 54 (1988), pp. 355-372.

[2] D. P. BERTSEKAS, Projected Newton methods for optimization problems with simple constraints,
SIAM J. Control Optim., 20 (1982), pp. 221-246.

[3] S.-C. CHANG, T.-S. CHANG, AND P. S. LUH, A hierarchical decomposition for large-scale opti-
mal control problems with parallel processing structure, Automatica, 25 (1989), pp. 77-86.

[4] T. H. DUNIGAN, Performance of the Intel i860 hypercube, Tech. Report ORNL/TM-11491, Oak
Ridge National Laboratory, Oak Ridge, TN, May 1990.

642 STEPHEN J. WRIGHT

[5] J. C. DUNN AND D. P. BERTSEKAS, Efficient dynamic programming implementations of New-
ton’s method .for unconstrained optimal control problems, J. Optim. Theory Appl., 63
(1989), pp. 23-38.

[6] M. GAWANDE AND J. C. DUNN, Variable metric gradient projection processes on convex feasible
sets defined by nonlinear inequalities, Appl. Math. Optim., 17 (1988), pp. 103-119.

[7] G. H. GOLUB AND C. f. VAN LOAN, Matrix Computations, Second Edition, The Johns Hopkins
University Press, Baltimore, MD, 1989.

[8] C. W. KELLEY AND E. W. SACHS, A pointwise quasi-Newton method.for unconstrained optimal
control problems, Numer. Math., 55 (1989), pp. 159-176.

[9] H. MAURER, First and second order sufficient optimality conditions in mathematical program-
ming and optimal control, Math. Programming Stud., 14 (1981), pp. 163-177.

[10] E. POLAK, Computational Methods in Optimization, Academic Press, New York, 1970.
[11] M. L. PSIAKI AND K. PARK, Trajectory optimization/or real-time guidance: Part 1, Time-

varying LQR on a parallel processor, Proc. 1990 American Control Conference, May 23-25,
1990, San Diego, CA, pp. 248-253.

[12] D. L. RUSSELL, Mathematics of Finite-Dimensional Control Systems, Marcel Dekker, New
York, 1979.

[13] S. J. WRIGHT, Parallel algorithms for banded linear systems, SIAM J. Sci. Statist. Comput.,
to appear; Preprint MCS-P64-0289, Argonne National Laboratory, Argonne, IL, 1989.

[14] Solution o.f discrete-time optimal control problems on parallel computers, Parallel Corn-
put., 16 (1990), pp. 221-238.

[15] Stable parallel algorithms .for two-point boundary value problems, SIAM J. Sci. Statist.
Comput., to appear; Preprint MCS-P178-0990, Argonne National Laboratory Argonne,
IL 1990.

SIAM J. OPTIMIZATION
Vol. 1, No. 4, pp. 643-669, November 1991

() 1991 Society for Industrial and Applied Mathematics
013

ON THE FINE-GRAIN DECOMPOSITION
OF MULTICOMMODITY TRANSPORTATION PROBLEMS*

STAVROS A. ZENIOS

Abstract. A simple algorithm for nonlinear optimization problems with multicommodity trans-
portation constraints is developed. The algorithm is of the row-action type and, when properly
applied, decomposes the underlying graph alternatingly by nodes and arcs. Hence, a fine-grain de-
composition scheme is developed that is suitable for massively parallel computer architectures of the
SIMD (i.e., single instruction stream, multiple data stream) class.

Data structures are developed for the implementation of both dense and sparse problems, and
details of an implementation on a Connection Machine CM-2 with 32K processing elements are
given. The dense implementation achieves computing rate of up to three GFLOPS. Several aspects
of the algorithm are investigated empirically. Computational results are reported for the solution of
quadratic programs with approximately 10 million columns and 100 thousand rows.

Key words, multicommodity networks, nonlinear programming, massively parallel computing

AMS(MOS) subject classifications. 90C08, 90C30, 65K05

1. Introduction. Data-level parallelism is a successful paradigm for computing
on massively parallel architectures. It is based on the premise that a massively par-
allel algorithm should use multiple processors to carry out identical operations on
different parts of the input data. Communication among processors is orderly and
synchronous. With this approach one avoids the difficulties encountered in coordinat-
ing thousands--or, potentially, millions--of processors in an asynchronous, chaotic
fashion. Even more important, however, is the ability to develop abstract models for
data-level parallel computing: the vector random-access-machine (V-RAM) of Blel-
loch [5]. It is thus possible to study complexity issues of massively parallel algorithms,
and gain insight into their efficiency in an abstract setting, even before actual imple-
mentations. A potential limitation of data-level parallelism is the requirement that
the operations of the algorithm are identical on all the data. To what extent this
mode of computing can be applied to solve a broad range of problems is presently
unclear.

The focus of this paper is the design of fine-grain decomposition algorithms for
nonlinear optimization problems with multicommodity transportation constraints.
We seek algorithms that decompose the problem into a large number of indepen-
dent and identical subproblems, and are, therefore, suitable for data-level parallel
computing. If a problem requires O(L) steps, a fine-grain decomposition will require
L. O(1) steps. On a computer system with P processors the problem can be solved
in] O(1) steps. When P is large enough, as is the case with massively parallel
computers, the problem can be solved in a constant number of operations which is
independent of its size.

A fine-grain decomposition algorithm is designed here for a class of multicommod-
ity transportation problems. Such problems appear in operations research (logistics,
distribution, manufacturing, etc.), computer science (communication routing), and

Received by the editors October 4, 1990; accepted for publication (in revised form) April 16,
1991. This research was supported in part by National Science Foundation grant SES-91-00216 and
Air Force Office of Scientific Research grant 91-0168.

Decision Sciences Department, The Wharton School, University of Pennsylvania, Philadelphia,
Pennsylvania 19104. This research was completed while the author was with Thinking Machines
Corporation, Cambridge, Massachusetts 02142 and the Operations Research Center, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139.

643

644 STAVRO$ A. ZENIOS

transportation (the problem of estimating origin/destination tables, which is similar
to the estimation of social accounting matrices in development planning and the es-
timation of migration patterns in regional sciences). This is the second in a series
of three papers that develop massively parallel algorithms for optimization problems
with network structures: The single commodity transportation problem was stud-
ied in Zenios and Censor [31], and the stochastic network problem in Nielsen and
Zenios [24].

Linear multicommodity network flow problems have received extensive investiga-
tion; see the survey articles by Assad [1] or Kennington [21]. Very little has been done
on the nonlinear problem, and in the cases known to the author it has been motivated
by recent developments in parallel computing: Schultz and Meyer [27] and Pinar
and Zenios [33]. The (easier) problem when the multiple commodities jointly con-
tribute in a congestion function has been studied in greater length: Bertsekas [2] and
Gallager [17] for data communication networks, and Chen and Meyer [14] for traffic
assignment models. The algorithm considered here could also address a more general
constraint set than these earlier studies: it permits multipliers (i.e., gains) on individ-
ual commodities, and weighted linear combinations of the commodities contribute to
the coupling constraints. This is the generalized multicommodity flow problem. The
only study that deals with this problem is Wollmer’s [29].

The algorithmic approach we follow is based on the class of row-action algorithms
of Censor [9]; see also Bregman [7], Censor and Lent [10], De Pierro and Iusem [25],
and Elfving [16]. These algorithms have been proven successful in the solution of
very large, sparse, optimization problems that arise in medical imaging (Herman
[19]). With the appropriate choice of some control parameters, the algorithms can
be implemented in parallel; for a classification see Censor [8], and for applications,
see Zenios and Censor [32] and Censor and Zenios [12]. A loose interpretation of
the algorithm is that it applies a Gauss-Seidel iteration to the first-order necessary
optimality conditions. For each row of the constraint set the first-order system is
solved by producing a pair of primal and dual variables that satisfy complementarity
and are (primal) feasible for the specific row. Obviously, if two constraints do not share
any primal variables, the two systems are independent, and if multiple processors are
available they can be solved in parallel. As will be shown in this paper a parallel
decomposition of the multicommodity transportation problem can be developed by
iterating first over all the origin nodes for all commodities, then over the destination
nodes for all commodities, and finally over the coupling constraints for each arc.

A limitation of our approach is that the developed algorithms are specialized for
certain forms of objective functions (known as Bregman’s functions). The quadratic
and entropy functions are two special cases, and these functions are typically used in
the matrix estimation applications mentioned above. However, these algorithms can
not directly solve the linear programming case. They are, nevertheless, the building
blocks for more general algorithmic schemes that can be applied to linear programs:
the proximal minimization algorithm of Rockafellar [26], or the proximal minimization
algorithm with D-functions (PMD) of Censor and Zenios [13].

The algorithm developed in this paper has been implemented on a massively par-
allel Connection Machine CM-2 with up to 32K processing elements. We develop the
data structures for the representation of sparse, multicommodity network problems.
To this end we extend the data structures of Zenios and Lasken [30] to represent
multiple single commodity networks. The implementation is used to study the per-
formance of the algorithm. Numerical results are analyzed for the solution of test

FINE-GRAIN PARALLEL DECOMPOSITIONS 645

problems with up to 10 million variables and 100 thousand constraints.
We define now the problem and establish notation.

1.1. Problem formulation. We use (m) to denote the set {1, 2, 3,..., m}. m
is the m-dimensional Euclidean space and (’,’/ is the Euclidean inner product.
mid{a,/,} is the median of the the three real numbers, a, /, and -. If a _< /
the median can be computed as max{a, min{/,-}}. We use ImP2 to denote rounding
up of m to the next integer that is a power of 2 (e.g., [652 128).

A transportation graph is defined by the triplet G (Vo, VD,) where Vo
(mo), VD (mD) and C_ {(i,j)li E Vo,j VD). Vo and VD are the sets of
origin and destination nodes with cardinality mo and mD, respectively. is the set
of n directed arcs (i, j) with origin and destination j which belong to the graph
(n

_
mo mD) On this transportation problem we consider the flow of K distinct

commodities and let (K denote the set of these commodities. We assume for symme-
try of notation that the underlying graph is identical for all commodities. Additional
notation is needed to define the transportation problem for each commodity, and then
to define the joint restrictions over all the commodities. For each commodity k (K)
we have:
xk (xk(i,j)) e n, (i,j) e , is the vector of flows,
uk (uk(i,j)) e n, (i,j) e , is the vector of upper bounds on the flows,
sk (sk(i)) mo, e VO, is the vector of supplies,
dk (dk(j)) e mD, j VD, is the vector of demands,
o (r(i)) E mo, Vo, is the vector of dual prices for the origin nodes,rkDrk (r(j)) ymD, j VD, is the vector of dual prices for the destination nodes,

rk (rk(i, j)) n, (i, j) , is the vector of dual prices for the bound constraints:
For the joint capacity constraints we define:

U (U(i, j)) yn, (i, j) , the vector of mutual arc capacities,
((i,j)) n, (i,j) e , the vector of dual prices for the joint capacity con-

straints.
In order to define the node-arc incidence relationshipsmassumed to be identical

for all commodities--we define:
+(i) {j VDI(i,j)), the set of destination nodes which have incident arcs with

origin node i. We will use ms to denote the cardinality of this set.
-(j) {i e Vol(i,j) }, the set of origin nodes which have incident arcs with

destination node j.
We define the pure multicommodity transportation problems as follows"

[PMTR] Pure Multicommodity Transportation Problem

(1) Minimize F(x)
Subject to"

(2) Z xk(i, jl sk(i),
j+()

(3) Z xk(i,j) dk(j),

(4) 0 <_ xk(i, j) <_ uk(i, j),

(5) Z xk(i,j) <_ U(i,j),

Vi Vo, k E (K)

VjVD, k(K)

V(i,j) e g’, k e
V(i,j) E

The objective function F nK} is of the form:

646 STAVROS A. ZENIOS

[Q] Quadratic

(6) F(x)
1
-wk(i,j) x(i,j) / ck(i,j) xk(i,j)

he<K>

where wk (wk(i,j)) and ck (ck(i,j)) are given vectors whose components are
positive real numbers.

This discussion concludes the formulation of the problem for which we develop
the algorithm. The following assumptions are made for the problem.

ASSUMPTION 1. The feasible set defined by (2)-(5) is nonempty. (The existence
of feasible solutions for multicommodity network flow constraints can be checked using
the algorithm in Gondran and Minoux [18, pp. 251-256].)

ASSUMPTION 2. The transportation graph G is connected. (Otherwise, the prob-
lem could be partitioned into its disconnected components and each solved separately.)

ASSUMPTION 3. s(i) > 0, for all 6 Vo, k 6 (K) and d(j) > 0 for all j 6
k 6 (K). (If these conditions are violated for some index or j for some commodity
k, then all the flows for the particular commodity on arcs incident to the offending
node can be set to zero, and the relevant constraint removed from the problem.)

1.2. Matrix formulations. In order to develop the row-action algorithms we
will need to express the problems in a compact matrix notation. Constraints (2)-(5)
are rewritten as:

(7) Sx s,

(8) Dx d,
(9) 0 <_ Ix <_ u,
(10) 0 <_ Ex

_
U.

I is the nK x nK identity matrix, x e ng is the vector
is the vector [ul u2 I"" lug]T s e molr is the vector Is1 Is2 I"" SKIT, and
d 6 mDK is the vector [41 142 I"" dK]T"

S is the block-diagonal matrix:

$1

SK

The blocks are defined as follows: for each commodity k 6 (K) let Sk where is
the mo x momD matrix:

(111 O12 OlmD
Cg21 Cg22 Ol2mD

mol mo2 momD I
The entries aij are given by

1, ifj5+(i),(11) cij O, otherwise.

FINE-GRAIN PARALLEL DECOMPOSITIONS 647

The remaining entries of are all zeros.
D is the block-diagonal matrix:

D1
D2

DK 1"
For each commodity k E (K) we define Dk as the mD momD matrix:

lmD

mo
mo2

with entries $j given by

1, ifiEh-(j),(12) fij 0, otherwise.

The remaining entries of Dk are all zeros. E is a generalized upper bound (GUB)
constraint matrix of dimension n nK of the form

(13)

where In denotes the n n identity matrix.
We also use

z [rl=DIr I]r

to denote the vector of dual prices, where ro moI is the vector
[r r2 r]T, rD E mD/ is the vector [rD r2D IrgD]T, and r E ng is
the vector Jr1 r2 I"" rlr]T.

Finally, let

[S D I E]T, "y [s d O O]T, and 5 [s d u U]T

and let () () denote the ith column of (I)T, the transpose of (I). We use
lexicographic ordering for the variables, whereby the variable xk(i,j) is replaced by

i--1x with t (k 1)n -F s=0 ms / j. (Recall that ms card(5+(/)) is the number of
arcs emanating from node 1. m0 is taken to be equal to zero.) The row indices of (I)

are partitioned into four sets"
Io (Ill mo(k 1) / i, Vie (too), k e (g)}. This is the index set for rows of

the equality constraints over all origin nodes (i.e., rows of (7)).
ID (l l=mog/mD(k-1)/j, Vj e (mD), k (g)}. This is the index set for

rows of the equality constraints over all destination nodes (i.e., rows of (8)).
The index set for rows corresponding to both origin and destination nodes is
denoted by I1 Io U ID.

12 (1 (mo T mD)K + q, V q (nK }, corresponding to the simple bounds of (9).
13 (1 (too +mD + n)K + q, V q (n)}. This is the index set for rows of the

GUB constraints (i.e., rows of (10)).

648 STAVI:tOS A. ZENIOS

With this notation the pure multicommodity problem can be expressed as

(14) Minimize F(x)
(15) Subject to _< (I)x _< 5.

We will be developing the algorithms starting from the compact matrix notation,
but will be expressing them finally in the algebraic representation of (2)-(5). It is
only in the latter form that the fine-grain decomposition becomes apparent.

1.3. Outline of the paper. In 2 we develop the algorithm. The general row-
action framework is first summarized. It is then used to develop the fine-grain decom-
position algorithm for pure quadratic network problems, and discuss extensions to
generalized networks. Section 3 develops the data structures for the implementation
of the algorithm on massively parallel computers of the SIMD (i.e., single instruc-
tion stream, multiple data stream) class. Section 4 presents results from numerical
experiments conducted on a Connection Machine CM-2 with up to 32K processing
elements. The experiments establish the efficiency of the algorithm for the solution
of very large problems. They also provide some insight on the performance of the
algorithm for different problem characteristics. Section 5 presents the conclusions of
our study and discusses directions for further research.

2. The fine-grain parallel algorithms. We begin with a sketch of the main
idea. A fine-grain decomposition of the multicommodity transportation problem is
developed when properly applying a row-action iterative algorithm. Such an algorithm
operates on one row of the constraint set at a time--hence its name. The iterative
step consists of an adjustment of the dual price of the constraint followed by an
adjustment of the primal variables. Throughout, complementarity is preserved and
upon completion of the algorithm primal feasibility is achieved. The algorithm iterates
using an almost-cyclic control sequence over all the constraints. (The notion of almost-
cyclic control was introduced in the analysis of Censor and Lent [10]. By definition,
a sequence {ik} is almost-cyclic on the finite set I if ik E I for all k >_ 0, and
I C_ {ik+l,"’, ik+c} for all k _> 0 and some integer C. The constant C is referred to
as the constant of almost-cyclicality.)

Obviously, if two constraints do not share any primal variables, the respective
iterative steps can be executed independently. If multiple processors are available they
can also be executed in parallel. It is then desirable to use the almost-cyclic control
mechanism to choose independent constraints. In the case of the multicommodity
transportation problem the algorithm first iterates on the origin nodes for all the
commodities, then it iterates on the destination nodes for all the commodities, then
it iterates on the simple bounds for all the commodities, and finally it iterates on
the GUB constraints. One iteration of the algorithm requires (mo / mD + n)K / n
operations. When iterating on the origin nodes it requires moK operations, on the
destination nodes it requires mDK operations, on the simple bounds it requires nK
operations, and on the joint capacity constraints it requires n operations. Hence, if the
number of processors P scales linearly with max{nK, moK, mDK}, the algorithm
can be executed in a constant number of operations per iteration. The rest of this
section makes these ideas precise.

2.1. The row-action framework. We need some preliminary discussion. Let
F A c_ n where A is an arbitrary nonempty set, and let S be an open

FINE-GRAIN PARALLEL DECOMPOSITIONS 649

convex set such that its closure S c_ A. The set S is called the zone of F, if F is
strictly convex and continuous on S and continuously differentiable on S.

Let D(x, y) F(x) F(y) (VF(y), x y), and let H(a, b) be the hyperplane
U(a, b) {x E n (a,x) b}. The D-projection (or Bregman projection) of a point
y onto H(a, b) is defined by

(16) PH(a,b)(Y) arg min D(x, y).
xEH(a,b)N

A function F--that belongs to the family of Bregman’s functions as character-
ized by Censor and Lent [10f--has the zone consistency property with respect to the
hyperplane H(a, b) if the D-projection of every y E S onto H(a, b) is also in S. If a
function is zone consistent with respect to H(a, b), then it can be shown (Censor and
Lent [10, Lemma 3.1]) that the D-projection of y onto H(a, b) is the point x given by
the unique solution of the system of equations in x and/:

(17) VF(x) VF(y) + .a,
(18) (a, x) b.

The unique real number/ is known as the Bregman parameter. It can be interpreted
as a step on the dual price for equation (a,x) b that, together with the primal
variable x, preserves the complementary slackness condition (17) while x satisfies
equation (18).

The quadratic function [Q] is a nregman’s function (Censor and Lent [10]) with
zone n. It is also easy to verify that, under Assumptions 1-3, it has the strong zone
consistency property with respect to the hyperplanes H(, /) and H(, St) for all
l 11 U 12 U 13. Hence we can apply the following general iterative scheme.

Algorithm 2.1. General Row-Action Algorithm for Mixed Equality and
Inequality Constraints.

Step 0: (Initialization.) - 0. Compute z S and x n such that

(19) VF(x) --Tz.

Step 1: (Iterative step over equality constraints.) Choose a row index l() e I1, and
solve the following system for xV and v"

(20) VF(x’+1/2) VF(x) + t(),
(21) z’+1/2 z’ et(),

where v is the Bregman parameter associated with the D-projection of x on
the hyperplane H((v), t(v)). (l()} is the control sequence of the algorithm,
henceforth abbreviated as l l(). e E mo+mD+Kn+n is the lth standard
basis vector having 1 in the lth coordinate and zeros elsewhere.

Step 2: (Iterative step over interval constraints.) Choose a row index l() 12 U 13,
and calculate F and A where F and A are the Bregman parameters
associated with the D-projection of x+1/2 on the hyperplanes specified when
the left and right inequalities of (15), respectively, of the interval constraints
hold with equality (i.e., x+1/2 is projected on the hyperplanes H((), t())
and H((),5()), respectively). Hence, compute xV+l and z+1 as follows:

650 STAVROS A. ZENIOS

(22) mid{ -+1/2zt() F., A},

VF(x.+) VF(x+/) +
z+ z+/. e().

Step 3: Let / 1, and return to Step 1.

2.2. Algorithm for quadratic problems. We now specialize the general row-
action scheme for quadratic programs with pure multicommodity network constraints.
The iterative step for the equality constraints is derived from Algorithm 2.1 (Step 1).
It takes the form:

(25) x[+ --el,
wt

(26) z+ z 3,et,
t 1,2,...,Kn,

where l E I. The parameter/ is obtained by solving

(27) Yt x + -Z, t 1,2,... ,gn,
wt

For any control index / E Io the iterative step is obtained as follows: First, by the
definition of Io, can be expressed as mo(k- 1) + i for some (mo) and
k e (K). Hence, Ct is the ith row of the kth block of matrix S with entries aj
as given by (11). x’ will be updated according to (25) only when 0. This
occurs for values of t that correspond to the lexicographic ordering of variable xk(i, j)
for j 5+(i), since it is only for these values that aij 1. Furthermore, the gth

component of - is sk(i) with dual variable r((i). Hence, system (27)-(28) can be
simplified to

5+(29) yk(i,j) x(i,j) + wk(i,j)’ J (i),

(30) E yk(i,j)=sk(i),

for all k E (K). Solving this system for/ we obtain

(31)
1 []sk(i)-- E x(i,j)

This expression for/ is substituted in (25)-(26) to complete the iterative step. Sim-
ilarly, we obtain the iterative step for any control index l ID.

The iterative step for the simple bound constraints (i.e., l I2) can be obtained
as a simplification of the interval-constrained step. It is identical to the step for the
single commodity quadratic transportation problems (see Zenios and Censor [30]) and
its derivation is not repeated here.

FINE-GRAIN PARALLEL DECOMPOSITIONS 651

For any control index E I3 the iterative step is taken over the interval constraints.
It is obtained from Algorithm 2.1 (Step 2)"

(32) x+1)x q-

(33) z+1 zu ue, t 1,2,...,Kn,

where f mid{z’, F, Au}. F is obtained by solving

(35) <t, Y) 7,

t 1,2,...,Kn,

and A is obtained by solving

(a6) x[+

(37) (t, y> St.

t 1,2,...,Kn,

In order to solve for F or A, we need once more to examine the structure of Ct
when l E I3, i.e., l (too + mD + n)K + q for some q (n). Ct is the qth row of the
matrix E with entries ej, as given by (13). x’ will be updated according to (32) only
when 0. This occurs for values of t that correspond to the lexicographic ordering
of variables xk(i,j) that satisfy t (k 1)n + q for all k e (K) (i.e., only variables
with lexicographic order q, n / q, 2n + q,..., (K 1)n + q will appear in the qth GUB
constraint). Furthermore, the ith component of - is 0, the tth component of 5 is
U(i,j), and the dual variable is (i,j). With these observations, systems (34)-(35)
and (36)-(37) can be simplified to:

Fv(38) yk(i,j)
wk(i,j)

K

(39) E Yk(i,j) O,

and

k--1

(40) yk(i,j) x(i,j) + wk(i,j)
K

j) v(i, j).

Solving these systems, we obtain

ke

(42) F
K1 E x(i,j),

652 STAVROS A. ZENIOS

and

(a)
i: (Z) [K]U(i, j) Z x(i, j)

k-1

These expressions for Fv and Av are used to compute using the mid(operator,
i.e., (22), which is then substituted in (32)-(33) to complete the iterative step.

We now have all the components required to complete the algorithm for pure
multicommodity transportation problems with a quadratic objective function.

Algorithm 2.2. Quadratic Optimization Algorithm for Pure Multicom-
modity Transportation Problems.
Step 0: (Initialization) 0. z .-- 0,

(44) x(i,j) -ck(i,j) Vk e (K (i,j) e .
wk(i,j)

Step 1: (Solve the single commodity problems.)
FOR k 1,2,3,...,K
Step 1.1: (Solve for origin nodes.)

FOR 1,2,3,...,mo
Compute

(45)
1 [()

Update

(46) x(i,j) .--- x’(i,j) + wk(i,j)
(aT) (o(i))+ (.(i)) Z

j e +(i),

(48)

(49)

(0)

ENDFOR
Step 1.2: (Solve for destination nodes.)

FOR j 1, 2, 3,..., mD
Compute

[dk(j)" ,e-() (,)

Update

x’(i,j) x’(i,j) + wk(i,j)
((j))+ (.(j)) z

ENDFOR
Step 1.3: (Solve for the simple bounds.)

FOR (i,j) e "Compute

FINE-GRAIN PARALLEL DECOMPOSITIONS 653

(5)

(52)

mid(r(i,j), wk(i,j)’(uk(i,j)--x(i,j)), --wk(i,j).x(i,j)}

Update

(53)
ENDFOR

ENDFOR
Step 2: (Solve for the joint capacity constraints.)

FOR (i, j) e :
Compute

(54)

(55)

(56)

(57)

Update

x (i,j) .- x (i,j) + wk(i,j)
u+lrk (i,j)=r(i,j)-

(5s)
ENDFOR

Step 3: Let v - v + 1, and return to Step 1.

2.3. Discussion.

Xk+l(i j) x(i,j) + V k e
wk(i,j)’

Cv+(i,j) Cv(i,j) fly Vk e (K).

2.3.1. Extensions to generalized networks. The algorithm of the previous
section can be extended to solve generalized network problems, whereby the coeffi-
cients fij are not restricted to the values (0, 1}, but may be arbitrary real numbers.
The numerical values of these coefficients may also depend on the commodity k, in
which case the coefficients of Dk will be of the form i. As in the case of the pure
network problem it is possible to obtain closed form solutions for the Bregman pa-
rameters.

Row-action algorithms can also be developed for the optimization of entropy
functions of the form

F(x)--- Z xk(i,j).[ln(Xkk(i’J))--l]
ke<K>(i,j)eE

(i’J)

where In is the natural logarithm and ak(i,j) are given positive real numbers. For
pure problems we obtain once more closed form solutions for the Bregman parameters.
However, for the generalized network problem, the Bregman parameters are given as
the solution of a nonlinear equation. It turns out that an approximate solution can
be obtained in closed form without destroying the asymptotic convergence of the
algorithm; refer to the convergence analysis of Censor et al. [11]. The development
and testing of algorithms for the generalized network problem are the topic of current
research and will be reported elsewhere. A sketch of the algorithms is given in the
working paper version of this article.

654 STAVROS A. ZENIOS

2.3.2. Relaxation parameters. Relaxation parameters (} can be built into
the algorithm. Different relaxation parameters can be used for different constraints,
and they can be changed as the algorithm proceeds, provided they are within some
bounds imposed to guarantee convergence. For the quadratic algorithm, for example,
0 < e _< ,k <_ 2- e. The use of relaxation parameters could accelerate convergence of
the algorithm to an approximate solution. Since the algorithms are usually terminated
when a sufficiently "good" solution is obtained, the use of relaxation parameters could
be of great practical significance. This topic deserves further study.

2.3.3. Choice of control sequence. The algorithms developed here use the
following control sequence in choosing rows of the constraint set on which to compute
the Bregman projections: (1) origin node constraints, (2) destination node constraints,
(3) simple bounds, (4) GUB constraints. Of course, any other almost cyclic control
sequence will do. It is unclear which control sequence would accelerate the convergence
of the algorithm towards an approximate solution. In addition to empirical studies,
it is possible to undertake a more fundamental analysis: The algorithms project the
current iterate x on successive hyperplanes that are specified by the choice of Ct(). If
() and (+1) are almost parallel the algorithm will take very small steps. Looking
at the cosine of the angle between successive hyperplanes

(59)
(),(+)

we can choose hyperplanes that are (almost) orthogonal. On the other hand, if some
hyperplanes (t} are almost parallel, they could be replaced by a surrogate hyper-
plane. Given the rich structure of the constraint matrix , it is worthwhile to in-
vestigate specialized acceleration schemes, starting from the discussion of BjSrck and
Elfving [4] or Sramley and Sameh [6].

2.3.4. Potentially difficult problems. It is possible to gain insight into the
performance of the algorithm on a candidate class of test problems by examining the
problem data and the structure of the algorithms. Refer, for example, to the quadratic
programming Algorithm 2.2. In the dual step calculation (Step 1.1), we see the term

e+(i) (i,)

If the coefficients wk(i,j) are very small, so will be the whole term and the algorithm
will be taking very small steps. Similar performance will be observed for very large
and dense problems.

2.3.5. Asymptotic convergence. Since the algorithm we developed is a spe-
cialization of the general row-action framework, its asymptotic convergence can be
derived from known results. For pure problems and generalized quadratic problems,
we can obtain convergence from the results of Censor and Lent [10] and Elfving’s [16]
extension to mixed equality and inequality constraints. For the relaxed versions of
the algorithm, one needs to extend the results of De Pierro and Iusem [25] and Censor
et al. [11] to the mixed equality and interval-constrained problem.

3. Massively parallel implementations. The motivation for the design of the
algorithms has been the desire to exploit massively parallel computing for the solution
of very large problems. Of particular interest is the concept of data-level parallelism,
whereby the problem is decomposed into fine-grain identical operations executed on

FINE-GRAIN PARALLEL DECOMPOSITIONS 655

multiple data. If a large number of processors is available, then each one could execute
these operations on its local data elements.

When there is interaction among the problem data, it would be necessary to
communicate among the corresponding processors. Such communication can be com-
bined with computations (as, for example, when P processors with local data ci,

1, 2, 3,..., P, coordinate to compute the partial sums cU =1 a) or the commu-
nication step could be void of any computing, as in the case of permuting the data
among processors according to some index list ci - cis(i).

The algorithm we developed decomposes naturally for this form of parallelism.
In this section we discuss implementations of the quadratic programming algorithm
on a massively parallel Connection Machine CM-2.

3.1. The Connection Machine CM-2. We briefly introduce the characteris-
tics of the Connection Machine (model CM-2) (Hillis [20]) that are relevant to the
parallel implementations discussed here. The Connection Machine is a fine-grain
SIMD (i.e., single instruction stream, multiple data stream) system. Its basic hard-
ware component is an integrated circuit with 16 processing elements (PEs) and a
router that handles general communication. A fully configured CM has 4,096 chips
for a total of 65,536 PEs. The 4,096 chips are interconnected as a 12-dimensional
hypercube. Each processor is equipped with local memory of 8Kbytes, and for each
cluster of 32 PEs a floating-point accelerator handles floating-point arithmetic.

Operations by the PEs are under the control of a microcontroller that broadcasts
instructions from a front-end computer (FE) simultaneously to all the elements for
execution. A flag register at every PE allows for no-operations; i.e., an instruction
received from the microcontroller is executed if the flag is set, and ignored otherwise.

Parallel computations on the CM are in the form of a single operation executed
on multiple copies of the problem data. All processors execute identical operations,
each one operating on data stored in its local memory, accessing data residing in the
memory of other PEs, or receiving data from the front end. This mode of computa-
tion is termed data level parallelism in contradistinction to control level parallelism,
whereby multiple processors execute their own control sequence, operating either on
local or shared data.

To achieve high performance with data-level parallelism one needs a large number
of processors. The CM provides the mechanism of virtual processors (VPs) that allows
one PE to operate in a serial fashion on multiple copies of data. VPs are specified
by slicing the local memory of each PE into equal segments and allowing the physical
processor to loop over all slices. The number of segments is called the VP ratio (i.e.,
ratio of virtual to physical PEs). Looping by the PE over all the memory slices is
executed, in the worst case, in linear time. The set of virtual processors associated
with each element of a data set is called a VP set.

The CM supports two addressing mechanisms for communication. The send ad-
dress is used for general purpose communications via the routers. The NEWS address
describes the position of a VP in an n-dimensional grid that optimizes communication
performance. The send address indicates the location of the PE (hypercube address)
that supports a specific VP and the relative address of the VP in the VP set that is
currently active. NEWS address is an n-tuple of coordinates that specifies the relative
position of a VP in an n-dimensional Cartesian-grid geometry. A geometry is an ab-
stract description of such an n-dimensional grid. Once a geometry is associated with
the currently active VP set a relative addressing mechanism is established among the
processors in the VP set. Each processor has a relative position in the n-dimensional

656 STAVROS A. ZENIOS

geometry and NEWS allows the communication across the North, East, West, and
South neighbors of each processor, and enables the execution of operations along the
axes of the geometry. Such operations are efficient since the n-dimensional geometry
can be mapped onto the underlying hypercube in such a way that adjacent VPs are
mapped onto vertices of the hypercube connected with a direct link. This mapping of
an n-dimensional mesh on a hypercube is achieved through a Gray coding; see, e.g.,
Bertsekas and Tsitsiklis [3, p. 50].

The algorithm was implemented using C/Paris. Paris is a low level protocol
by which the actions of the data processors of the CM are controlled by the front
end. Before invoking Paris instructions from a program the user has to specify the
VP set, create a geometry, and associate the VP set with the geometry. Thus a
communications mechanism is established (along both send and NEWS addresses).
Paris instructions--parallel primitives--can then be invoked to execute operations
along some axis of the geometry (using NEWS addresses), operate on an individual
processor using send addresses, or translate NEWS to send addresses for general
interprocessor communication or communication with the front end.

Parallel primitives that are relevant to our implementation are the scans and
spreads of Blelloch [5]. The Q-scan primitive, for an associative, binary operator
(R), takes a sequence {x0, xl,..., xn} and produces another sequence {yo, yl,"’, Yn}
such that yi x0 (R) x (R)... (R) xi. For example, add-scan takes as an argument a
parallel variable (i.e., a variable with its ith element residing in a memory field of
the ith VP) and returns at VP i, the value of the parallel variable summed over
j 0,..., i. User options allow the scan to apply only to preceding processors (e.g.,
sum over j 0,..., i- 1) or to perform the scan in reverse. The (R)-spread primitive,
for an associative binary operator (R), takes a sequence {x0, x1,..., xn} and produces
another sequence (yo, y,’", Yn} such that Yi xo (R) x (R)... (R) xn. For example,
add-spread takes as an argument a parallel variable residing in the memories of n
active data processors and returns at VP i, the value of the parallel variable summed
over j -0,...,n.

Another variation of the scan primitives allows their operation within segments
of a parallel variable. These primitives are denoted as segmented-Q-scan. They take
as arguments a parallel variable and a set of segment bits which specify a partitioning
of the VP set into contiguous segments. Segment bits have a "1" at the starting
location of a new segment and "0" elsewhere. A segmented-Q-scan operation restarts
at the beginning of every segment. When processors are configured as a NEWS grid,
scans within rows or columns of the grid are special cases of segmented scans called
grid-scans.

3.2. Dense implementation. In all implementations we assume that the indi-
vidual commodities are unbounded from above (i.e., uk(i,j) +oc, for all arcs and
all commodities), and are only restricted through the GUB constraints. This is a
reasonable practical assumption, and our implementations can be easily modified to
remove this restriction. In the dense implementation of the algorithm, it is also as-
sumed that the graph G is complete. The CM-2 is configured into a two-dimensional
communication mesh, i.e., a NEWS grid, of dimensions mo2 mD2. This grid
is then used to solve a sequence of single-commodity transportation problems, imple-
mented as in Zenios and Censor [30]. The memory of VP with NEWS coordinates
(i, j) stores the data for arc (i, j) E . It is partitioned into the following data fields:

1. Supply and demand, s sk(i) and d dk(j);
2. Current iterate, x xk(i,j);

FINE-GRAIN PARALLEL DECOMPOSITIONS 657

3. Dual price PSI=(i,j);
K4. Sum of the flows of all commodities ex=k=l xk(i,j);

5. Joint capacity constraint U U(i, j);
6. Three fields IW, JW, and KW that hold the constants

1 1 1

respectively, and a field W that holds the quadratic coefficient w(i,j);
7. Scaling factor BETA that holds f;
8. Scratch fields to hold intermediate results.

In the memory of the FE we define a vector of K structures of the form
a-commodity {
fe-w [mo] [roD]
fe-x [mo] [mD]
fe-s [mo]
fe-d[mD] } commodity-t
commodity-t corn[K]

Figure 1 illustrates the memory configuration of both the CM and the FE. With
this layout of memory, Algorithm 2.2 is executed as follows:
Step 0: Initialize according to Step 0 and set BETA=0.
Step I: Initialize ex to zero. Move one commodity at a time from the FE to the

CM. Update x and PSI according to (57) and (58), and solve by executing
iteratively Steps 1.1-1.3 until some local termination criteria are satisfied.
Accumulate the optimal solution into field ex, and move the optimal solution
from the CM to the FE.

Step 2: Compute the scaling factor from Step 2, equation (56), store in BETA, and
return to Step 1.

3.3. Sparse implementation. When solving sparse network optimization prob-
lems on the CM we have to map the network topology to the virtual processors in a
way that is efficient for both computations and communications. The data structures
introduced in Zenios and Lasken [29] are at present the best known method to repre-
sent sparse network problems. A comparison of alternative parallel implementations
is reported in Nielsen and Zenios [23], and these data structures have been used by
Eckstein [15] for the implementation of his alternating directions method of multipli-
ers, with very encouraging results. The representation adopted in these studies uses
a one-dimensional geometry of size [2n + (mo + mD)] 2. It assigns two VPs for each
arc (i, j), one at the tail node i, and one at the head node j and one VP for each
node. VPs that correspond to the same node are grouped together into a contiguous
segment. In this way segmented-scan operations can be used for computing and for
communicating data among processors incident to a node. The general communica-
tion of prices among nodes is a one-to-one send operation between the VPs at the
head and tail of each arc.

In order to implement a sparse, multicommodity network solver, we use the sin-
gle commodity nonlinear network optimizer of Nielsen and Zenios [28]. The single
commodity solver can be easily extended to solve multiple independent commodities
in parallel: The CM is configured as a two-dimensional communications grid of di-
mensions [g]2 x [2n + (mo + mD)]2. Each row of the 0-axis is used to represent a
single network problem as outlined above. Since the network problem has identical

658 STAVROS A. ZENIOS

CM memory

FIG. 1. Memory configuration of the FE and the CM for the dense implementation.

topology for all the commodities, the mapping of arcs into VPs and the partitioning
of VPs into segments will be identical for each row of the grid.

The control of the algorithm is identical for each row of the grid (i.e., for each
network problem). Row k of the 0-axis will store the data of the network problem
for the kth commodity. This configuration is illustrated in Fig. 2. The algorithm
iterates along the 1-axis until some convergence criteria is satisfied for all the rows.
Once the single commodity networks are solved by iterations along the 1-axis, the
algorithm executes Step 2 using scan operations along the 0-axis. (Since the flows
of each commodity satisfy xk(i,j) >_ 0 we only need to compute the projection for
the upper bound of the GUB constraints.) This step is implemented by the following
code segment in C/Paris:

CM-spread-with-f-add-lL(scrl, x, O, S, E);
CM-f-sub-mult-lL(scr2, U, scrl, KW, S, E);

FINE-GRAIN PARALLEL DECOMPOSITIONS 659

1 axis NEWS address
(Network) of VP along axis 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 ommo7

Network Structure
for commodityk

Data Fields in the k-th row corresponding to commodity k.

NEWS address
ofVPalongvdsl 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Node

Segment bits

Supply Data

Demand Data

Joint Capacity

Send address
in NEWS
coordinates
along axis 1

1 1 2 2 3 3 3 3 4 4 4 5 5 5

1 0 0 1 0 0 0 0 1 0 0 1 0 0

sk(1) $k(1) sk(1) $k(2) Sk(2) $k(3) sk(3) sk(3) sk(3) sk(4) ski4) sk(4) sk(5) Sk($) sic(5)

dk(1) dk(1) dk(1) dx(2) dk(2) dk(3) dk(3) dk(3) dk(3) dk(4) dk(4) dk(4) dk(5) dk(5) dk(5)

oo U(1,3)U(1,4)= U(2,3)oo U(1,3)U(2,3)U(3,5)oo U(1,4)U(4,5)oo V(3,5)V(4,5)

0 6 10 3 7 5 4 13 9 2 14 12 8 11

FIG. 2. Representing sparse multicommodity networks on the CM.

CM-f-min-2-1L(scr2, PSI, S, E);
CM-f-subtract-2-1L(PSI, scr2, S, E)
CM-f-divide-2-1L(scr2, W, S, E);
CM-f-add-2-1L(x, scr2, S, E);

4. Experimental design and performance evaluation. The quadratic op-
timization Algorithm 2.2 was implemented on the Connection Machine CM-2 using
C/Paris, as explained in the previous section. As pointed out in 2, the steps of
Algorithm 2.2 can be executed in any almost-cyclic fashion. Our implementation car-
ries out iteratively Steps 1.1-1.3 until some termination criterion is satisfied for the
equality constraints (MINOR iterations). Once this tolerance is achieved, it executes
Step 2 (MAJOR iteration) and resumes minor iterations. The algorithm terminates

660 STAVPOS A. ZENIOS

when both of the following criteria are satisfied:
1. Relative error on GUB constraints for major iterations:

(60) lO0max{O’’]K--xk(i’j)--U(i’J)}<’(,)U(i, j)

(61)

In all experiments we set el 0.1 percent.
2. Absolute error on network equality constraints for minor iterations:

max
iEVo,jEVD,kE<K>

In all experiments we set e2 10-4.
In this section we provide a summary of computational results in order to highlight

certain aspects of the performance of the algorithm and illustrate its suitability for
the solution of very large problems. The program was compiled on a SUN 4/280
FE using compiler flags -O -cm2. We used in all runs a CM-2 with 32-bit floating
point accelerators at Thinking Machines Corporation, Cambridge, MA. All times are
in seconds. Data input/output is excluded, but time for the transfer of data between
the FE and the CM is included, together with all time spent in communications on the
CM. All times reported are in total CPU time as recorded by the FE. This includes
CM time for execution of the C/Paris code and CPU time for the controlling program
and FE calculations. Most runs were carried out on a lightly used FE and the CM
times consume more than 95 percent (up to 99 percent in some cases) of the total
time.

The dense implementation runs at approximately 1.6 GFLOPS when implemented
in C/Paris on a 64K CM-2. It is possible to design an optimal implementation based
on the NEWS grid, that minimizes the amount of communication required. Such
an implementation was carried out in microcode and is described in McKenna and
Zenios [22]; it executes at three GFLOPS rate in solving single commodity problems.
Unless otherwise stated, all subsequent experiments are using the C/Paris implemen-
tation.

4.1. Problem generator. We wrote a problem generator that provides control
over several characteristics of the test problems. The generator was also written in
C/Paris on the CM. It is thus possible to generate extremely large problems in memory
and pass them on to the solver without the need to transfer data to an external
storage device--a task that would take several hours for the bigger problems. The
input parameters for the generator are: (1) Number of origin and destination nodes
mo and mD, respectively; (2) number of commodities K; (3) condition number p of
the Hessian matrix; (4) largest coefficient, max-c, for linear term; (5) percentage, a, of
joint capacity constraints that are active at the optimal solution; (6) the tightness, ,
of the active joint capacity constraints; (7) maximum supply or demand, max-sd, at
each node. The generator accepts as input the seven control parameters and generates
a problem in three steps:
Step 1: Generate K single commodity problems: Set up a two-dimensional NEWS

grid of [mo]2 x [mD]2 active VPs. Generate the objective function coeffi-
cients wk(i, j) in the range [1,p] using a uniform random distribution. Gener-
ate the objective function coefficients ck(i, j) in the range [1, max-c]. Generate

FINE-GRAIN PARALLEL DECOMPOSITIONS 661

supply and demand values, for origin and destination nodes, respectively, in
the range [1, max-sd]. Scale all supply values by

Ejm=v dk(j)
(i)Ei--1 8k

to ensure that the equality constraints are feasible.
Step 2: Solve the K uncapacitated, single commodity problems generated in Step 1.

(We use the algorithm of Zenios and Censor [31].)
Step 3: Calculate the sum of the optimal flows from Step 2 over all commodities for

each arc, say, ex(i, j). Choose, at random, a percent of the arcs that will have
active GUB constraints. For the arcs so chosen, set U(i, j) . ex(i, j). The
rest of the arcs are virtually unrestricted, and the joint capacity constraints
are set to V(i, j) ex(i, j).

At this point any arcs that have ex(i,j) 0 are removed from the problem. In
general, we found that leaving these arcs in the problem with a large upper bound
would make the test problems significantly easier. Some of the problems solved at
the early stages of our experimentation kept all the arcs in the problem. Whenever,
in subsequent sections, the number of arcs is exactly mo mD, then the problem is
relatively easy.

Subsequent sections will describe in detail the parameters used to generate each
problem. When no such information is given, then the following base-case test problem
is being used: Nodes mo mD 256, commodities K-5, condition number p
102, largest coefficient for linear term max-c--100, percentage of active joint capacity
constraints a 10 percent, tightness of active joint capacity constraints 0.90,
maximum supply or demand max-sd-100. When information is provided only for
some of the input parameters, then the remaining parameters have the values given
here for the base-case.

4.2. Algorithmic performance. The algorithm is a first-order method, and as
such it is expected to have a tailing effect with larger steps at the first iterates and
smaller steps as it approaches the solution. A small test problem is used to illustrate
the performance of the algorithm. Figure 3 plots the absolute maximum error of

the GUB constraints (max(5)e {0, =xt:(i,j)-U(i,j)})at successive major
iterations. Within each major iteration the figure illustrates the absolute error of
the equality constraints at selected minor iterations. Following a major iteration, the
joint capacity constraint error is zero (recall that Step 2 of the algorithm will satisfy
exactly the joint capacity constraints), but the error of the equality constraints is
large. Successive minor iterations reduce the error at the equations and increasingly
violate the joint capacity constraints. Depending on which constraints are "soft" in
a given model (i.e., the GUB constraints or the equality constraints), the results of
Fig. 3 provide some guidance on when the algorithm should be terminated.

The question is raised whether the minor iterations should be terminated with
a loose tolerance at the early major iterations. For the dense implementation on
the CM, such a strategy is not efficient for the following reason: In order to execute
the minor iterations, each commodity has to be loaded into the CM memory from
the FE. A significant amount of time is consumed in this step. As illustrated in
Fig. 4, after the first few major iterations, more time is spent in transferring data
from the FE to the CM than in computations. Terminating the algorithm with
looser minor iteration tolerance will increase the number of major iterations, and

662 STAVROS A. ZENIOS

Error

2.0

1.0

0.5

Error @ Major Iterations

X Error @ Minor Iterations x 10

2 3 4 5 6 8 10

Error

4.5

4.0

3.5

2.5

2.0

1.5

(Minor)
Iterations

(Major)
40

FIG. 3. Maximum error at successive major and minor iterations.

Time

(seconds)600
500

400-

300-

200-

100.

Computation

/Communication

1’0 2’0 30 4’00

Iteration
(Major)

FIG. 4. Computation and communication times for the dense implementation.

hence the communication time. After the first 1-2 major iterations, the decrease in
computing time will not compensate for the increase of communication time. This
is one example where a strategy that would be efficient on a serial computer, or a
coarse-grain parallel computer, is not advisable on a massively parallel system. The
time spent in communications is critical in the choice of internal algorithmic tactics.

FINE-GRAIN PARALLEL DECOMPOSITIONS 663

Solution
Time

(seconds)

1600

1200-

800-

400.

O’

Major
Iterations

160

120

8O

4O

0
i I’ 1’0 No. of

Commodities

Fzo. 5. Effect of increasing the number of commodities K on the performance of the algorithm.

4.3. The effects of problem structure. It is well established in the opti-
mization folklore that the performance of a nonlinear programming algorithm may
vary substantially for different problem characteristics. In this section we look at the
performance of the quadratic programming algorithm when the following problem
parameters change: (1) number of commodities K, (2) condition number p, (3) per-
centage a of active GUB constraints, and (4) tightness/ of active GUB constraints.

4.3.1. Increasing number of commodities. Figure 5 illustrates both solution
time and number of major iterations as the number of commodities increases for a
given problem size. Problems are getting only slightly more difficult with increasing
number of commodities, as manifested by the small increase in the number of major
iterations. However, solution times increase linearly with the number of commodities.
This observation provides empirical verification that the amount of computation and
communication required per iteration is a linear function of the number of commodi-
ties.

There is an interesting implication from the results of this figure: If a massively
parallel architecture scales linearly in size with the number of commodities, then larger
problems can be solved with only slight increase of solution time. This increase will
be proportional to the increase in major iterations.

4.3.2. Increasing condition number. First-order algorithms, like those pre-
sented here, are very sensitive to ill-conditioning. Figure 6 illustrates the performance
of the algorithm as the condition number of the problem increases, and for problems
with varying number of commodities. The adverse impact of ill-conditioning is more
significant for problems with more commodities. For condition number p 102, the
algorithm can solve problems with a large number of commodities. (In 4.5, we re-
port solution profiles for problems with up to 20 commodities.) For condition number
p 103, the algorithm can still solve problems with many commodities, but at sig-
nificant increase in computing time. For condition number p 10a, the algorithm
converges very slowly when applied to problems with more than two commodities.
The information in this section provides general guidelines on the potential difficulty
of a given test problem.

4.3.3. Increasing percentage, a, of active GUB constraints. As the num-
ber of joint capacity constraints that are active at the optimal solution increases, the

664 STAVROS A. ZENIOS

Absolute 6]Error 2 commodities; condition 104

modities; condition no. 102

0 20 40 60 80 100
Major

Iteration

Absolute
Error 4.

3.

2,

1-

0

x 4 commodities; condition 10

4 commodities; condition no. 10

x

4 commodities; condition no. 10

50 100 150 200 500
Major

Iteration

FIG. 6. Effect of increasing the condition number p on the performance of the algorithm.

Solution
Time (o)1300-

(seconds)

1100-

900-

700-

500-

300,
Solution
Time 20-
per

Major 15-

Iteration 10-

Major
Iterations x

-80

-70

-60

-50

40
% Ac:ive
Coupling
Constraints

FIG. 7. Effect of increasing the percentage of active GUB constraints a on the performance of
the algorithm.

FINE-GRAIN PARALLEL DECOMPOSITIONS 665

Solution
Time

(seconds) 701

600-

500-

400-

300-

200-

100-

0
Solution 8Time

per
Major

Iteration 4.-

(A)

, Major
Iterations x

x 1100
8O

60

40

2O

0
.80 % Reduction of

Joint Capacity
_t Constraints

FIG. 8. Effect of increasing the tightness of the joint capacity constraints on the performance
of the algorithm.

problems become more difficult. Figure 7 shows the increase in: (1) major iterations,
(2) total solution time, and (3) solution time per major iteration, as the percentage
a of active constraints increases.

We observe that the increase in solution time is primarily due to the increase in
number of major iterations. Hence, no improvements in performance can be antici-
pated with increases in the size of the computer. It is also usually unknown a priori
how many constraints are active at the solution. Hence, the results of this section
are of limited practical value. They mainly illustrate two facts. First, the algorithm
is capable of solving problems with a significant number of active GUB constraints,
and second, the solution time increases only linearly with increase in the number of
active constraints.

4.3.4. Increasing tightness,/, of active GUB constraints. Intuitively, one
expects the following: If the joint capacity constraint is larger than the sum of the
unconstrained optimal flows on all commodities, then the problem is trivial. It will
be solved in one major iteration. If the joint capacity is slightly less than the sum
of unconstrained flows, then some flow can be diverted easily to adjacent arcs. If the
joint capacity is significantly less than the sum of unconstrained flows, then more flow
has to be diverted to adjacent arcs and the problem gets more difficult.

This intuition is confirmed in Fig. 8 when the tightness of the active capacity
constraints ranges from/ 0.97 to/ 0.90. (Recall that for/ 1.00 the joint
capacity constraints are not active, and they become more tight as/ decreases.) From
the same figure, however, it appears that the problems get marginally more difficult
as/ decreases to 0.80. Additional experimentation is needed before one attempts to
devise an explanation.

4.4. The performance of the sparse implementation. Table 1 summarizes
the results in solving identical problems using both the dense and sparse implemen-
tations. All test problems solved here are totally dense, and hence this comparison is
biased against the sparse implementation. Nevertheless, some interesting observations

666 STAVROS A. ZENIOS

TABLE 1
Comparing he dense and sparse implementations. (Solution times in seconds.)

1

Problem
size

Solution
characteristics

128 nodes
4096 arcs CM time(sec)

64 nodes
1024 arcs

4K CM-2
Dense Sparse

implementation implementation

1 32

144 305

32 nodes
256 arcs

CM time(sec) 130

CM time(sec) 156

8K CM-2
Sparse

implementation

169

19218

25

can be made which are very encouraging for the performance of the sparse implemen-
tation. If the computer configuration does not have a sufficient number of processors
to store all the commodities simultaneously in their sparse representation, then the
dense implementation is superior. The time spent in transferring data from the FE to
the CM is compensated by the improved computing performance achieved when the
algorithm executes at a low VP ratio. Compare the solution time of Problems 1 and
2 on the 4K CM-2, where the dense implementation is faster. However, the sparse
implementation can run faster on a bigger machine, while the dense implementation
is already executed at a VP ratio of 1. Compare the solution times for Problems i and
2 with the dense implementation running at a VP ratio equal to 1 on a 4K CM-2,
and the sparse implementation running on an 8K CM-2 with VP ratios 16 and 4,
respectively. The sparse implementation is at par with the dense implementation and
could improve even further with an increase in the number of processing elements.
When both the dense and sparse implementations run with VP ratio 1, then the sparse
implementation can be significantly faster (see the results for Problem 3). Identifying
the precise conditions under which the sparse implementation should be preferred is
a complex problem. Some preliminary discussion on this topic is given in the working
paper version of this article.

4.5. Solving large scale problems. As a final exercise, we generated and
solved some very large problems. The results are reported in Table 2. The algo-
rithm achieves a good level of accuracy in number of major iterations that range from
20-100. The largest problems (5-10) have more than one million variables and 10
thousand equations and they are solved well within one hour of wall clock time. The
same problem could be solved in less than 10 minutes on a 32K CM-2 and less than
five minutes on a fully configured 64K CM-2.

5. Concluding remarks. This paper has developed an algorithm for nonlinear
multicommodity transportation problems. The algorithm induces a fine-grain decom-
position of the problem: First, by node for each commodity, and then by arc. As
a result, it is possible to implement this algorithm on massively parallel computer
architectures. Of course, implementations on coarse-grain parallel machines are also
possible, although such implementations would not fully exploit the potential of the
algorithm.

The algorithm appears effective in solving problems of medium difficulty (con-

FINE-GRAIN PARALLEL DECOMPOSITIONS 667

TABLE 2
Solving large scale problems. (Time in min:sec.)

No.
Network
formulation

256 nodes
12976 arcs

256 nodes
15276 arcs
5 com.
512 nodes
16370 arcs

512 nodes
65478 arcs

1024 nodes
262000 arcs
10 com.
1024 nodes
262144 arcs
20 com.
1024 nodes
262144 arcs

2048 nodes
1002338 arcs

2048 nodes
1048074 arcs

2048 nodes
1048570 arcs

Problem size
Lin. ’prog.
formulation

512 eqns.
1672 GUB
25952 vars.
512 eqns.
1675 GUB
30534 vats.

1280 eqns.
1634 GUB
83850 vars.
2560 eqns.
6552 GUB
327435 vars.
5120 eqns.
26181 GUB
1310000 vars.
10240 eqns.
25957 GUB
2621140 vars.
20480 eqns.
26260 GUB
5424880 vars.
4096 eqns.
104443 GUB
2004678 arcs.
10240 eqns.
104088 GUB
5240370 vars.
16384 eqns.
104521 GUB
8384560 vars.

Condl Major Error
No. Itns. % GUB Absolute

const, node const.

109 90 .09 ’10-
Time

4K 32K
CM-2 CM-2 (*)
20:00 3:10

10 100 "1i 10-7 1:00 0:10

10z 86 .09 10- 1’:50 :20

10z NA .09 10-’ 4:30 0:45

10 41 109 10- 14:10 2:15

102 37 .09 10- 31:30’ 4:55

10z 90 .09 10- 45:00 7:20

10z 17 ’.08 10- 14:35 2:15

102 19 :07 10- 40:40" 6:20

10 22 .09 10-6 29:50 4:40

(,)Note: Time on the 32K CM- is estimated, dividing the ti’me on the 4K CM-2 by 6.4. This is
the empirically observed improvement in performance as the VP ratio is reduced by a factor of 8,
when moving from the 4K to the 32K CM-2.

dition numbers 10-1000) to a good level of accuracy. Nevertheless, as a first-order
method it could be severely affected by ill-conditioned problems. Also, the attainment
of very high accuracy could come with significant increase in the number of iterations
and computer times.

Massively parallel implementations on the Connection Machine CM-2 have been
possible even for sparse problems. The implementations are very efficient, and match
the parallel nature of the algorithm with the computer architecture of the CM-2. We
expect significant improvements in the performance of massively parallel architectures
over the coming years. For example, the current version of the CM-2 has processing
elements that operate at 7MHZ; this is significantly lower than the operating cycle
of personal computers. Also, 64-bit WEITEK floating-point accelerators are now
being added to some configurations. The algorithm developed here could then achieve
higher accuracy with little additional effort. The current model of C/Paris--based
on fieldwise representation of data--is far from being the most efficient one for the
CM-2. The optimization algorithms developed here should be able to benefit from

668 STAVROS A. ZENIOS

improvements in the computer models without additional effort on our part.
It is a severe limitation that these algorithms are applicable only to nonlinear

problems. Nevertheless, they are the building blocks for solving linear programs:
The quadratic optimization algorithms in the context of proximal minimization of
Rockafellar [26] and the entropy optimization extensions in the context of the PMD
framework developed by Censor and Zenios [13]. This is the topic of a current study.

As a postscript, we add that a massively parallel algorithm has been developed
by Nielsen and Zenios [23] for stochastic programming problems with network re-
course. Experiments with that algorithm on the Connection Machine CM-2 for some
financial modeling applications reinforce the encouraging results reported here for
multicommodity flows.

Acknowledgments. I thank Professor Yair Censor for numerous illuminating
discussions on row-action algorithms and for his constant encouragement. I also ben-
efited from the comments of Jill Mesirov and Soren Nielsen. Computing resources
for this paper were made available by the North-east Parallel Architectures Center
(NPAC) of Syracuse University, Syracuse, NY 13244, and the Army High Performance
Computing Research Center (AHPCRC) at the University of Minnesota.

REFERENCES

[1] A. A. ASSAD, Multicommodity network flows--a survey, Networks, 8 (1978) pp. 37-91.
[2] D. P. BERTSEKAS, Algorithms for nonlinear multicommodity network flow problems, in Interna-

tional Symposium on Systems Optimization and Analysis, A. Bensoussan and J.L. Lions,
eds., Springer-Verlag, Berlin, New York, 1979, pp. 210-224.

[3] D. P. BERTSEKAS AND J. N. TSITSIKLIS, Parallel and Distributed Computation: Numerical
Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[4] A. BJCPCK AND T. ELFVING, Accelerated projection methods for computing pseudo-inverse
solutions of systems of linear equations, BIT, 19 (1979), pp. 145-163.

[5] G. E. BLELLOCH, Vector Models for Data-Parallel Computing, The MIT Press, Cambridge,
MA, 1990.

[6] R. BRAMLEY AND A. SAMEH, Row projection methods for large nonsymmetric linear systems,
CSRD Report 957, Department of Computer Science, University of Illinois, Urbana, IL,
January 1990.

[’] L. M. BREGMAN, The relaxation method for finding the common point of convex sets and its
application to the solution of problems in convex programming, USSR Comput. Math. and
Math. Phys., 7 (1967), pp. 200-217.

[8] Y. CENSOR, Parallel application of block-iterative methods in medical imaging and radiation
therapy, Math. Programming, 42 (1988), pp. 307-325.

[9] Row-action methods for huge and sparse systems and their applications, SIAM Rev.,
23 (1981), pp. 444-464.

[10] Y. CENSOR AND A. LENT, An iterative row-action method for interval convex programming, J.
Optim. Theory Appl., 34 (1981), pp. 321-353.

[11] Y. CENSOP, A. R. DE PmtPO, T. ELFVING, G. T. HERMAN, AND A. N. IUSEM, On iterative
methods for linearly constrained entropy maximization, in Numerical Analysis and Math-
ematical Modelling, Vol. 24, A. Wakulicz, ed., Banach Center Publications, PWN--Polish
Scientific Publisher, Warsaw, Poland, 1990, pp. 145-163.

[12] Y. CENSOr. AND S. A. ZENIOS, Interval constrained matrix balancing, Linear Algebra Appl.,
150 (1991), pp. 393-42.

[13] , The proximal minimization algorithm with D-functions, J. Optim. Theory Appl., 1991,
to appear.

[14] R. J. CHEN AND R. R. MEYEP, Parallel optimization .for traJ:fic assignment, Math. Program-
ming, 42 (1988), pp. 327-345.

[15] J. ECKSTEIN, Implementing and running the alternating step method on the Connection Ma-
chine CM-2, ORSA J. Comput., 1992, to appear.

[16] T. ELFVING, An algorithm for maximum entropy image reconstruction from noisy data, Math.
Comput. Modelling, 12 (1989), pp. 729-745.

FINE-GRAIN PARALLEL DECOMPOSITIONS 669

[17] R. GALLAGER, A minimum delay routing algorithm using distributed computation, IEEE Trans.
Comm., 25 (1977), pp. 73-85.

[18] M. GONDRAN AND M. MINOUX, Graphs and Algorithms, John Wiley and Sons, New York, 1986.
[19] G. T. HERMAN, Image Reconstruction]rom Projections: The Fundamentals of Computerized

Tomography, Academic Press, New York, 1980.
[20] W. D. HILLIS, The Connection Machine, The MIT Press, Cambridge, MA, 1985.
[21] J. L. KENNINGTON, A survey of linear cost multicommodity network flows, Oper. Res., 26

(1978), pp. 209-236.
[22] M. MGKENNA AND S. A. ZENIOS, An optimal parallel implementation of a quadratic transporta-

tion algorithm, in Fourth SIAM Conference on Parallel Processing for Scientific Computing,
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990, pp. 357-363.

[23] S. NIELSEN AND S. A. ZENIOS, Data Structures for Network Algorithms on Massively Paral-
lel Architectures Report 90-12-07, Decision Sciences Department, The Wharton School,
University of Pennsylvania, Philadelphia, PA, 1990; Parallel Comput., to appear.

[24] Massively Parallel Algorithms for Nonlinear Stochastic Network Problems, Report 90-
09-08, Decision Sciences Department, The Wharton School, University of Pennsylvania,
Philadelphia, PA, 1990; Oper. Res., to appear.

[25] A. R. DE PIEIRO AND A. N. IUSEM, A relaxed version of Bregman’s method for convex pro-
gramming, J. Optim. Theory Appl., 5 (1986), pp 421-440.

[26] R. T. ROCKAFELLAR, Augmented Lagrangians and applications to proximal point algorithms
in convex programming, Math. Oper. Res., 1 (1976), pp. 97-116.

[27] G. L. SCHULTZ AND R. R. MEYER, A structured interior point method, SIAM J. Optimization,
this issue, pp. 583-602.

[28] S. NIELSEN AND S. A. ZENIOS, Massively parallel algorithms for singly constrained nonlinear
programs, ORSA J. Comput., 4 (1992), to appear.

[29] R. D. WOLLMER, Multicommodity networks with resource constraints: the generalized multi-
commodity flow problem, Networks, 1 (1972), pp. 245-263.

[30] S. A. ZENIOS AND R. A. LASKEN, Nonlinear network optimization on a massively parallel
Connection Machine, Ann. Oper. Res., 14 (1988), pp. 147-165.

[31] S. A. ZENIOS AND V. CENSOR, Massively parallel row-action algorithms]or some nonlinear
transportation problems, SIAM J. Optimization, 1 (1991), pp. 373-400.

[32] Parallel computing with block-iterative image reconstruction algorithms, Appl. Numer.
Math., 7 (1991), pp. 399-415.

[33] M. C. PINAR AND S. A. ZENIOS, Parallel decomposition of multicommodity network flow prob-
lems, ORSA J. Comput., 4 (1992), to appear.

	SJOPE_V01_i1_p0001
	SJOPE_V01_i1_p0018
	SJOPE_V01_i1_p0022
	SJOPE_V01_i1_p0030
	SJOPE_V01_i1_p0042
	SJOPE_V01_i1_p0057
	SJOPE_V01_i1_p0083
	SJOPE_V01_i1_p0093
	SJOPE_V01_i1_p0114
	SJOPE_V01_i1_p0123
	SJOPE_V01_i1_p0146
	SJOPE_V01_i2_p0151
	SJOPE_V01_i2_p0166
	SJOPE_V01_i2_p0191
	SJOPE_V01_i2_p0206
	SJOPE_V01_i2_p0222
	SJOPE_V01_i2_p0252
	SJOPE_V01_i2_p0268
	SJOPE_V01_i2_p0280
	SJOPE_V01_i3_p0293
	SJOPE_V01_i3_p0316
	SJOPE_V01_i3_p0333
	SJOPE_V01_i3_p0358
	SJOPE_V01_i3_p0373
	SJOPE_V01_i3_p0401
	SJOPE_V01_i4_p0425
	SJOPE_V01_i4_p0448
	SJOPE_V01_i4_p0475
	SJOPE_V01_i4_p0487
	SJOPE_V01_i4_p0501
	SJOPE_V01_i4_p0515
	SJOPE_V01_i4_p0530
	SJOPE_V01_i4_p0548
	SJOPE_V01_i4_p0565
	SJOPE_V01_i4_p0583
	SJOPE_V01_i4_p0603
	SJOPE_V01_i4_p0620
	SJOPE_V01_i4_p0643

